1
|
Scheinman SB, Dong H. The impact of sex on memory during aging and Alzheimer's disease progression: Epigenetic mechanisms. J Alzheimers Dis 2024; 102:562-576. [PMID: 39539121 DOI: 10.1177/13872877241288709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, disability, and death in the elderly. While the etiology of AD is unknown, there are several established risk factors for the disease including, aging, female sex, and genetics. However, specific genetic mutations only account for a small percentage (1-5%) of AD cases and the much more common sporadic form of the disease has no causative genetic basis, although certain risk factor genes have been identified. While the genetic code remains static throughout the lifetime, the activation and expression levels of genes change dynamically over time via epigenetics. Recent evidence has emerged linking changes in epigenetics to the pathogenesis of AD, and epigenetic alterations also modulate cognitive changes during physiological aging. Aging is the greatest risk factor for the development of AD and two-thirds of all AD patients are women, who experience an increased rate of symptom progression compared to men of the same age. In humans and other mammalian species, males and females experience aging differently, raising the important question of whether sex differences in epigenetic regulation during aging could provide an explanation for sex differences in neurodegenerative diseases such as AD. This review explores distinct epigenetic changes that impact memory function during aging and AD, with a specific focus on sexually divergent epigenetic alterations (in particular, histone modifications) as a potential mechanistic explanation for sex differences in AD.
Collapse
Affiliation(s)
- Sarah B Scheinman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Li H, Humphreys BD. Multimodal characterization of sexual dimorphism in the mammalian kidney. Kidney Int 2024; 105:653-655. [PMID: 38519227 DOI: 10.1016/j.kint.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 03/24/2024]
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
3
|
Ofori E, Solis A, Punjani N. The Association among Hypothalamic Subnits, Gonadotropic and Sex Hormone Plasmas Levels in Alzheimer's Disease. Brain Sci 2024; 14:276. [PMID: 38539664 PMCID: PMC10968390 DOI: 10.3390/brainsci14030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigates the sex-specific role of the Hypothalamic-Pituitary-Gonadal axis in Alzheimer's disease progression, utilizing ADNI1 data for 493 individuals, analyzing plasma levels of gonadotropic and sex hormones, and examining neurodegeneration-related brain structures. We assessed plasma levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P4), and testosterone (T), along with volumetric measures of the hippocampus, entorhinal cortex, and hypothalamic subunits, to explore their correlation with Alzheimer's disease markers across different cognitive statuses and sexes. Significant cognitive status effects were observed for all volumetric measures, with a distinct sex-by-cognitive status interaction for hypothalamic volume, indicating a decrease in males but not in females across cognitive impairment stages. Regression analyses showed specific hypothalamic subunit volume related to hormone levels, accounting for up to approximately 40% of the variance (p < 0.05). The findings highlight sex differences in neurodegeneration and hormonal regulation, suggesting potential for personalized treatments and advancing the understanding of Alzheimer's disease etiology.
Collapse
Affiliation(s)
- Edward Ofori
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Anamaria Solis
- Department of Social Work, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Nahid Punjani
- College of Medicine and Sciences, Mayo Clinic, Phoenix, AZ 85054, USA
| | | |
Collapse
|
4
|
Prokai-Tatrai K, Prokai L. The impact of 17β-estradiol on the estrogen-deficient female brain: from mechanisms to therapy with hot flushes as target symptoms. Front Endocrinol (Lausanne) 2024; 14:1310432. [PMID: 38260155 PMCID: PMC10800853 DOI: 10.3389/fendo.2023.1310432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Sex steroids are essential for whole body development and functions. Among these steroids, 17β-estradiol (E2) has been known as the principal "female" hormone. However, E2's actions are not restricted to reproduction, as it plays a myriad of important roles throughout the body including the brain. In fact, this hormone also has profound effects on the female brain throughout the life span. The brain receives this gonadal hormone from the circulation, and local formation of E2 from testosterone via aromatase has been shown. Therefore, the brain appears to be not only a target but also a producer of this steroid. The beneficial broad actions of the hormone in the brain are the end result of well-orchestrated delayed genomic and rapid non-genomic responses. A drastic and steady decline in circulating E2 in a female occurs naturally over an extended period of time starting with the perimenopausal transition, as ovarian functions are gradually declining until the complete cessation of the menstrual cycle. The waning of endogenous E2 in the blood leads to an estrogen-deficient brain. This adversely impacts neural and behavioral functions and may lead to a constellation of maladies such as vasomotor symptoms with varying severity among women and, also, over time within an individual. Vasomotor symptoms triggered apparently by estrogen deficiency are related to abnormal changes in the hypothalamus particularly involving its preoptic and anterior areas. However, conventional hormone therapies to "re-estrogenize" the brain carry risks due to multiple confounding factors including unwanted hormonal exposure of the periphery. In this review, we focus on hot flushes as the archetypic manifestation of estrogen deprivation in the brain. Beyond our current mechanistic understanding of the symptoms, we highlight the arduous process and various obstacles of developing effective and safe therapies for hot flushes using E2. We discuss our preclinical efforts to constrain E2's beneficial actions to the brain by the DHED prodrug our laboratory developed to treat maladies associated with the hypoestrogenic brain.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | | |
Collapse
|
5
|
Smiley KO, Munley KM, Aghi K, Lipshutz SE, Patton TM, Pradhan DS, Solomon-Lane TK, Sun SED. Sex diversity in the 21st century: Concepts, frameworks, and approaches for the future of neuroendocrinology. Horm Behav 2024; 157:105445. [PMID: 37979209 PMCID: PMC10842816 DOI: 10.1016/j.yhbeh.2023.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023]
Abstract
Sex is ubiquitous and variable throughout the animal kingdom. Historically, scientists have used reductionist methodologies that rely on a priori sex categorizations, in which two discrete sexes are inextricably linked with gamete type. However, this binarized operationalization does not adequately reflect the diversity of sex observed in nature. This is due, in part, to the fact that sex exists across many levels of biological analysis, including genetic, molecular, cellular, morphological, behavioral, and population levels. Furthermore, the biological mechanisms governing sex are embedded in complex networks that dynamically interact with other systems. To produce the most accurate and scientifically rigorous work examining sex in neuroendocrinology and to capture the full range of sex variability and diversity present in animal systems, we must critically assess the frameworks, experimental designs, and analytical methods used in our research. In this perspective piece, we first propose a new conceptual framework to guide the integrative study of sex. Then, we provide practical guidance on research approaches for studying sex-associated variables, including factors to consider in study design, selection of model organisms, experimental methodologies, and statistical analyses. We invite fellow scientists to conscientiously apply these modernized approaches to advance our biological understanding of sex and to encourage academically and socially responsible outcomes of our work. By expanding our conceptual frameworks and methodological approaches to the study of sex, we will gain insight into the unique ways that sex exists across levels of biological organization to produce the vast array of variability and diversity observed in nature.
Collapse
Affiliation(s)
- Kristina O Smiley
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, 639 North Pleasant Street, Morrill IVN Neuroscience, Amherst, MA 01003, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, 3695 Cullen Boulevard, Houston, TX 77204, USA.
| | - Krisha Aghi
- Department of Integrative Biology and Physiology, University of California Los Angeles, 405 Hilgard Ave, Los Angeles, CA 90095, USA.
| | - Sara E Lipshutz
- Department of Biology, Duke University, 130 Science Drive, Durham, NC 27708, USA.
| | - Tessa M Patton
- Bioinformatics Program, Loyola University Chicago, 1032 West Sheridan Road, LSB 317, Chicago, IL 60660, USA.
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Mail Stop 8007, Pocatello, ID 83209, USA.
| | - Tessa K Solomon-Lane
- Scripps, Pitzer, Claremont McKenna Colleges, 925 North Mills Avenue, Claremont, CA 91711, USA.
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
6
|
Dalla C, Jaric I, Pavlidi P, Hodes GE, Kokras N, Bespalov A, Kas MJ, Steckler T, Kabbaj M, Würbel H, Marrocco J, Tollkuhn J, Shansky R, Bangasser D, Becker JB, McCarthy M, Ferland-Beckham C. Practical solutions for including sex as a biological variable (SABV) in preclinical neuropsychopharmacological research. J Neurosci Methods 2024; 401:110003. [PMID: 37918446 PMCID: PMC10842858 DOI: 10.1016/j.jneumeth.2023.110003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.
Collapse
Affiliation(s)
- Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Georgia E Hodes
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24060, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anton Bespalov
- Partnership for Assessment and Accreditation of Scientific Practice (PAASP GmbH), Heidelberg, Germany
| | - Martien J Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | | | - Mohamed Kabbaj
- Department of Biomedical Sciences & Neurosciences, College of Medicine, Florida State University, USA
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jordan Marrocco
- Department of Biology, Touro University, New York, NY 10027, USA
| | | | - Rebecca Shansky
- Department of Psychology, Northeastern University, Boston, MA 02128, USA
| | - Debra Bangasser
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Jill B Becker
- Department of Psychology and Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore MD, USA
| | | |
Collapse
|
7
|
Vedor JE. Revisiting Carl Jung's archetype theory a psychobiological approach. Biosystems 2023; 234:105059. [PMID: 37832929 DOI: 10.1016/j.biosystems.2023.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
This paper delves into the concept of archetypes, universal patterns of behavior and cognition, and proposes a novel tripartite model distinguishing between structural, regulatory, and representational archetypes. Drawing on insights from code biology, neuroscience, genetics, and epigenetics, the model provides a nuanced framework for understanding archetypes and their role in shaping cognition and behavior. The paper also explores the interplay between these elements to express representational archetypes. Furthermore, it addresses the informational capacity of the genome and its influence on post-natal development and the psyche. The paper concludes by discussing the future trajectory of psychology, emphasizing the need for an integrative approach that combines our understanding of social constructs with insights into our inherent organizational propensities or archetypes. This exploration holds the potential to advance our understanding of the human condition.
Collapse
|
8
|
Miller AL, James RE, Harvey AR, Trifunović D, Carvalho LS. The role of epigenetic changes in the pathology and treatment of inherited retinal diseases. Front Cell Dev Biol 2023; 11:1224078. [PMID: 37601102 PMCID: PMC10436478 DOI: 10.3389/fcell.2023.1224078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.
Collapse
Affiliation(s)
- Annie L. Miller
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Rebekah E. James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Alan R. Harvey
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tubingen University, Tübingen, Germany
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Vijeyakumaran M, Jawhri MA, Fortunato J, Solomon L, Shrestha Palikhe N, Vliagoftis H, Cameron L. Dual activation of estrogen receptor alpha and glucocorticoid receptor upregulate CRTh2-mediated type 2 inflammation; mechanism driving asthma severity in women? Allergy 2023; 78:767-779. [PMID: 36207765 DOI: 10.1111/all.15543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Type 2-high asthma is characterized by elevated levels of circulating Th2 cells and eosinophils, cells that express chemoattractant-homologous receptor expressed on Th2 cells (CRTh2). Severe asthma is more common in women than men; however, the underlying mechanism(s) remain elusive. Here we examined whether the relationship between severe asthma and type 2 inflammation differs by sex and if estrogen influences Th2 cell response to glucocorticoid (GC). METHODS Type 2 inflammation and the proportion of blood Th2 cells (CD4+ CRTh2+ ) were assessed in whole blood from subjects with asthma (n = 66). The effects of GC and estrogen receptor alpha (ERα) agonist on in vitro differentiated Th2 cells were examined. Expression of CRTh2, type 2 cytokines and degree of apoptosis (Annexin V+ , 7-AAD) were determined by flow cytometry, qRT-PCR, western blot and ELISA. RESULTS In severe asthma, the proportion of circulating Th2 cells and hospitalizations were higher in women than men. Women with severe asthma also had more Th2 cells and serum IL-13 than women with mild/moderate asthma. Th2 cells, eosinophils and CRTh2 mRNA correlated with clinical characteristics associated with asthma control in women but not men. In vitro, GC and ERα agonist treated Th2 cells exhibited less apoptosis, more CRTh2 as well as IL-5 and IL-13 following CRTh2 activation than Th2 cells treated with GC alone. CONCLUSION Women with severe asthma had higher levels of circulating Th2 cells than men, which may be due to estrogen modifying the effects of GC, enhancing Th2 cell survival and type 2 cytokine production.
Collapse
Affiliation(s)
- Meerah Vijeyakumaran
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - MohdWessam Al Jawhri
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jenna Fortunato
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Lauren Solomon
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa Cameron
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Breton É, Juster RP, Booij L. Gender and sex in eating disorders: A narrative review of the current state of knowledge, research gaps, and recommendations. Brain Behav 2023; 13:e2871. [PMID: 36840375 PMCID: PMC10097055 DOI: 10.1002/brb3.2871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Eating disorders (EDs) have long been considered conditions exclusively affecting women, and studies in the ED field regularly exclude men. Research efforts are needed to better understand the role of gender and sex in EDs. This review describes the role of gender and sex in the development of EDs from a biopsychosocial perspective. METHODS The primary hypothesis of this narrative review is that gender and sex interact to influence ED risk. The literature review was conducted using the PubMed database. RESULTS This review first presents the general characteristics and prevalence of EDs according to gender and sex. Next, neurodevelopmental processes, neurobiology, gender roles, body image, and the minority stress model are addressed. Lastly, research perspectives to better include gender and sex in the field of EDs are discussed (e.g., representation of gender and sex diversities, development of appropriate assessment tools, and increasing awareness). CONCLUSION Although substantial knowledge gaps remain, there is a growing recognition of the importance of integrating gender and sex in ED research that holds promise for further development in the field.
Collapse
Affiliation(s)
- Édith Breton
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Research Centre of the Montreal Mental Health University Institute, Montreal, Canada
| | - Linda Booij
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Department of Psychology, Concordia University, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Abruzzese GA, Arbocco FCV, Ferrer MJ, Silva AF, Motta AB. Role of Hormones During Gestation and Early Development: Pathways Involved in Developmental Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:31-70. [PMID: 37466768 DOI: 10.1007/978-3-031-32554-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Accumulating evidence suggests that an altered maternal milieu and environmental insults during the intrauterine and perinatal periods of life affect the developing organism, leading to detrimental long-term outcomes and often to adult pathologies through programming effects. Hormones, together with growth factors, play critical roles in the regulation of maternal-fetal and maternal-neonate interfaces, and alterations in any of them may lead to programming effects on the developing organism. In this chapter, we will review the role of sex steroids, thyroid hormones, and insulin-like growth factors, as crucial factors involved in physiological processes during pregnancy and lactation, and their role in developmental programming effects during fetal and early neonatal life. Also, we will consider epidemiological evidence and data from animal models of altered maternal hormonal environments and focus on the role of different tissues in the establishment of maternal and fetus/infant interaction. Finally, we will identify unresolved questions and discuss potential future research directions.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fiorella Campo Verde Arbocco
- Laboratorio de Hormonas y Biología del Cáncer, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CONICET, Mendoza, Argentina
- Laboratorio de Reproducción y Lactancia, IMBECU, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad de Mendoza, Mendoza, Argentina
| | - María José Ferrer
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aimé Florencia Silva
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-patología ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
13
|
Abstract
Across vertebrate species, gonadal hormones coordinate physiology with behavior to facilitate social interactions essential for reproduction and survival. In adulthood, these hormones activate neural circuits that regulate behaviors presenting differently in females and males, such as parenting and territorial aggression. Yet long before sex-typical behaviors emerge at puberty, transient hormone production during sensitive periods of neurodevelopment establish the circuits upon which adult hormones act. How transitory waves of early-life hormone signaling exert lasting effects on the brain remains a central question. Here we discuss how perinatal estradiol signaling organizes cellular and molecular sex differences in the rodent brain. We review classic anatomic studies revealing sex differences in cell number, volume, and neuronal projections, and consider how single-cell sequencing methods enable distinction between sex-biased cell-type abundance and gene expression. Finally, we highlight the recent discovery of a gene regulatory program activated by estrogen receptor α (ERα) following the perinatal hormone surge. A subset of this program displays sustained sex-biased gene expression and chromatin accessibility throughout the postnatal sensitive period, demonstrating a bona fide epigenetic mechanism. We propose that ERα-expressing neurons throughout the social behavior network use similar gene regulatory programs to coordinate brain sexual differentiation.
Collapse
Affiliation(s)
- Bruno Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
14
|
Li M, Shi Q, Jiang X, Liu X, Han W, Fan X, Li P, Qi K. Paternal preconceptional diet enriched with n-3 polyunsaturated fatty acids affects offspring brain function in mice. Front Nutr 2022; 9:969848. [PMID: 36386900 PMCID: PMC9650249 DOI: 10.3389/fnut.2022.969848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Recent studies demonstrate that paternal nutrition prior to conception may determine offspring development and health through epigenetic modification. This study aims to investigate the effects of paternal supplementation of n-3 polyunsaturated fatty acids (n-3 PUFAs) on the brain development and function, and associated gene imprinting in the offspring. Three to four-week-old male C57BL/6J mice (founder) were fed with an n-3 PUFA-deficient diet (n-3 D), and two n-3 PUFA supplementation diets – a normal n-3 PUFA content diet (n-3 N) and a high n-3 PUFA content diet (n-3 H) for 12 weeks. Then they were mated to 10-week-old virgin female C57BL/6J mice to generate the offspring. The results showed that paternal n-3 PUFA supplementation in preconception reduced the anxiety- and depressive-like behavior, and improved sociability, learning and memory in the offspring, along with increased synaptic number, upregulated expressions of neuron specific enolase, myelin basic protein, glial fibrillary acidic protein, brain-derived neurotrophic factor in the hippocampus and cerebral cortex, and altered expressions of genes associated with mitochondria biogenesis, fusion, fission and autophagy. Furthermore, with paternal n-3 PUFA supplementation, the expression of imprinted gene Snrpn was downregulated both in testes of the founder mice and their offspring, but upregulated in the cerebral cortex and hippocampus, with altered DNA methylation in its differentially methylated region. The data suggest that higher paternal intake of n-3 PUFAs in preconception may help to maintain optimal brain development and function in the offspring, and further raise the possibility of paternal nutritional intervention for mental health issues in subsequent generations.
Collapse
|
15
|
Fuss T. Mate Choice, Sex Roles and Sexual Cognition: Neuronal Prerequisites Supporting Cognitive Mate Choice. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across taxa, mate choice is a highly selective process involving both intra- and intersexual selection processes aiming to pass on one’s genes, making mate choice a pivotal tool of sexual selection. Individuals adapt mate choice behavior dynamically in response to environmental and social changes. These changes are perceived sensorily and integrated on a neuronal level, which ultimately leads to an adequate behavioral response. Along with perception and prior to an appropriate behavioral response, the choosing sex has (1) to recognize and discriminate between the prospective mates and (2) to be able to assess and compare their performance in order to make an informed decision. To do so, cognitive processes allow for the simultaneous processing of multiple information from the (in-) animate environment as well as from a variety of both sexual and social (but non-sexual) conspecific cues. Although many behavioral aspects of cognition on one side and of mate choice displays on the other are well understood, the interplay of neuronal mechanisms governing both determinants, i.e., governing cognitive mate choice have been described only vaguely. This review aimed to throw a spotlight on neuronal prerequisites, networks and processes supporting the interaction between mate choice, sex roles and sexual cognition, hence, supporting cognitive mate choice. How does neuronal activity differ between males and females regarding social cognition? Does sex or the respective sex role within the prevailing mating system mirror at a neuronal level? How does cognitive competence affect mate choice? Conversely, how does mate choice affect the cognitive abilities of both sexes? Benefitting from studies using different neuroanatomical techniques such as neuronal activity markers, differential coexpression or candidate gene analyses, modulatory effects of neurotransmitters and hormones, or imaging techniques such as fMRI, there is ample evidence pointing to a reflection of sex and the respective sex role at the neuronal level, at least in individual brain regions. Moreover, this review aims to summarize evidence for cognitive abilities influencing mate choice and vice versa. At the same time, new questions arise centering the complex relationship between neurobiology, cognition and mate choice, which we will perhaps be able to answer with new experimental techniques.
Collapse
|
16
|
Moen JK, Lee AM. Sex Differences in the Nicotinic Acetylcholine Receptor System of Rodents: Impacts on Nicotine and Alcohol Reward Behaviors. Front Neurosci 2021; 15:745783. [PMID: 34621155 PMCID: PMC8490611 DOI: 10.3389/fnins.2021.745783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol and nicotine are the two most widely used and misused drugs around the world, and co-consumption of both substances is highly prevalent. Multiple lines of evidence show a profound effect of sex in many aspects of alcohol and nicotine reward, with women having more difficulty quitting smoking and showing a faster progression toward developing alcohol use disorder compared with men. Both alcohol and nicotine require neuronal nicotinic acetylcholine receptors (nAChRs) to elicit rewarding effects within the mesolimbic system, representing a shared molecular pathway that likely contributes to the frequent comorbidity of alcohol and nicotine dependence. However, the majority of preclinical studies on the mechanisms of alcohol and nicotine reward behaviors utilize only male rodents, and thus our understanding of alcohol and nicotine neuropharmacology relies heavily on male data. As preclinical research informs the development and refinement of therapies to help patients reduce drug consumption, it is critical to understand the way biological sex and sex hormones influence the rewarding properties of alcohol and nicotine. In this review, we summarize what is known about sex differences in rodent models of alcohol and nicotine reward behaviors with a focus on neuronal nAChRs, highlighting exciting areas for future research. Additionally, we discuss the way circulating sex hormones may interact with neuronal nAChRs to influence reward-related behavior.
Collapse
Affiliation(s)
- Janna K Moen
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Anna M Lee
- Graduate Program in Neuroscience, University of Minnesota Twin Cities, Minneapolis, MN, United States.,Department of Pharmacology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
17
|
Checknita D, Tiihonen J, Hodgins S, Nilsson KW. Associations of age, sex, sexual abuse, and genotype with monoamine oxidase a gene methylation. J Neural Transm (Vienna) 2021; 128:1721-1739. [PMID: 34424394 PMCID: PMC8536631 DOI: 10.1007/s00702-021-02403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Epigenome-wide studies report higher methylation among women than men with decreasing levels with age. Little is known about associations of sex and age with methylation of monoamine oxidase A (MAOA). Methylation of the first exonic and partial first intronic region of MAOA has been shown to strengthen associations of interactions of MAOA-uVNTR genotypes and adversity with aggression and substance misuse. Our study examined associations of sex and age with MAOA first exon and intron methylation levels in 252 women and 157 men aged 14–73 years. Participants included adolescents recruited at a substance misuse clinic, their siblings and parents, and healthy women. Women showed ~ 50% higher levels of exonic, and ~ 15% higher intronic, methylation than men. Methylation levels were similar between younger (M = 22.7 years) and older (M = 46.1 years) participants, and stable across age. Age modified few associations of methylation levels with sex. MAOA genotypes modified few associations of methylation with sex and age. Higher methylation levels among women were not explained by genotype, nor interaction of genotype and sexual abuse. Findings were similar after adjusting for lifetime diagnoses of substance dependence (women = 24.3%; men = 34.2%). Methylation levels were higher among women who experienced sexual abuse than women who did not. Results extend on prior studies by showing that women display higher levels of methylation than men within first intronic/exonic regions of MAOA, which did not decrease with age in either sex. Findings were not conditioned by genotype nor interactions of genotype and trauma, and indicate X-chromosome inactivation.
Collapse
Affiliation(s)
- David Checknita
- Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden. .,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden.
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland
| | - Sheilagh Hodgins
- Department of Clinical Neuroscience, Karolinska Institutet, Psychiatry Building R5:00 c/o Jari Tiihonen, Karolinska Universitetssjukhuset, 171 76, Stockholm, Sweden.,Département de Psychiatrie et Addictologie, Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Université de Montréal, Montréal, QC, Canada
| | - Kent W Nilsson
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Centre for Clinical Research, Västmanland County Council, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
19
|
Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I, Kalyakulina A, Ravaioli F, Kwiatkowska KM, Durso DF, Ivanchenko M, Monti D, Lodi R, Franceschi C, Cortelli P, Garagnani P, Bacalini MG. A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Front Aging Neurosci 2021; 13:639428. [PMID: 33790779 PMCID: PMC8006465 DOI: 10.3389/fnagi.2021.639428] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by specific alterations of brain DNA methylation (DNAm) patterns. Age and sex, two major risk factors for AD, are also known to largely affect the epigenetic profiles in brain, but their contribution to AD-associated DNAm changes has been poorly investigated. In this study we considered publicly available DNAm datasets of four brain regions (temporal, frontal, entorhinal cortex, and cerebellum) from healthy adult subjects and AD patients, and performed a meta-analysis to identify sex-, age-, and AD-associated epigenetic profiles. In one of these datasets it was also possible to distinguish 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) profiles. We showed that DNAm differences between males and females tend to be shared between the four brain regions, while aging differently affects cortical regions compared to cerebellum. We found that the proportion of sex-dependent probes whose methylation is modified also during aging is higher than expected, but that differences between males and females tend to be maintained, with only a few probes showing age-by-sex interaction. We did not find significant overlaps between AD- and sex-associated probes, nor disease-by-sex interaction effects. On the contrary, we found that AD-related epigenetic modifications are significantly enriched in probes whose DNAm varies with age and that there is a high concordance between the direction of changes (hyper or hypo-methylation) in aging and AD, supporting accelerated epigenetic aging in the disease. In summary, our results suggest that age-associated DNAm patterns concur to the epigenetic deregulation observed in AD, providing new insights on how advanced age enables neurodegeneration.
Collapse
Affiliation(s)
- Camilla Pellegrini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Luisa Sambati
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katarzyna M. Kwiatkowska
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Danielle F. Durso
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio,” University of Florence, Florence, Italy
| | - Raffaele Lodi
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Pietro Cortelli
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Applied Biomedical Research Center, Policlinico S.Orsola-Malpighi Polyclinic, Bologna, Italy
- National Research Council of Italy Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza,” Unit of Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Istituto di Ricovero e Cura a Carattere Scientifico Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
20
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
21
|
Marrocco J, Einhorn NR, McEwen BS. Environmental epigenetics of sex differences in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:209-220. [PMID: 33008526 DOI: 10.1016/b978-0-444-64123-6.00015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Experiences throughout the life course lead to unique phenotypes even among those with the same genotype. Genotype sets the substrate on which physiologic processes, which communicate with the brain, mediate the effects of life experiences via epigenetics. Epigenetics modify the expression of genes in the brain and body in response to circulating hormones and other mediators, which are activated to facilitate survival responses through a process called allostasis. Epigenetic signatures can even be inherited, resulting in transgenerational effects. This chapter addresses epigenetics in the context of sex differences, discussing the intersection between genetics and gonadal hormones and their effect in the brain at discrete developmental periods.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States.
| | - Nathan R Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, United States
| |
Collapse
|
22
|
Wood EK, Jarman P, Cash E, Baxter A, Capitanio JP, Higley JD. Masculinized Second-to-Fourth Digit Ratio (2D:4D Ratio) Is Associated With Lower Cortisol Response in Infant Female Rhesus Monkeys ( Macaca mulatta). Front Behav Neurosci 2020; 14:94. [PMID: 33088262 PMCID: PMC7497207 DOI: 10.3389/fnbeh.2020.00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023] Open
Abstract
The second-to-fourth digit ratio (2D:4D ratio) is considered a postnatal proxy measure for the degree of prenatal androgen exposure (PAE), which is the primary factor responsible for masculinizing the brain of a developing fetus. Some studies suggest that the organizational effects of PAE may extend to the hypothalamic-pituitary-adrenal (HPA) axis response to stress. This study investigates the relationship between 2D:4D ratio and HPA axis functioning using a rhesus monkey (Macaca mulatta) model. Subjects were N = 268 (180 females, 88 males) rhesus monkey infants (3–4 months of age). Plasma cortisol concentrations were assayed from two blood samples obtained during a 25-h experimental social separation stressor at 2- and 7-h post-separation. Subjects’ 2D:4D ratio was measured later in life (Mage = 6.70 years). It was hypothesized that infant rhesus monkeys that exhibited a more masculine-like 2D:4D ratio would show lower levels of circulating cortisol after a social separation and relocation stressor. The results showed that there was a sex difference in the left-hand 2D:4D ratio. The results also showed that there was an overall sex difference in cortisol concentrations and that female, but not male, monkeys that exhibited a more masculine-like right- and left-hand 2D:4D ratio exhibited lower mean stress-induced cortisol concentrations early in life. These findings suggest that higher levels of prenatal androgens in females, as measured by 2D:4D ratio, may be related to an attenuated HPA axis stress-response, as measured by plasma cortisol levels. To the extent that these findings generalize to humans, they suggest that the organizational effects of PAE extend to the infant HPA axis, modulating the HPA axis response, particularly in females.
Collapse
Affiliation(s)
- Elizabeth K Wood
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Parker Jarman
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Elysha Cash
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Alexander Baxter
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center (CNPRC), Davis, CA, United States
| | - John P Capitanio
- Department of Psychology, University of California, Davis, Davis, CA, United States.,California National Primate Research Center (CNPRC), Davis, CA, United States
| | - J Dee Higley
- Department of Psychology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
23
|
Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. eNeuro 2020; 7:ENEURO.0035-20.2020. [PMID: 32493755 PMCID: PMC7333980 DOI: 10.1523/eneuro.0035-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.
Collapse
|
24
|
Abstract
Killing of unrelated young by sexually naïve male mammals is taxonomically widespread, but in many species, males subsequently show paternal care or at least do not harm their own young. This dramatic and important change is due to a shift in paternal state rather than to recognition of young, the mother or the location in which mating occurred. This transition from infanticidal to paternal behaviour is timed so that the inhibition of infanticide is synchronized with the birth of their own young. Ejaculation followed by cohabitation with the pregnant female causes this transition, but the precise stimuli from the female remain elusive. However, changes in social status also cause changes in infanticide. The switch from infanticide is accompanied by physiological change in the male that can be detected by both females and pups. Hormonal changes have been implicated in the switch but establishing causal links has been difficult. Recent neuroanatomical studies show that pup odours activate the vomeronasal organ and its efferent projections to induce infanticide. The emergence of paternal care depends on the inability of the vomeronasal organ to detect pup odours. In the absence of vomeronasal input, pup odours activate a conserved parental circuit and induce caregiving behaviour. An emerging picture is of complex, antagonistic circuits competing for behavioural expression, which allow for males to commit infanticide when they may benefit from such activity but ensure that they do not damage their fitness by killing their own young. However, we stress the need for more work on the neural mechanisms that mediate this process.
Collapse
Affiliation(s)
- Robert W. Elwood
- Queen’s University Belfast, School of Biological Sciences, Belfast, U.K
| | | |
Collapse
|
25
|
Kovács T, Szabó-Meleg E, Ábrahám IM. Estradiol-Induced Epigenetically Mediated Mechanisms and Regulation of Gene Expression. Int J Mol Sci 2020; 21:ijms21093177. [PMID: 32365920 PMCID: PMC7246826 DOI: 10.3390/ijms21093177] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Gonadal hormone 17β-estradiol (E2) and its receptors are key regulators of gene transcription by binding to estrogen responsive elements in the genome. Besides the classical genomic action, E2 regulates gene transcription via the modification of epigenetic marks on DNA and histone proteins. Depending on the reaction partner, liganded estrogen receptor (ER) promotes DNA methylation at the promoter or enhancer regions. In addition, ERs are important regulators of passive and active DNA demethylation. Furthermore, ERs cooperating with different histone modifying enzymes and chromatin remodeling complexes alter gene transcription. In this review, we survey the basic mechanisms and interactions between estrogen receptors and DNA methylation, demethylation and histone modification processes as well as chromatin remodeling complexes. The particular relevance of these mechanisms to physiological processes in memory formation, embryonic development, spermatogenesis and aging as well as in pathophysiological changes in carcinogenesis is also discussed.
Collapse
Affiliation(s)
- Tamás Kovács
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
26
|
Harris CJ, Davis BA, Zweig JA, Nevonen KA, Quinn JF, Carbone L, Gray NE. Age-Associated DNA Methylation Patterns Are Shared Between the Hippocampus and Peripheral Blood Cells. Front Genet 2020; 11:111. [PMID: 32211019 PMCID: PMC7067920 DOI: 10.3389/fgene.2020.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
As the population ages, interest in identifying biomarkers of healthy aging and developing antiaging interventions has increased. DNA methylation has emerged as a potentially powerful molecular marker of aging. Methylation changes at specific sites in the human genome that have been identified in peripheral blood have been used as robust estimators of chronological age. Similar age-related DNA methylation signatures are also seen in various tissue types in rodents. However, whether these peripheral alterations in methylation status reflect changes that also occur in the central nervous system remains unknown. This study begins to address this issue by identifying age-related methylation patterns in the hippocampus and blood of young and old mice. Reduced-representation bisulfite sequencing (RBSS) was used to identify differentially methylated regions (DMRs) in the blood and hippocampus of 2- and 20-month-old C57/Bl6 mice. Of the thousands of DMRs identified genome-wide only five were both found in gene promoters and significantly changed in the same direction with age in both tissues. We analyzed the hippocampal expression of these five hypermethylated genes and found that three were expressed at significantly lower levels in aged mice [suppressor of fused homolog (Sufu), nitric oxide synthase 1 (Nos1) and tripartite motif containing 2 (Trim2)]. We also identified several transcription factor binding motifs common to both hippocampus and blood that were enriched in the DMRs. Overall, our findings suggest that some age-related methylation changes that occur in the brain are also evident in the blood and could have significant translational relevance.
Collapse
Affiliation(s)
- Christopher J Harris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Brett A Davis
- Department of Medicine, KCVI, Oregon Health and Science University, Portland, OR, United States
| | - Jonathan A Zweig
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Kimberly A Nevonen
- Department of Medicine, KCVI, Oregon Health and Science University, Portland, OR, United States
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Parkinson's Disease Research, Education, and Clinical Center, Portland Veteran's Affairs Medical Center, Portland, OR, United States
| | - Lucia Carbone
- Department of Medicine, KCVI, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, United States.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
27
|
Baumbach JL, Zovkic IB. Hormone-epigenome interactions in behavioural regulation. Horm Behav 2020; 118:104680. [PMID: 31927018 DOI: 10.1016/j.yhbeh.2020.104680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Interactions between hormones and epigenetic factors are key regulators of behaviour, but the mechanisms that underlie their effects are complex. Epigenetic factors can modify sensitivity to hormones by altering hormone receptor expression, and hormones can regulate epigenetic factors by recruiting epigenetic regulators to DNA. The bidirectional nature of this relationship is becoming increasingly evident and suggests that the ability of hormones to regulate certain forms of behaviour may depend on their ability to induce changes in the epigenome. Moreover, sex differences have been reported for several epigenetic modifications, and epigenetic factors are thought to regulate sexual differentiation of behaviour, although specific mechanisms remain to be understood. Indeed, hormone-epigenome interactions are highly complex and involve both canonical and non-canonical regulatory pathways that may permit for highly specific gene regulation to promote variable forms of behavioural adaptation.
Collapse
Affiliation(s)
- Jennet L Baumbach
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| | - Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada.
| |
Collapse
|