1
|
Ferreira MR, Carratto TMT, Frontanilla TS, Bonadio RS, Jain M, de Oliveira SF, Castelli EC, Mendes-Junior CT. Advances in forensic genetics: Exploring the potential of long read sequencing. Forensic Sci Int Genet 2025; 74:103156. [PMID: 39427416 DOI: 10.1016/j.fsigen.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
Collapse
Affiliation(s)
- Marcel Rodrigues Ferreira
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamara Soledad Frontanilla
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Raphael Severino Bonadio
- Depto Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Miten Jain
- Department of Bioengineering, Department of Physics, Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit - Unipex, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil; Pathology Department, School of Medicine, São Paulo State University - Unesp, Botucatu, São Paulo, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
| |
Collapse
|
2
|
Dyshlovoy SA, Paigin S, Afflerbach AK, Lobermeyer A, Werner S, Schüller U, Bokemeyer C, Schuh AH, Bergmann L, von Amsberg G, Joosse SA. Applications of Nanopore sequencing in precision cancer medicine. Int J Cancer 2024; 155:2129-2140. [PMID: 39031959 DOI: 10.1002/ijc.35100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
Oxford Nanopore Technologies sequencing, also referred to as Nanopore sequencing, stands at the forefront of a revolution in clinical genetics, offering the potential for rapid, long read, and real-time DNA and RNA sequencing. This technology is currently making sequencing more accessible and affordable. In this comprehensive review, we explore its potential regarding precision cancer diagnostics and treatment. We encompass a critical analysis of clinical cases where Nanopore sequencing was successfully applied to identify point mutations, splice variants, gene fusions, epigenetic modifications, non-coding RNAs, and other pivotal biomarkers that defined subsequent treatment strategies. Additionally, we address the challenges of clinical applications of Nanopore sequencing and discuss the current efforts to overcome them.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Paigin
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Ann-Kristin Afflerbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annabelle Lobermeyer
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute for Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Paediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna H Schuh
- Department of Oncology, Oxford Molecular Diagnostics Centre, University of Oxford, Level 4, John Radcliffe Hospital, Oxford, UK
| | - Lina Bergmann
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Qi J, Li Z, Zhang YZ, Li G, Gao X, Han R. TDFPS-Designer: an efficient toolkit for barcode design and selection in nanopore sequencing. Genome Biol 2024; 25:285. [PMID: 39497190 PMCID: PMC11533379 DOI: 10.1186/s13059-024-03423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Oxford Nanopore Technologies (ONT) offers ultrahigh-throughput multi-sample sequencing but only provides barcode kits that enable up to 96-sample multiplexing. We present TDFPS-Designer, a new toolkit for nanopore sequencing barcode design, which creates significantly more barcodes: 137 with a length of 20 base pairs, 410 at 24 bp, and 1779 at 30 bp, far surpassing ONT's offerings. It includes GPU-based acceleration for ultra-fast demultiplexing and designs robust barcodes suitable for high-error ONT data. TDFPS-Designer outperforms current methods, improving the demultiplexing recall rate by 20% relative to Guppy, without a reduction in precision.
Collapse
Affiliation(s)
- Junhai Qi
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Zhengyi Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Yao-Zhong Zhang
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955, Saudi Arabia.
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Vormittag-Nocito E, Sukhanova M, Godley LA. The impact of next-generation sequencing for diagnosis and disease understanding of myeloid malignancies. Expert Rev Mol Diagn 2024; 24:591-600. [PMID: 39054632 DOI: 10.1080/14737159.2024.2383445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Defining the chromosomal and molecular changes associated with myeloid neoplasms (MNs) optimizes clinical care through improved diagnosis, prognosis, treatment planning, and patient monitoring. This review will concisely describe the techniques used to profile MNs clinically today, with descriptions of challenges and emerging approaches that may soon become standard-of-care. AREAS COVERED In this review, the authors discuss molecular assessment of MNs using non-sequencing techniques, including conventional cytogenetic analysis, fluorescence in situ hybridization, chromosomal genomic microarray testing; as well as DNA- or RNA-based next-generation sequencing (NGS) assays; and sequential monitoring via digital PCR or measurable residual disease assays. The authors explain why distinguishing somatic from germline alleles is critical for optimal management. Finally, they introduce emerging technologies, such as long-read, whole exome/genome, and single-cell sequencing, which are reserved for research purposes currently but will become clinical tests soon. EXPERT OPINION The authors describe challenges to the adoption of comprehensive genomic tests for those in resource-constrained environments and for inclusion into clinical trials. In the future, all aspects of patient care will likely be influenced by the adaptation of artificial intelligence and mathematical modeling, fueled by rapid advances in telecommunications.
Collapse
Affiliation(s)
- Erica Vormittag-Nocito
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madina Sukhanova
- Division of Genomics, Department of Pathology and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine and the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Hum Genomics 2023; 17:73. [PMID: 37553611 PMCID: PMC10410870 DOI: 10.1186/s40246-023-00522-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Long-read DNA sequencing technologies have been rapidly evolving in recent years, and their ability to assess large and complex regions of the genome makes them ideal for clinical applications in molecular diagnosis and therapy selection, thereby providing a valuable tool for precision medicine. In the third-generation sequencing duopoly, Oxford Nanopore Technologies and Pacific Biosciences work towards increasing the accuracy, throughput, and portability of long-read sequencing methods while trying to keep costs low. These trades have made long-read sequencing an attractive tool for use in research and clinical settings. This article provides an overview of current clinical applications and limitations of long-read sequencing and explores its potential for point-of-care testing and health care in remote settings.
Collapse
Affiliation(s)
- Josephine B Oehler
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Helen Wright
- Nursing and Midwifery, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Australian Genomics, Melbourne, Australia
| | - Andrew J Mallett
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ulf Schmitz
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
- Computational BioMedicine Lab Centenary Institute, The University of Sydney, Camperdown, Australia.
- Faculty of Medicine & Health, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
7
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
8
|
Cumbo C, Orsini P, Anelli L, Zagaria A, Iannò MF, De Cecco L, Minervini CF, Coccaro N, Tota G, Parciante E, Conserva MR, Redavid I, Tarantini F, Minervini A, Carluccio P, De Grassi A, Pierri CL, Specchia G, Musto P, Albano F. Case report: biallelic DNMT3A mutations in acute myeloid leukemia. Front Oncol 2023; 13:1205220. [PMID: 37448520 PMCID: PMC10336536 DOI: 10.3389/fonc.2023.1205220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
DNMT3A gene mutations, detected in 20-25% of de novo acute myeloid leukemia (AML) patients, are typically heterozygous. Biallelic variants are uncommon, affecting ~3% of cases and identifying a worse prognosis. Indeed, two concomitant DNMT3A mutations were recently associated with shorter event-free survival and overall survival in AML. We present an AML case bearing an unusual DNMT3A molecular status, strongly affecting its function and strangely impacting the global genomic methylation profile. A 56-year-old Caucasian male with a diagnosis of AML not otherwise specified (NOS) presented a complex DNMT3A molecular profile consisting of four different somatic variants mapping on different alleles (in trans). 3D modelling analysis predicted the effect of the DNMT3A mutational status, showing that all the investigated mutations decreased or abolished DNMT3A activity. Although unexpected, DNMT3A's severe loss of function resulted in a global genomic hypermethylation in genes generally involved in cell differentiation. The mechanisms through which DNMT3A contributes to AML remain elusive. We present a unique AML case bearing multiple biallelic DNMT3A variants abolishing its activity and resulting in an unexpected global hypermethylation. The unusual DNMT3A behavior described requires a reflection on its role in AML development and persistence, highlighting the heterogeneity of its deregulation.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Orsini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Luisa Anelli
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Zagaria
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | | | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Crescenzio Francesco Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Nicoletta Coccaro
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Giuseppina Tota
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Elisa Parciante
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Rosa Conserva
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Immacolata Redavid
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Tarantini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Angela Minervini
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Carluccio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Computational Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Pellegrino Musto
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Albano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Hematology and Stem Cell Transplantation Unit, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
9
|
Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120745. [PMID: 36550951 PMCID: PMC9774983 DOI: 10.3390/bioengineering9120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
There is a deep need to navigate within our genomic data to find, understand and pave the way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance. The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore, heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based, long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering of key disease-causing genomic sequences. As the technological revolution is expanding regarding genetic data, the interpretation of genotype-phenotype correlations should be made with fine caution, as more and more evidence points toward the presence of more than one pathogenic variant acting together as a result of intergenic interplay in the background of a certain phenotype observed in a patient. This is in conjunction with the observation that many inheritable disorders manifest in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the importance and content of pre-test and post-test genetic counselling, yielding a complex approach to phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as well lower the time required to complete a currently incomplete genotype-phenotype axis, which will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.
Collapse
|
10
|
Third-Generation Sequencing in Clinical Practice: The New Era of Precision Medicine? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the last decades, the spreading of next-generation sequencing (NGS) in clinical practice has considerably increased the genomic knowledge of several disorders. The recent advent of third-generation sequencing is transforming the standard way of conceiving clinical genomics, overcom-ing the main limits of conventional NGS technologies and achieving challenges so far considered unreasonable. What was impracticable only a few years ago, in terms of potential and affordability, now is becoming achievable. The new sequencing era will improve diagnostic and therapeutic ap-proaches, providing clinicians with valid support in their practice.
Collapse
|
11
|
Schmidt J, Berghaus S, Blessing F, Herbeck H, Blessing J, Schierack P, Rödiger S, Roggenbuck D, Wenzel F. Genotyping of familial Mediterranean fever gene (MEFV)-Single nucleotide polymorphism-Comparison of Nanopore with conventional Sanger sequencing. PLoS One 2022; 17:e0265622. [PMID: 35298548 PMCID: PMC8929590 DOI: 10.1371/journal.pone.0265622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Through continuous innovation and improvement, Nanopore sequencing has become a powerful technology. Because of its fast processing time, low cost, and ability to generate long reads, this sequencing technique would be particularly suitable for clinical diagnostics. However, its raw data accuracy is inferior in contrast to other sequencing technologies. This constraint still results in limited use of Nanopore sequencing in the field of clinical diagnostics and requires further validation and IVD certification. Methods We evaluated the performance of latest Nanopore sequencing in combination with a dedicated data-analysis pipeline for single nucleotide polymorphism (SNP) genotyping of the familial Mediterranean fever gene (MEFV) by amplicon sequencing of 47 clinical samples. Mutations in MEFV are associated with Mediterranean fever, a hereditary periodic fever syndrome. Conventional Sanger sequencing, which is commonly applied in clinical genetic diagnostics, was used as a reference method. Results Nanopore sequencing enabled the sequencing of 10 target regions within MEFV with high read depth (median read depth 7565x) in all samples and identified a total of 435 SNPs in the whole sample collective, of which 29 were unique. Comparison of both sequencing workflows showed a near perfect agreement with no false negative calls. Precision, Recall, and F1-Score of the Nanopore sequencing workflow were > 0.99, respectively. Conclusions These results demonstrated the great potential of current Nanopore sequencing for application in clinical diagnostics, at least for SNP genotyping by amplicon sequencing. Other more complex applications, especially structural variant identification, require further in-depth clinical validation.
Collapse
Affiliation(s)
- Jonas Schmidt
- Institute for Laboratory Medicine, Singen, Germany
- Faculty of Medical and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
- Faculty Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | | | - Frithjof Blessing
- Institute for Laboratory Medicine, Singen, Germany
- Faculty of Medical and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| | | | | | - Peter Schierack
- Faculty Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Faculty Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Faculty Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- * E-mail:
| | - Folker Wenzel
- Faculty of Medical and Life Sciences, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
12
|
FLT3 mutational analysis in acute myeloid leukemia: Advantages and pitfalls with different approaches. Blood Rev 2022; 54:100928. [DOI: 10.1016/j.blre.2022.100928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
|
13
|
Bartalucci N, Romagnoli S, Vannucchi AM. A blood drop through the pore: nanopore sequencing in hematology. Trends Genet 2021; 38:572-586. [PMID: 34906378 DOI: 10.1016/j.tig.2021.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
The development of new sequencing platforms, technologies, and bioinformatics tools in the past decade fostered key discoveries in human genomics. Among the most recent sequencing technologies, nanopore sequencing (NS) has caught the interest of researchers for its intriguing potential and flexibility. This up-to-date review highlights the recent application of NS in the hematology field, focusing on progress and challenges of the technological approaches employed for the identification of pathologic alterations. The molecular and analytic pipelines developed for the analysis of the whole-genome, target regions, and transcriptomics provide a proof of evidence of the unparalleled amount of information that could be retrieved by an innovative approach based on long-read sequencing.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, DENOTHE Excellence Center, Florence, Italy
| | - Simone Romagnoli
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, DENOTHE Excellence Center, Florence, Italy
| | - Alessandro Maria Vannucchi
- CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Careggi University Hospital and Department of Experimental and Clinical Medicine, University of Florence, DENOTHE Excellence Center, Florence, Italy.
| |
Collapse
|
14
|
Takashima T, Brisset S, Furukawa A, Taniguchi H, Takeyasu R, Kawamura A, Tamura Y. Case Report: BMPR2-Targeted MinION Sequencing as a Tool for Genetic Analysis in Patients With Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:711694. [PMID: 34589526 PMCID: PMC8473694 DOI: 10.3389/fcvm.2021.711694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Mutations in the bone morphogenetic protein receptor type 2 gene (BMPR2) represent a major genetic cause of pulmonary arterial hypertension (PAH). Identification of BMPR2 mutations is crucial for the genetic diagnosis of PAH. MinION nanopore sequencer is a portable third-generation technology that enables long-read sequencing at a low-cost. This nanopore technology-based device has not been used previously for PAH diagnosis. This study aimed to determine the feasibility of using MinION nanopore sequencing for the genetic analysis of PAH patients, focused on BMPR2. Methods: We developed a protocol for the custom bioinformatics pipeline analysis of long reads generated by long-PCR. To evaluate the potential of using MinION sequencing in PAH, we analyzed five samples, including those of two idiopathic PAH patients and a family of three members with one affected patient. Sanger sequencing analysis was performed to validate the variants. Results: The median read length was around 3.4 kb and a good mean quality score of approximately 19 was obtained. The total number of reads generated was uniform among the cases and ranged from 2,268,263 to 3,126,719. The coverage was consistent across flow cells in which the average number of reads per base ranged from 80,375 to 135,603. We identified two polymorphic variants and three mutations in four out of five patients. Certain indel variant calling-related errors were observed, mostly outside coding sequences. Conclusion: We have shown the ability of this portable nanopore sequencer to detect BMPR2 mutations in patients with PAH. The MinION nanopore sequencer is a promising tool for screening BMPR2 mutations, especially in small laboratories and research groups.
Collapse
Affiliation(s)
- Tomoya Takashima
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Sophie Brisset
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.,Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service d'Histologie, Embryologie et Cytogénétique, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Antoine Béclère, Clamart, France
| | - Asuka Furukawa
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Hirohisa Taniguchi
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.,Department of Cardiology, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Rika Takeyasu
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan
| | - Akio Kawamura
- Department of Cardiology, International University of Health and Welfare School of Medicine, Narita, Japan
| | - Yuichi Tamura
- Pulmonary Hypertension Center, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.,Department of Cardiology, International University of Health and Welfare School of Medicine, Narita, Japan
| |
Collapse
|
15
|
Nanopore sequencing approach for immunoglobulin gene analysis in chronic lymphocytic leukemia. Sci Rep 2021; 11:17668. [PMID: 34480068 PMCID: PMC8417258 DOI: 10.1038/s41598-021-97198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
The evaluation of the somatic hypermutation of the clonotypic immunoglobulin heavy variable gene has become essential in the therapeutic management in chronic lymphocytic leukemia patients. European Research Initiative on Chronic Lymphocytic Leukemia promotes good practices and standardized approaches to this assay but often they are labor-intensive, technically complex, with limited in scalability. The use of next-generation sequencing in this analysis has been widely tested, showing comparable accuracy and distinct advantages. However, the adoption of the next generation sequencing requires a high sample number (run batching) to be economically convenient, which could lead to a longer turnaround time. Here we present data from nanopore sequencing for the somatic hypermutation evaluation compared to the standard method. Our results show that nanopore sequencing is suitable for immunoglobulin heavy variable gene mutational analysis in terms of sensitivity, accuracy, simplicity of analysis and is less time-consuming. Moreover, our work showed that the development of an appropriate data analysis pipeline could lower the nanopore sequencing error rate attitude.
Collapse
|
16
|
Reddy S, Hung LH, Sala-Torra O, Radich JP, Yeung CC, Yeung KY. A graphical, interactive and GPU-enabled workflow to process long-read sequencing data. BMC Genomics 2021; 22:626. [PMID: 34425749 PMCID: PMC8381503 DOI: 10.1186/s12864-021-07927-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background Long-read sequencing has great promise in enabling portable, rapid molecular-assisted cancer diagnoses. A key challenge in democratizing long-read sequencing technology in the biomedical and clinical community is the lack of graphical bioinformatics software tools which can efficiently process the raw nanopore reads, support graphical output and interactive visualizations for interpretations of results. Another obstacle is that high performance software tools for long-read sequencing data analyses often leverage graphics processing units (GPU), which is challenging and time-consuming to configure, especially on the cloud. Results We present a graphical cloud-enabled workflow for fast, interactive analysis of nanopore sequencing data using GPUs. Users customize parameters, monitor execution and visualize results through an accessible graphical interface. The workflow and its components are completely containerized to ensure reproducibility and facilitate installation of the GPU-enabled software. We also provide an Amazon Machine Image (AMI) with all software and drivers pre-installed for GPU computing on the cloud. Most importantly, we demonstrate the potential of applying our software tools to reduce the turnaround time of cancer diagnostics by generating blood cancer (NB4, K562, ME1, 238 MV4;11) cell line Nanopore data using the Flongle adapter. We observe a 29x speedup and a 93x reduction in costs for the rate-limiting basecalling step in the analysis of blood cancer cell line data. Conclusions Our interactive and efficient software tools will make analyses of Nanopore data using GPU and cloud computing accessible to biomedical and clinical scientists, thus facilitating the adoption of cost effective, fast, portable and real-time long-read sequencing. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07927-1.
Collapse
Affiliation(s)
| | - Ling-Hong Hung
- School of Engineering and Technology, University of Washington, 98402, Tacoma, WA, USA
| | - Olga Sala-Torra
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Clinical Research Division, Kurt Enslein Endowed Chair, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Department of Medicine, University of Washington, 98109, Seattle, WA, USA
| | - Cecilia Cs Yeung
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 98109, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, University of Washington, 98109, Seattle, WA, USA
| | - Ka Yee Yeung
- School of Engineering and Technology, University of Washington, 98402, Tacoma, WA, USA.
| |
Collapse
|
17
|
Zhang R, Hu L, Xu C, Wu J, Xu C, Feng C. Bordetella avium-associated endophthalmitis: case report. BMC Infect Dis 2021; 21:833. [PMID: 34412580 PMCID: PMC8375195 DOI: 10.1186/s12879-021-06546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Bordetella avium, an aerobic bacterium that rarely causes infection in humans, is a species of Bordetella that generally inhabits the respiratory tracts of turkeys and other birds. It causes a highly contagious bordetellosis. Few reports describe B. avium as a causative agent of eye-related infections. Case presentation We report a case of acute infectious endophthalmitis associated with infection by B. avium after open trauma. After emergency vitrectomy and subsequent broad-spectrum antibiotic treatment, the infection was controlled successfully, and the patient’s vision improved. Conclusions B. avium can cause infection in the human eye, which can manifest as acute purulent endophthalmitis. Nanopore targeted sequencing technology can quickly identify this organism. Emergency vitrectomy combined with lens removal and silicone oil tamponade and the early application of broad-spectrum antibiotics are key for successful treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liping Hu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chong Xu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jianhua Wu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Changzhong Xu
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chao Feng
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Dai B, Yu H, Ma T, Lei Y, Wang J, Zhang Y, Lu J, Yan H, Jiang L, Chen B. The Application of Targeted RNA Sequencing for KMT2A-Partial Tandem Duplication Identification and Integrated Analysis of Molecular Characterization in Acute Myeloid Leukemia. J Mol Diagn 2021; 23:1478-1490. [PMID: 34384895 DOI: 10.1016/j.jmoldx.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
The partial tandem duplication of histone-lysine N-methyltransferase 2A (KMT2A-PTD) is an important genetic alteration in acute myeloid leukemia (AML) and is associated with poor clinical outcome. Accurate and rapid detection of KMT2A-PTD is important for outcome prediction and clinical management, but next-generation sequencing-based quantitative research is still lacking. In this study, we developed a targeted RNA-based next-generation sequencing panel, together with single primer enrichment and unique molecular identifiers, to identify KMT2A-PTD as well as AML-related gene fusions and other driver mutations. Our panel showed high sensitivity, accuracy, and reproducibility in detecting the fusion ratio of KMT2A-PTD. We characterized the mutation profile of KMT2A-PTD-positive patients with AML and found different distribution patterns of driver mutations according to KMT2A-PTD fusion ratio level. Survival analyses revealed that the fusion ratio of KMT2A-PTD did not affect clinical outcome, but a novel molecular combination, namely, KMT2A-PTD/DNMT3A/FMS-like tyrosine kinase 3-internal tandem duplication, was associated with poor prognosis. Finally, we proved that the dynamic changes in the KMT2A-PTD fusion ratio were consistent with the overall process of disease progression. In summary, we applied the unique molecular identifier-based RNA panel to quantitatively detect KMT2A-PTD and elucidate its clinical relevance, which complemented the integrative network of various genetic alterations in AML.
Collapse
Affiliation(s)
- Bing Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Yu
- Jiangsu Key Laboratory of Zoonosis and Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonose, Yangzhou University, Yangzhou, China
| | - Tingting Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Papuc SM, Erbescu A, Cisleanu D, Ozunu D, Enache C, Dumitru I, Lupoaia Andrus E, Gaman M, Popov VM, Dobre M, Stanca O, Angelescu S, Berbec N, Colita A, Vladareanu AM, Bumbea H, Arghir A. Delineation of Molecular Lesions in Acute Myeloid Leukemia Patients at Diagnosis: Integrated Next Generation Sequencing and Cytogenomic Studies. Genes (Basel) 2021; 12:genes12060846. [PMID: 34070898 PMCID: PMC8229708 DOI: 10.3390/genes12060846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disorder characterized by a wide range of genetic defects. Cytogenetics, molecular and genomic technologies have proved to be helpful for deciphering the mutational landscape of AML and impacted clinical practice. Forty-eight new AML patients were investigated with an integrated approach, including classical and molecular cytogenetics, array-based comparative genomic hybridization and targeted next generation sequencing (NGS). Various genetic defects were identified in all the patients using our strategy. Targeted NGS revealed known pathogenic mutations as well as rare or unreported variants with deleterious predictions. The mutational screening of the normal karyotype (NK) group identified clinically relevant variants in 86.2% of the patients; in the abnormal cytogenetics group, the mutation detection rate was 87.5%. Overall, the highest mutation prevalence was observed for the NPM1 gene, followed by DNMT3A, FLT3 and NRAS. An unexpected co-occurrence of KMT2A translocation and DNMT3A-R882 was identified; alterations of these genes, which are involved in epigenetic regulation, are considered to be mutually exclusive. A microarray analysis detected CNVs in 25% of the NK AML patients. In patients with complex karyotypes, the microarray analysis made a significant contribution toward the accurate characterization of chromosomal defects. In summary, our results show that the integration of multiple investigative strategies increases the detection yield of genetic defects with potential clinical relevance.
Collapse
Affiliation(s)
- Sorina Mihaela Papuc
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Alina Erbescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Diana Cisleanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Diana Ozunu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Cristina Enache
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Ion Dumitru
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Elena Lupoaia Andrus
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Mihaela Gaman
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | | | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
| | - Oana Stanca
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Silvana Angelescu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Nicoleta Berbec
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Andrei Colita
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Ana-Maria Vladareanu
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Horia Bumbea
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.C.); (C.E.); (E.L.A.); (M.G.); (O.S.); (S.A.); (N.B.); (A.C.); (A.-M.V.); (H.B.)
- Emergency Universitary Clinical Hospital, 050098 Bucharest, Romania;
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (S.M.P.); (A.E.); (D.O.); (M.D.)
- Correspondence: ; Tel.: +40-2-1319-2732-207; Fax: +40-2-1319-4528
| |
Collapse
|
20
|
Cumbo C, Orsini P, Anelli L, Zagaria A, Minervini CF, Coccaro N, Tota G, Impera L, Parciante E, Conserva MR, Redavid I, Carluccio P, Tarantini F, Specchia G, Musto P, Albano F. Nanopore sequencing sheds a light on the FLT3 gene mutations complexity in acute promyelocytic leukemia. Leuk Lymphoma 2020; 62:1219-1225. [PMID: 33289421 DOI: 10.1080/10428194.2020.1856838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute promyelocytic leukemia (APL) patients carry in 27% of cases an activating mutation of the fms-like tyrosine kinase-3 (FLT3) gene: internal tandem duplication (ITD) or tyrosine kinase domain (TKD) point mutation. The simultaneous presence of both types of mutations, so-called FLT3 dual mutations, has been reported in 2% of APL, but this circumstance has never been studied. We studied a cohort of 74 APL cases, performing an in-depth analysis of three FLT3 dual mutant cases. Nanopore sequencing (NS) allowed us to characterize their complex mutational profile, showing the occurrence of multiple activating FLT3 mutations on different alleles in the leukemic promyelocytes and suggesting a cumulative impact of these events on the constitutive activation of the FLT3 pathway in APL cells. NS approach not only sheds light on the FLT3 mutational complexity in APL, but may also be useful to better clarify the FLT3 mutations landscape in acute myeloid leukemia.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Paola Orsini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Crescenzio Francesco Minervini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Nicoletta Coccaro
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppina Tota
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Luciana Impera
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Elisa Parciante
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Immacolata Redavid
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Paola Carluccio
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Tarantini
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Pellegrino Musto
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.) - Hematology and Stem Cell Transplantation Unit, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
21
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
22
|
Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. Int J Mol Sci 2020; 21:E3432. [PMID: 32414002 PMCID: PMC7279310 DOI: 10.3390/ijms21103432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
TP53 dysregulation plays a pivotal role in the molecular pathogenesis of myelodysplastic syndromes (MDS), identifying a subgroup of patients with peculiar features. In this review we report the recent biological and clinical findings of TP53-mutated MDS, focusing on the molecular pathways activation and on its impact on the cellular physiology. In MDS, TP53 mutational status is deeply associated with del(5q) syndrome and its dysregulation impacts on cell cycle, DNA repair and apoptosis inducing chromosomal instability and the clonal evolution of disease. TP53 defects influence adversely the MDS clinical outcome and the treatment response rate, thus new therapeutic approaches are being developed for these patients. TP53 allelic state characterization and the mutational burden evaluation can therefore predict prognosis and identify the subgroup of patients eligible for targeted therapy. For these reasons, in the era of precision medicine, the MDS diagnostic workup cannot do without the complete assessment of TP53 mutational profile.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (C.C.); (G.T.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
23
|
Cumbo C, Anelli L, Specchia G, Albano F. Monitoring of Minimal Residual Disease (MRD) in Chronic Myeloid Leukemia: Recent Advances. Cancer Manag Res 2020; 12:3175-3189. [PMID: 32440215 PMCID: PMC7211966 DOI: 10.2147/cmar.s232752] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the BCR-ABL1 fusion gene generation as a consequence of the t(9;22)(q34;q11) rearrangement. The identification of the BCR-ABL1 transcript was of critical importance for both CML diagnosis and minimal residual disease (MRD) monitoring. In this review, we report the recent advances in the CML MRD monitoring based on RNA, DNA and protein analysis. The detection of the BCR-ABL1 transcript by the quantitative reverse-transcriptase polymerase chain reaction is the gold standard method, but other systems based on digital PCR or on GeneXpert technology have been developed. In the last years, DNA-based assays showed high sensitivity and specificity, and flow cytometric approaches for the detection of the BCR-ABL1 fusion protein have also been tested. Recently, new MRD monitoring systems based on the detection of molecular markers other than the BCR-ABL1 fusion were proposed. These approaches, such as the identification of CD26+ leukemic stem cells, microRNAs and mitochondrial DNA mutations, just remain preliminary and need to be implemented. In the precision medicine era, the constant improvement of the CML MRD monitoring practice could allow clinicians to choose the best therapeutic algorithm and a more accurate selection of CML patients eligible for the tyrosine kinase inhibitors discontinuation.
Collapse
Affiliation(s)
- Cosimo Cumbo
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari 70124, Italy
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari 70124, Italy
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari 70124, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari 70124, Italy
| |
Collapse
|
24
|
Coccaro N, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. Digital PCR: A Reliable Tool for Analyzing and Monitoring Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21093141. [PMID: 32365599 PMCID: PMC7247671 DOI: 10.3390/ijms21093141] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
The digital polymerase chain reaction (dPCR) is considered to be the third-generation polymerase chain reaction (PCR), as it yields direct, absolute and precise measures of target sequences. dPCR has proven particularly useful for the accurate detection and quantification of low-abundance nucleic acids, highlighting its advantages in cancer diagnosis and in predicting recurrence and monitoring minimal residual disease, mostly coupled with next generation sequencing. In the last few years, a series of studies have employed dPCR for the analysis of hematologic malignancies. In this review, we will summarize these findings, attempting to focus on the potential future perspectives of the application of this promising technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Correspondence: ; Tel.: +39-(0)80-5478031; Fax: +39-(0)80-5508369
| |
Collapse
|
25
|
Minervini CF, Cumbo C, Orsini P, Anelli L, Zagaria A, Specchia G, Albano F. Nanopore Sequencing in Blood Diseases: A Wide Range of Opportunities. Front Genet 2020; 11:76. [PMID: 32140171 PMCID: PMC7043087 DOI: 10.3389/fgene.2020.00076] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/23/2020] [Indexed: 12/20/2022] Open
Abstract
The molecular pathogenesis of hematological diseases is often driven by genetic and epigenetic alterations. Next-generation sequencing has considerably increased our genomic knowledge of these disorders becoming ever more widespread in clinical practice. In 2012 Oxford Nanopore Technologies (ONT) released the MinION, the first long-read nanopore-based sequencer, overcoming the main limits of short-reads sequences generation. In the last years, several nanopore sequencing approaches have been performed in various "-omic" sciences; this review focuses on the challenge to introduce ONT devices in the hematological field, showing advantages, disadvantages and future perspectives of this technology in the precision medicine era.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, Bari, Italy
| |
Collapse
|