1
|
Zhang W, Zhang C, Lu D, Nie J, Hu Z, Xian C, He M. The mediation effect of Systemic Immunity Inflammation Index between urinary metals and TOFAT among adults in the NHANES dataset. Sci Rep 2024; 14:14940. [PMID: 38942999 PMCID: PMC11213905 DOI: 10.1038/s41598-024-65925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Systemic Immune Inflammatory Index (SII) is a novel indicator of inflammation. However, no studies have reported the effect of SII on the association between metals and total fat (TOFAT). We aim to investigate the mediated effect of SII on the relationship between urinary metals and TOFAT in a US adult population. This cross-sectional study was conducted among adults with complete information on SII, urine metal concentrations, and TOFAT from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Multifactorial logistic regression and restricted cubic splines were used to explore the association between urine metal levels and TOFAT. Furthermore, serial mediation analyses were used to investigate the mediating effect of SII on metals and TOFAT. A total of 3324 subjects were included in this study. After adjusting for confounders, arsenic (As), cadmium (Cd), cobalt (Co), cesium (Cs), inorganic mercury (Hg), molybdenum (Mo), manganese (Mn), lead (Pb), antimony (Sb), and thallium(Tl) had negative decreased trends of odds ratios for TOFAT (all P for trend < 0.05). In the total population, we found that Cd, Co, and Tu were positively associated with SII (β = 29.70, 79.37, and 31.08), whereas As and Hg had a negative association with SII. The mediation analysis showed that SII mediated the association of Co with TOFAT, with the β of the mediating effect being 0.9% (95%CI: 0.3%, 1.6%). Our findings suggested that exposure to As, Cd, and Hg would directly decrease the level of TOFAT. However, Co would increase TOFAT, completely mediated by SII, mainly exerted in females rather than males.
Collapse
Affiliation(s)
- Weipeng Zhang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China.
| | - Cong Zhang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Dengqiu Lu
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Junfeng Nie
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Zhumin Hu
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Cuiyao Xian
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Minxing He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| |
Collapse
|
2
|
Xiong C, Zou X, Phan CW, Huang W, Zhu Y. Enhancing the potential of rapeseed cake as protein-source food by γ-irradiation. Biosci Rep 2024; 44:BSR20231807. [PMID: 38391133 PMCID: PMC10938193 DOI: 10.1042/bsr20231807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Rapeseed cake serves as a by-product in the oil extraction industry, characterized by its elevated protein content. However, the presence of antinutritional factors limits the utilization of rapeseed cake as a viable protein source. In this study, different doses of γ-irradiation were used to irradiate rapeseed cake and rapeseed protein isolate was extracted through a modified alkaline solution and acid precipitation method from rapeseed cake. The chemical composition and in vivo acute toxicity of rapeseed protein isolate were determined. The protein recovery rate of rapeseed protein isolate was 39.08 ± 3.01% after irradiation, while the content of antinutritional factors was significantly reduced. Moreover, γ-irradiation did not have any experimentally related effects on clinical observations or clinicopathology in mice. Overall, the reduced antinutrients and increased functional properties suggest that the irradiation of rapeseed cake (<9 kGy) could be utilized as a pre-treatment in the development of rapeseed cake-based value-added protein products.
Collapse
Affiliation(s)
- Chuan Xiong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Xin Zou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chia-Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Wenli Huang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Yu Zhu
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| |
Collapse
|
3
|
Davydova E, Perenkov A, Vedunova M. Building Minimized Epigenetic Clock by iPlex MassARRAY Platform. Genes (Basel) 2024; 15:425. [PMID: 38674360 PMCID: PMC11049545 DOI: 10.3390/genes15040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Epigenetic clocks are valuable tools for estimating both chronological and biological age by assessing DNA methylation levels at specific CpG dinucleotides. While conventional epigenetic clocks rely on genome-wide methylation data, targeted approaches offer a more efficient alternative. In this study, we explored the feasibility of constructing a minimized epigenetic clock utilizing data acquired through the iPlex MassARRAY technology. The study enrolled a cohort of relatively healthy individuals, and their methylation levels of eight specific CpG dinucleotides in genes SLC12A5, LDB2, FIGN, ACSS3, FHL2, and EPHX3 were evaluated using the iPlex MassARRAY system and the Illumina EPIC array. The methylation level of five studied CpG sites demonstrated significant correlations with chronological age and an acceptable convergence of data obtained by the iPlex MassARRAY and Illumina EPIC array. At the same time, the methylation level of three CpG sites showed a weak relationship with age and exhibited a low concordance between the data obtained from the two technologies. The construction of the epigenetic clock involved the utilization of different machine-learning models, including linear models, deep neural networks (DNN), and gradient-boosted decision trees (GBDT). The results obtained from these models were compared with each other and with the outcomes generated by other well-established epigenetic clocks. In our study, the TabNet architecture (deep tabular data learning architecture) exhibited the best performance (best MAE = 5.99). Although our minimized epigenetic clock yielded slightly higher age prediction errors compared to other epigenetic clocks, it still represents a viable alternative to the genome-wide epigenotyping array.
Collapse
Affiliation(s)
- Ekaterina Davydova
- Institute of Biology and Biomedicine, Lobachevsky State University, 23 Gagarin Ave., Nizhny Novgorod 603022, Russia (M.V.)
| | | | | |
Collapse
|
4
|
Patel P, Selvaraju V, Babu JR, Wang X, Geetha T. Novel Differentially Methylated Regions Identified by Genome-Wide DNA Methylation Analyses Contribute to Racial Disparities in Childhood Obesity. Genes (Basel) 2023; 14:genes14051098. [PMID: 37239458 DOI: 10.3390/genes14051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The magnitude of the childhood obesity epidemic and its effects on public health has accelerated the pursuit of practical preventative measures. Epigenetics is one subject that holds a lot of promise, despite being relatively new. The study of potentially heritable variations in gene expression that do not require modifications to the underlying DNA sequence is known as epigenetics. Here, we used Illumina MethylationEPIC BeadChip Array to identify differentially methylated regions in DNA isolated from saliva between normal weight (NW) and overweight/obese (OW/OB) children and between European American (EA) and African American (AA) children. A total of 3133 target IDs (associated with 2313 genes) were differentially methylated (p < 0.05) between NW and OW/OB children. In OW/OB children, 792 target IDs were hypermethylated and 2341 were hypomethylated compared to NW. Similarly, in the racial groups EA and AA, a total of 1239 target IDs corresponding to 739 genes were significantly differentially methylated in which 643 target IDs were hypermethylated and 596 were hypomethylated in the AA compared to EA participants. Along with this, the study identified novel genes that could contribute to the epigenetic regulation of childhood obesity.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
- Alabama Agricultural Experiment Station, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
5
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
6
|
Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, Cowley M, Wright F, House J, Liu A, Jirtle RL, Hoyo C. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics 2022; 17:1920-1943. [PMID: 35786392 PMCID: PMC9665137 DOI: 10.1080/15592294.2022.2091815] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Imprinted genes – critical for growth, metabolism, and neuronal function – are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.
Collapse
Affiliation(s)
- Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Sarah S Park
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.,Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Fred Wright
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Andy Liu
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Frankhouser DE, Steck S, Sovic MG, Belury MA, Wang Q, Clinton SK, Bundschuh R, Yan PS, Yee LD. Dietary omega-3 fatty acid intake impacts peripheral blood DNA methylation -anti-inflammatory effects and individual variability in a pilot study. J Nutr Biochem 2022; 99:108839. [PMID: 34411715 PMCID: PMC9142761 DOI: 10.1016/j.jnutbio.2021.108839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023]
Abstract
Omega-3 or n-3 polyunsaturated fatty acids (PUFAs) are widely studied for health benefits that may relate to anti-inflammatory activity. However, mechanisms mediating an anti-inflammatory response to n-3 PUFA intake are not fully understood. Of interest is the emerging role of fatty acids to impact DNA methylation (DNAm) and thereby modulate mediating inflammatory processes. In this pilot study, we investigated the impact of n-3 PUFA intake on DNAm in inflammation-related signaling pathways in peripheral blood mononuclear cells (PBMCs) of women at high risk of breast cancer. PBMCs of women at high risk of breast cancer (n=10) were obtained at baseline and after 6 months of n-3 PUFA (5 g/d EPA+DHA dose arm) intake in a previously reported dose finding trial. DNA methylation of PBMCs was assayed by reduced representation bisulfite sequencing (RRBS) to obtain genome-wide methylation profiles at the single nucleotide level. We examined the impact of n-3 PUFA on genome-wide DNAm and focused upon a set of candidate genes associated with inflammation signaling pathways and breast cancer. We identified 24,842 differentially methylated CpGs (DMCs) in gene promoters of 5507 genes showing significant enrichment for hypermethylation in both the candidate gene and genome-wide analyses. Pathway analysis identified significantly hypermethylated signaling networks after n-3 PUFA treatment, such as the Toll-like Receptor inflammatory pathway. The DNAm pattern in individuals and the response to n-3 PUFA intake are heterogeneous. PBMC DNAm profiling suggests a mechanism whereby n-3 PUFAs may impact inflammatory cascades associated with disease processes including carcinogenesis.
Collapse
Affiliation(s)
- David E Frankhouser
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus OH USA
| | - Sarah Steck
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA
| | - Michael G Sovic
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA
| | - Martha A Belury
- Department of Human Sciences, The Ohio State University, , Columbus OH, USA
| | - Qianben Wang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, , Columbus, OH, USA
| | - Steven K Clinton
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, , Columbus OH, USA
| | - Ralf Bundschuh
- Departments of Physics and Chemistry & Biochemistry, The Ohio State University, , Columbus OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus OH , USA
| | - Pearlly S Yan
- Comprehensive Cancer Center, The Ohio State University, Columbus OH, USA; Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus OH , USA
| | - Lisa D Yee
- Department of Surgery, The Ohio State University College of Medicine, , Columbus OH , USA.
| |
Collapse
|
8
|
Severity of Idiopathic Scoliosis Is Associated with Differential Methylation: An Epigenome-Wide Association Study of Monozygotic Twins with Idiopathic Scoliosis. Genes (Basel) 2021; 12:genes12081191. [PMID: 34440365 PMCID: PMC8391702 DOI: 10.3390/genes12081191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022] Open
Abstract
Epigenetic mechanisms may contribute to idiopathic scoliosis (IS). We identified 8 monozygotic twin pairs with IS, 6 discordant (Cobb angle difference > 10°) and 2 concordant (Cobb angle difference ≤ 2°). Genome-wide methylation in blood was measured with the Infinium HumanMethylation EPIC Beadchip. We tested for differences in methylation and methylation variability between discordant twins and tested the association between methylation and curve severity in all twins. Differentially methylated region (DMR) analyses identified gene promoter regions. Methylation at cg12959265 (chr. 7 DPY19L1) was less variable in cases (false discovery rate (FDR) = 0.0791). We identified four probes (false discovery rate, FDR < 0.10); cg02477677 (chr. 17, RARA gene), cg12922161 (chr. 2 LOC150622 gene), cg08826461 (chr. 2), and cg16382077 (chr. 7) associated with curve severity. We identified 57 DMRs where hyper- or hypo-methylation was consistent across the region and 28 DMRs with a consistent association with curve severity. Among DMRs, 21 were correlated with bone methylation. Prioritization of regions based on methylation concordance in bone identified promoter regions for WNT10A (WNT signaling), NPY (regulator of bone and energy homeostasis), and others predicted to be relevant for bone formation/remodeling. These regions may aid in understanding the complex interplay between genetics, environment, and IS.
Collapse
|
9
|
Czogała W, Czogała M, Strojny W, Wątor G, Wołkow P, Wójcik M, Bik Multanowski M, Tomasik P, Wędrychowicz A, Kowalczyk W, Miklusiak K, Łazarczyk A, Hałubiec P, Skoczeń S. Methylation and Expression of FTO and PLAG1 Genes in Childhood Obesity: Insight into Anthropometric Parameters and Glucose-Lipid Metabolism. Nutrients 2021; 13:1683. [PMID: 34063412 PMCID: PMC8155878 DOI: 10.3390/nu13051683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of childhood obesity is influenced by both genetic and epigenetic factors. FTO (FTO alpha-ketoglutarate dependent dioxygenase) is a gene of well-established connection with adiposity, while a protooncogene PLAG1 (PLAG1 zinc finger) has been only recently linked to this condition. We performed a cross-sectional study on a cohort of 16 obese (aged 6.6-17.7) and 10 healthy (aged 11.4-16.9) children. The aim was to evaluate the relationship between methylation and expression of the aforementioned genes and the presence of obesity as well as alterations in anthropometric measurements (including waist circumference (WC), body fat (BF_kg) and body fat percent (BF_%)), metabolic parameters (lipid profile, blood glucose and insulin levels, presence of insulin resistance) and blood pressure. Expression and methylation were measured in peripheral blood mononuclear cells using a microarray technique and a method based on restriction enzymes, respectively. Multiple regression models were constructed to adjust for the possible influence of age and sex on the investigated associations. We showed significantly increased expression of the FTO gene in obese children and in patients with documented insulin resistance. Higher FTO expression was also associated with an increase in WC, BF_kg, and BF_% as well as higher fasting concentration of free fatty acids (FFA). FTO methylation correlated positively with WC and BF_kg. Increase in PLAG1 expression was associated with higher BF%. Our results indicate that the FTO gene is likely to play an important role in the development of childhood adiposity together with coexisting impairment of glucose-lipid metabolism.
Collapse
Affiliation(s)
- Wojciech Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Małgorzata Czogała
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Wojciech Strojny
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
| | - Gracjan Wątor
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Paweł Wołkow
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.W.); (P.W.)
| | - Małgorzata Wójcik
- Department of Pediatric and Adolescent Endocrinology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Mirosław Bik Multanowski
- Department of Medical Genetics, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Przemysław Tomasik
- Department of Clinical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Andrzej Wędrychowicz
- Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Wojciech Kowalczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (W.K.); (K.M.); (A.Ł.); (P.H.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.C.); (M.C.); (W.S.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
10
|
Marotta A, Noro F, Parisi R, Gialluisi A, Tirozzi A, De Curtis A, Costanzo S, Di Castelnuovo A, Cerletti C, Donati MB, de Gaetano G, Iacoviello L, Izzi B, Gianfagna F. NMU DNA methylation in blood is associated with metabolic and inflammatory indices: results from the Moli-sani study. Epigenetics 2021; 16:1347-1360. [PMID: 33393847 DOI: 10.1080/15592294.2020.1864167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuromedin U (NMU) is a neuropeptide involved in gut-brain axis, energy balance and immune response. We aimed at analysing the association between NMU epigenetic variability and metabolic indices and the potential mediating role of low-grade inflammation in a general population of Italian adults.NMU Blood DNA methylation levels at two CpG islands (NMU76 and NMU32) were analysed using pyrosequencing in a randomly selected sub-cohort of 1,160 subjects from the Moli-sani study (≥35years; 49.20% men). Multivariable regressions adjusted for age, sex, smoking, alcohol and vegetable consumption were performed to estimate the associations between methylation and metabolic phenotypes (BMI, waist-to-hip ratio, blood pressure, glucose, HOMA-IR, lipids, lipoprotein(a) and apolipoproteins). Mediation analysis was performed to identify the influence of low-grade inflammation in the association using a composite index based on C reactive protein, granulocyte-to-lymphocyte ratio (GLR), platelet and white blood cell counts (INFLA-score).Using principal component analysis four methylation factors were identified: NMU76-F1, NMU76-F2, NMU32-F1 and NMU32-F2. NMU76-F1 was FDR significantly associated with total cholesterol (for 1 SD increase: β = 4.5 ± 1.4 mg/dL of, R2 = 10.8%, p = 0.001), ApoB (0.03 ± 0.01 g/L, 12.2%, p = 0.0004), with INFLA-score (1.05 ± 0.22, p = 2.7E-6) and GLR (-0.27 ± 0.03, 30.4%, p = 1.3E-20). GLR and lymphocyte numbers mediate the association of NMU76-F1 with cholesterol (24.0% of total effect, Sobel p = 0.013) and ApoB (42.6%, p = 9E-7), respectively.These findings suggest that NMU promoter methylation patterns could mark a pathway linking lipids with haematopoiesis and systemic inflammation.
Collapse
Affiliation(s)
- Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy.,EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Napoli, Italy.,EPIMED Research Center, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
11
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
12
|
Lee Y, Haftorn KL, Denault WRP, Nustad HE, Page CM, Lyle R, Lee-Ødegård S, Moen GH, Prasad RB, Groop LC, Sletner L, Sommer C, Magnus MC, Gjessing HK, Harris JR, Magnus P, Håberg SE, Jugessur A, Bohlin J. Blood-based epigenetic estimators of chronological age in human adults using DNA methylation data from the Illumina MethylationEPIC array. BMC Genomics 2020; 21:747. [PMID: 33109080 PMCID: PMC7590728 DOI: 10.1186/s12864-020-07168-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Epigenetic clocks have been recognized for their precise prediction of chronological age, age-related diseases, and all-cause mortality. Existing epigenetic clocks are based on CpGs from the Illumina HumanMethylation450 BeadChip (450 K) which has now been replaced by the latest platform, Illumina MethylationEPIC BeadChip (EPIC). Thus, it remains unclear to what extent EPIC contributes to increased precision and accuracy in the prediction of chronological age. RESULTS We developed three blood-based epigenetic clocks for human adults using EPIC-based DNA methylation (DNAm) data from the Norwegian Mother, Father and Child Cohort Study (MoBa) and the Gene Expression Omnibus (GEO) public repository: 1) an Adult Blood-based EPIC Clock (ABEC) trained on DNAm data from MoBa (n = 1592, age-span: 19 to 59 years), 2) an extended ABEC (eABEC) trained on DNAm data from MoBa and GEO (n = 2227, age-span: 18 to 88 years), and 3) a common ABEC (cABEC) trained on the same training set as eABEC but restricted to CpGs common to 450 K and EPIC. Our clocks showed high precision (Pearson correlation between chronological and epigenetic age (r) > 0.94) in independent cohorts, including GSE111165 (n = 15), GSE115278 (n = 108), GSE132203 (n = 795), and the Epigenetics in Pregnancy (EPIPREG) study of the STORK Groruddalen Cohort (n = 470). This high precision is unlikely due to the use of EPIC, but rather due to the large sample size of the training set. CONCLUSIONS Our ABECs predicted adults' chronological age precisely in independent cohorts. As EPIC is now the dominant platform for measuring DNAm, these clocks will be useful in further predictions of chronological age, age-related diseases, and mortality.
Collapse
Affiliation(s)
- Yunsung Lee
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway. .,Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Kristine L Haftorn
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - William R P Denault
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Haakon E Nustad
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Deepinsight, Karl Johans gate 8, Oslo, Norway
| | - Christian M Page
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Oslo Centre for Biostatistics and Epidemiology, Section for Research Support, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,PharmaTox Strategic Research Initiative, School of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Sindre Lee-Ødegård
- Department of Internal Medicine, Akershus University Hospital, Kongsvinger, Norway.,Department of transplantation medicine, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Gunn-Helen Moen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia.,K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rashmi B Prasad
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Leif C Groop
- Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden.,Finnish Institute of Molecular Medicine, Helsinki University, Helsinki, Finland
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Campus AHUS, Lørenskog, Norway
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Maria C Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Jennifer R Harris
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri E Håberg
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, N-5020, Bergen, Norway
| | - Jon Bohlin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.,Division for Infection Control and Environmental Health, Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
13
|
Xiao Y, Liu D, Cline MA, Gilbert ER. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr Metab (Lond) 2020; 17:88. [PMID: 33088334 PMCID: PMC7574417 DOI: 10.1186/s12986-020-00513-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In obesity, endocrine and metabolic perturbations, including those induced by chronic activation of the hypothalamus-pituitary-adrenal axis, are associated with the accumulation of adipose tissue and inflammation. Such changes are attributable to a combination of genetic and epigenetic factors that are influenced by the environment and exacerbated by chronic activation of the hypothalamus-pituitary-adrenal axis. Stress exposure at different life stages can alter adipose tissue metabolism directly through epigenetic modification or indirectly through the manipulation of hypothalamic appetite regulation, and thereby contribute to endocrine changes that further disrupt whole-body energy balance. This review synthesizes current knowledge, with an emphasis on human clinical trials, to describe metabolic changes in adipose tissue and associated endocrine, genetic and epigenetic changes in the obese state. In particular, we discuss epigenetic changes induced by stress exposure and their contribution to appetite and adipocyte dysfunction, which collectively promote the pathogenesis of obesity. Such knowledge is critical for providing future directions of metabolism research and targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| |
Collapse
|
14
|
Freitas P, Oliveira H, Silva F, Fleming A, Miglior F, Schenkel F, Brito L. Genomic analyses for predicted milk fatty acid composition throughout lactation in North American Holstein cattle. J Dairy Sci 2020; 103:6318-6331. [DOI: 10.3168/jds.2019-17628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
|