1
|
Volarić M, Meštrović N, Despot-Slade E. SatXplor-a comprehensive pipeline for satellite DNA analyses in complex genome assemblies. Brief Bioinform 2024; 26:bbae660. [PMID: 39708839 DOI: 10.1093/bib/bbae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated sequences that make up a significant portion of almost all eukaryotic genomes. Although satDNAs have been shown to play an important role in genome organization and evolution, they are relatively poorly analyzed, even in model organisms. One of the main reasons for the current lack of in-depth studies on satDNAs is their underrepresentation in genome assemblies. Due to complexity, abundance, and highly repetitive nature of satDNAs, their analysis is challenging, requiring efficient tools that ensure accurate annotation and comprehensive genome-wide analysis. We present a novel pipeline, named satellite DNA Exploration (SatXplor), designed to robustly characterize satDNA elements and analyze their arrays and flanking regions. SatXplor is benchmarked against other tools and curated satDNA datasets from diverse species, including mice and humans, showcase its versatility across genomes with varying complexities and satDNA profiles. Component algorithms excel in the identification of tandemly repeated sequences and, for the first time, enable evaluation of satDNA variation and array annotation with the addition of information about surrounding genomic landscape. SatXplor is an innovative pipeline for satDNA analysis that can be paired with any tool used for satDNA detection, offering insights into the structural characteristics, array determination, and genomic context of satDNA elements. By integrating various computational techniques, from sequence analysis and homology investigation to advanced clustering and graph-based methods, it provides a versatile and comprehensive approach to explore the complexity of satDNA organization and understand the underlying mechanisms and evolutionary aspects. It is open-source and freely accessible at https://github.com/mvolar/SatXplor.
Collapse
Affiliation(s)
- Marin Volarić
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
2
|
Yurkevich OY, Samatadze TE, Zoshchuk SA, Semenov AR, Morozov AI, Selyutina IY, Amosova AV, Muravenko OV. Repeatome Analysis and Satellite DNA Chromosome Patterns in Hedysarum Species. Int J Mol Sci 2024; 25:12340. [PMID: 39596405 PMCID: PMC11595117 DOI: 10.3390/ijms252212340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
The cosmopolitan genus Hedysarum L. (Fabaceae) is divided into sections Hedysarum, Stracheya, and Multicaulia. This genus includes many valuable medicinal, melliferous, and forage species. The species taxonomy and genome relationships within the sections are still unclear. We examined intra- and interspecific diversity in the section (sect.) Hedysarum based on repeatome analyses using NGS data, bioinformatic technologies, and chromosome FISH mapping of 35S rDNA, 5S rDNA, and the identified satellite DNA families (satDNAs). A comparison of repeatomes of H. alpinum, H. theinum, and H. flavescens revealed differences in their composition. However, similarity in sequences of most satDNAs indicated a close relationship between genomes within sect. Hedysarum. New effective satDNA chromosomal markers were detected, which is important for karyotype analyses within Hedysarum. Intra- and interspecific variability in the chromosomal distribution patterns of the studied markers were revealed, and species karyograms were constructed. These results provided new insight into the karyotype structures and genomic diversity within sect. Hedysarum, clarified the systematic position of H. sachalinense and H. arcticum, and confirmed the distant genomic relationships between species from sections Hedysarum and Multicaulia. Our findings are important for further comparative genome studies within the genus Hedysarum.
Collapse
Affiliation(s)
- Olga Yu. Yurkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Tatiana E. Samatadze
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Svyatoslav A. Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Alexey R. Semenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Alexander I. Morozov
- All-Russian Institute of Medicinal and Aromatic Plants, Federal Agency for Scientific Organizations, 7 Green St., 117216 Moscow, Russia
| | - Inessa Yu. Selyutina
- Central Siberian Botanical Garden, SB RAS, 101 Zolotodolinskaya St., 630090 Novosibirsk, Russia
| | - Alexandra V. Amosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| | - Olga V. Muravenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
3
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
4
|
Toma GA, Sember A, Goes CAG, Kretschmer R, Porto-Foresti F, Bertollo LAC, Liehr T, Utsunomia R, de Bello Cioffi M. Satellite DNAs and the evolution of the multiple X 1X 2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes). Sci Rep 2024; 14:20402. [PMID: 39223262 PMCID: PMC11369246 DOI: 10.1038/s41598-024-70920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Collapse
Affiliation(s)
- Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21, Liběchov, Czech Republic
| | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | | | | | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, 07747, Jena, Germany.
| | | | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
Mora P, Rico-Porras JM, Palomeque T, Montiel EE, Pita S, Cabral-de-Mello DC, Lorite P. Satellitome Analysis of Adalia bipunctata (Coleoptera): Revealing Centromeric Turnover and Potential Chromosome Rearrangements in a Comparative Interspecific Study. Int J Mol Sci 2024; 25:9214. [PMID: 39273162 PMCID: PMC11394905 DOI: 10.3390/ijms25179214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Eukaryotic genomes exhibit a dynamic interplay between single-copy sequences and repetitive DNA elements, with satellite DNA (satDNA) representing a substantial portion, mainly situated at telomeric and centromeric chromosomal regions. We utilized Illumina next-generation sequencing data from Adalia bipunctata to investigate its satellitome. Cytogenetic mapping via fluorescence in situ hybridization was performed for the most abundant satDNA families. In silico localization of satDNAs was carried out using the CHRISMAPP (Chromosome In Silico Mapping) pipeline on the high-fidelity chromosome-level assembly already available for this species, enabling a meticulous characterization and localization of multiple satDNA families. Additionally, we analyzed the conservation of the satellitome at an interspecific scale. Specifically, we employed the CHRISMAPP pipeline to map the satDNAs of A. bipunctata onto the genome of Adalia decempunctata, which has also been sequenced and assembled at the chromosome level. This analysis, along with the creation of a synteny map between the two species, suggests a rapid turnover of centromeric satDNA between these species and the potential occurrence of chromosomal rearrangements, despite the considerable conservation of their satellitomes. Specific satDNA families in the sex chromosomes of both species suggest a role in sex chromosome differentiation. Our interspecific comparative study can provide a significant advance in the understanding of the repeat genome organization and evolution in beetles.
Collapse
Affiliation(s)
- Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - José M Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| | - Eugenia E Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
- Biodiversity and Global Change Research Centre (CIBC-UAM), Autonomous University of Madrid, 28049 Madrid, Spain
| | - Sebastián Pita
- Section Evolutive Genetics, Faculty of Sciences, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay
| | - Diogo C Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP-São Paulo State University, Rio Claro 13506-900, SP, Brazil
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain
| |
Collapse
|
6
|
Deon GA, Dos Santos RZ, Sassi FDMC, Moreira-Filho O, Vicari MR, Porto-Foresti F, Utsunomia R, Cioffi MDB. The role of satellite DNAs in the chromosomal rearrangements and the evolution of the rare XY1Y2 sex system in Harttia (Siluriformes: Loricariidae). J Hered 2024; 115:541-551. [PMID: 38757192 DOI: 10.1093/jhered/esae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
The underlying processes behind the formation, evolution, and long-term maintenance of multiple sex chromosomes have been largely neglected. Among vertebrates, fishes represent the group with the highest diversity of multiple sex chromosome systems and, with six instances, the Neotropical fish genus Harttia stands out by presenting the most remarkable diversity. However, although the origin mechanism of their sex chromosome systems is well discussed, little is known about the importance of some repetitive DNA classes in the differentiation of multiple systems. In this work, by employing a combination of cytogenetic and genomic procedures, we evaluated the satellite DNA composition of H. carvalhoi with a focus on their role in the evolution, structure, and differentiation process of the rare XY1Y2 multiple-sex chromosome system. The genome of H. carvalhoi contains a total of 28 satellite DNA families, with the A + T content ranging between 38.1% and 68.1% and the predominant presence of long satellites. The in situ hybridization experiments detected 15 satellite DNAs with positive hybridization signals mainly on centromeric and pericentromeric regions of almost all chromosomes or clustered on a few pairs. Five of them presented clusters on X, Y1, and/or Y2 sex chromosomes which were therefore selected for comparative hybridization in the other three congeneric species. We found several conserved satellites accumulated on sex chromosomes and also in regions that were involved in chromosomal rearrangements. Our results provide a new contribution of satellitome studies in multiple sex chromosome systems in fishes and represent the first satellitome study for a Siluriformes species.
Collapse
Affiliation(s)
- Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Rodrigo Zeni Dos Santos
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | | | - Orlando Moreira-Filho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Ricardo Vicari
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista, Bauru, São Paulo, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
Majid M, Khan H, Liu X, Shaheer M, Huang Y. Evolutionary Dynamics of Satellite DNA Repeats across the Tettigoniidae Family: Insights from Genomic Analysis. Biomolecules 2024; 14:915. [PMID: 39199303 PMCID: PMC11352069 DOI: 10.3390/biom14080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Satellite DNA repeats are repetitive DNA sequences found in eukaryotic genomes, typically consisting of short DNA motifs repeated in tandem arrays. Despite the vast body of literature on satellite DNA repeats in other taxa, investigations specifically targeting Tettigoniidae remain conspicuously absent. Our study aims to fill a critical gap in our understanding of satellitome evolutionary processes shaping Tettigoniidae genomes. Repeatome analysis revealed that the Meconema thalassinum genome comprises 92%, and Phryganogryllacris superangulata had the lowest value of 34%, with an average of 67% in other Tettigoniidae species. The analysis reveals significant variation in the number of satellite DNA repeats across species of the Tettigoniidae family, with M. thalassinum exhibiting the highest count, 246, reported in insects to date and the lowest count, 10, in Pholidoptera griseoptera. Ruspolia dubia and Ruspolia yunnana, which are congeneric species, showcase distinct counts of 104 and 84 families, respectively. Satellite DNA repeats in R. dubia exhibit the highest abundance, constituting 17.2% of the total genome, while the lowest abundance was reported in P. griseoptera, at 5.65%. The genome size correlates weakly with the satellite DNA family count (rs = 0.42, p = 0.29), but a strong correlation exists between satellite abundance and family number (rs = 0.73, p = 0.03). Moreover, the analysis of satellite DNA gain and loss patterns provides insights into the amplification and homogenization of satellite DNA families within the genome, with species-specific repeats exhibiting a positive trend toward amplification. The chromosomal distribution in M. thalassinum displayed that the highest accumulation was observed on Chr12, Chr01, and Chr04, constituting 17.79%, 17.4%, and 17.22% of the total chromosome size, respectively. The chromosome-specific propagation of satellite DNA families was evident, with MthSat01 solely on chromosome 1 and MthSat170 on chromosome 2, sharing 1.64% and 2.33%. The observed conservation and variations in satellite DNA number and abundances, along with distinct patterns of gain and loss, indicate the influence of potentially diverse evolutionary processes shaping the genomic landscape of these insects, which requires further investigation. Furthermore, the differential accumulation of satellite DNA on specific chromosomes implies that potential chromosome-specific functions or structural features influence the retention and proliferation of satellite sequences.
Collapse
Affiliation(s)
- Muhammad Majid
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| | - Muhammad Shaheer
- Department of Entomology, MNS Agriculture University, Multan 66000, Pakistan
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (M.M.)
| |
Collapse
|
8
|
da Silva MJ, Destro RF, Gazoni T, Parise-Maltempi PP. Interspecific cytogenomic comparison reveals a potential chromosomal centromeric marker in Proceratophrys frog species. Chromosoma 2024; 133:195-202. [PMID: 38546866 DOI: 10.1007/s00412-024-00819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 07/25/2024]
Abstract
Among the repetitive elements, satellite DNA (SatDNA) emerges as extensive arrays of highly similar tandemly repeated units, spanning megabases in length. Given that the satDNA PboSat01-176, previously characterized in P. boiei, prompted our interest for having a high abundance in P. boiei and potential for centromeric satellite, here, we employed various approaches, including low coverage genome sequencing, followed by computational analysis and chromosomal localization techniques in four Proceratophrys species and, investigating the genomic presence and sharing, as well as its potential for chromosomal centromere marker in Proceratophrys frog species. Our findings demonstrate that PboSat01-176 exhibits high abundance across all four Proceratophrys species, displaying distinct characteristics that establish it as the predominant repetitive DNA element in these species. The satellite DNA is prominently clustered in the peri/centromeric region of the chromosomes, particularly in the heterochromatic regions. The widespread presence of PboSat01-176 in closely related Proceratophrys species reinforces the validity of the library hypothesis for repetitive sequences. Thus, this study highlighted the utility of the satDNA family PboSat01-176 as a reliable centromeric marker in Proceratophrys species, with potential to be applied in other species of anuran amphibians. The observed sharing and maintenance of this sequence within the genus suggest possibilities for future research, particularly through expanded sampling to elucidate parameters that underlie the library hypothesis and the evolutionary dynamics of satDNA sequences.
Collapse
Affiliation(s)
- Marcelo João da Silva
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Raquel Fogarin Destro
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Thiago Gazoni
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, São Paulo, Brazil.
| |
Collapse
|
9
|
Novaes CM, Teixeira GA, Juris EM, Lopes DM. Conventional cytogenetics and microsatellite chromosomal distribution in social wasp Mischocyttarus cassununga (Ihering, 1903) (Vespidae, Polistinae, Mischocyttarini). Genome 2024; 67:151-157. [PMID: 38262004 DOI: 10.1139/gen-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Cytogenetics has allowed the investigation of chromosomal diversity and repetitive genomic content in wasps. In this study, we characterized the karyotype of the social wasp Mischocyttarus cassununga using conventional cytogenetics and chromosomal mapping of repetitive sequences. This study was undertaken to extend our understanding of the genomic organization of repetitive DNA in social wasps and is the first molecular cytogenetic insight into the genus Mischocyttarus. The karyotype of M. cassununga had a chromosome number of 2n = 64 for females and n = 32 for males. Constitutive heterochromatin exhibited three distribution patterns: centromeric and pericentromeric regions along the smaller arms and extending almost the entire chromosome. The major ribosomal DNA sites were located on chromosome pair in females and one chromosome in males. Positive signals for the microsatellite probes (GA)n and (GAG)n were observed in the euchromatic regions of all chromosomes. The microsatellites, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n were not observed in any region of the chromosomes. Our results contrast with those previously obtained for Polybia fastidiosuscula, which showed that the microsatellites (GAG)n, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n are located predominantly in constitutive heterochromatin. This suggests variations in the diversity and chromosomal organization of repetitive sequences in the genomes of social wasps.
Collapse
Affiliation(s)
- Camila Moura Novaes
- Universidade Federal do Espírito Santo, Campus Alegre, Alto Universitário s/n, Guararema, Alegre, Espírito Santo, 29500-000, Brazil
| | - Gisele Amaro Teixeira
- Universidade Federal do Amapá, Campus Binacional - Oiapoque, n°3051, Bairro Universidade, Oiapoque, Amapá, 68980-000, Brazil
| | - Eydyeliana Month Juris
- Grupo de Investigación en Biotecnología, Universidad de Sucre, Facultad de Educación y Ciencias, Sincelejo, Colombia
| | - Denilce Meneses Lopes
- Laboratório de Citogenética de Insetos, Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Viçosa, Avenida Peter Henry Rolfs s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
10
|
Rico-Porras JM, Mora P, Palomeque T, Montiel EE, Cabral-de-Mello DC, Lorite P. Heterochromatin Is Not the Only Place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes (Basel) 2024; 15:395. [PMID: 38674330 PMCID: PMC11049206 DOI: 10.3390/genes15040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The satellitome of the beetle Chrysolina americana Linneo, 1758 has been characterized through chromosomal analysis, genomic sequencing, and bioinformatics tools. C-banding reveals the presence of constitutive heterochromatin blocks enriched in A+T content, primarily located in pericentromeric regions. Furthermore, a comprehensive satellitome analysis unveils the extensive diversity of satellite DNA families within the genome of C. americana. Using fluorescence in situ hybridization techniques and the innovative CHRISMAPP approach, we precisely map the localization of satDNA families on assembled chromosomes, providing insights into their organization and distribution patterns. Among the 165 identified satDNA families, only three of them exhibit a remarkable amplification and accumulation, forming large blocks predominantly in pericentromeric regions. In contrast, the remaining, less abundant satDNA families are dispersed throughout euchromatic regions, challenging the traditional association of satDNA with heterochromatin. Overall, our findings underscore the complexity of repetitive DNA elements in the genome of C. americana and emphasize the need for further exploration to elucidate their functional significance and evolutionary implications.
Collapse
Affiliation(s)
- José M. Rico-Porras
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| | - Eugenia E. Montiel
- Department of Biology, Genetics, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain;
- Center for Research in Biodiversity and Global Change, Autonomous University of Madrid, 28049 Madrid, Spain
| | - Diogo C. Cabral-de-Mello
- Department of General and Applied Biology, Institute of Biosciences/IB, UNESP—São Paulo State University, Rio Claro 13506-900, SP, Brazil;
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Paraje las Lagunillas s/n, 23071 Jaén, Spain; (J.M.R.-P.); (P.M.); (T.P.)
| |
Collapse
|
11
|
Gutierrez-Diaz A, Hoffmann S, Gallego-Gómez JC, Bermudez-Santana CI. Systematic computational hunting for small RNAs derived from ncRNAs during dengue virus infection in endothelial HMEC-1 cells. FRONTIERS IN BIOINFORMATICS 2024; 4:1293412. [PMID: 38357577 PMCID: PMC10864640 DOI: 10.3389/fbinf.2024.1293412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
In recent years, a population of small RNA fragments derived from non-coding RNAs (sfd-RNAs) has gained significant interest due to its functional and structural resemblance to miRNAs, adding another level of complexity to our comprehension of small-RNA-mediated gene regulation. Despite this, scientists need more tools to test the differential expression of sfd-RNAs since the current methods to detect miRNAs may not be directly applied to them. The primary reasons are the lack of accurate small RNA and ncRNA annotation, the multi-mapping read (MMR) placement, and the multicopy nature of ncRNAs in the human genome. To solve these issues, a methodology that allows the detection of differentially expressed sfd-RNAs, including canonical miRNAs, by using an integrated copy-number-corrected ncRNA annotation was implemented. This approach was coupled with sixteen different computational strategies composed of combinations of four aligners and four normalization methods to provide a rank-order of prediction for each differentially expressed sfd-RNA. By systematically addressing the three main problems, we could detect differentially expressed miRNAs and sfd-RNAs in dengue virus-infected human dermal microvascular endothelial cells. Although more biological evaluations are required, two molecular targets of the hsa-mir-103a and hsa-mir-494 (CDK5 and PI3/AKT) appear relevant for dengue virus (DENV) infections. Here, we performed a comprehensive annotation and differential expression analysis, which can be applied in other studies addressing the role of small fragment RNA populations derived from ncRNAs in virus infection.
Collapse
Affiliation(s)
- Aimer Gutierrez-Diaz
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Steve Hoffmann
- Faculty of Biosciences, Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Friedrich Schiller University Jena, Jena, Germany
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Medicine Faculty Universidad de Antioquia, Medellin, Colombia
| | - Clara Isabel Bermudez-Santana
- Grupo Rnomica Teórica y Computacional, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
12
|
Nguyen TH, Kang BY, Kim HH. Chromosomal dynamics in Senna: comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations. FRONTIERS IN PLANT SCIENCE 2023; 14:1288220. [PMID: 38173930 PMCID: PMC10762312 DOI: 10.3389/fpls.2023.1288220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Introduction Tandem repeats (TRs) occur abundantly in plant genomes. They play essential roles that affect genome organization and evolution by inducing or generating chromosomal rearrangements such as duplications, deletions, inversions, and translocations. These impact gene expression and chromosome structure and even contribute to the emergence of new species. Method We investigated the effects of TRs on speciation in Senna genus by performing a comparative analysis using fluorescence in situ hybridization (FISH) with S. tora-specific TR probes. We examined the chromosomal distribution of these TRs and compared the genome sizes of seven Senna species (estimated using flow cytometry) to better understand their evolutionary relationships. Results Two (StoTR03_159 and StoTR04_55) of the nine studied TRs were not detected in any of the seven Senna species, whereas the remaining seven were found in all or some species with patterns that were similar to or contrasted with those of S. tora. Of these studies species, only S. angulata showed significant genome rearrangements and dysploid karyotypes resembling those of S. tora. The genome sizes varied among these species and did not positively correlate with chromosome number. Notably, S. angulata had the fewest chromosomes (2n = 22) but a relatively large genome size. Discussion These findings reveal the dynamics of TRs and provide a cytogenetic depiction of chromosomal rearrangements during speciation in Senna. To further elucidate the dynamics of repeat sequences in Senna, future studies must include related species and extensive repeatomic studies, including those on transposable elements.
Collapse
Affiliation(s)
| | | | - Hyun Hee Kim
- Chromosome Research Institute, Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Mata-Sucre Y, Matzenauer W, Castro N, Huettel B, Pedrosa-Harand A, Marques A, Souza G. Repeat-based phylogenomics shed light on unclear relationships in the monocentric genus Juncus L. (Juncaceae). Mol Phylogenet Evol 2023; 189:107930. [PMID: 37717642 DOI: 10.1016/j.ympev.2023.107930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The repetitive fraction (repeatome) of eukaryotic genomes is diverse and usually fast evolving, being an important tool for clarify plant systematics. The genus Juncus L. comprises 332 species, karyotypically recognized by having holocentric chromosomes. However, four species were recently described as monocentric, yet our understanding of their genome evolution is largely masked by unclear phylogenetic relationships. Here, we reassess the current Juncus systematics using low-coverage genome skimming data of 33 taxa to construct repeats, nuclear rDNA and plastome-based phylogenetic hypothesis. Furthermore, we characterize the repeatome and chromosomal distribution of Juncus-specific centromeric repeats/CENH3 protein to test the monocentricity reach in the genus. Repeat-base phylogenies revealed topologies congruent with the rDNA tree, but not with the plastome tree. The incongruence between nuclear and plastome chloroplast dataset suggest an ancient hybridization in the divergence of Juncotypus and Tenageia sections 40 Myr ago. The phylogenetic resolution at section level was better fitted with the rDNA/repeat-based approaches, with the recognition of two monophyletic sections (Stygiopsis and Tenageia). We found specific repeatome trends for the main lineages, such as the higher abundances of TEs in the Caespitosi and Iridifolii + Ozophyllum clades. CENH3 immunostaining confirmed the monocentricity of Juncus, which can be a generic synapomorphy for the genus. The heterogeneity of the repeatomes, with high phylogenetic informativeness, identified here may be correlated with their ancient origin (56 Mya) and reveals the potential of comparative genomic analyses for understanding plant systematics and evolution.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - William Matzenauer
- Laboratório de Morfo-Taxonomia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Natália Castro
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Pedrosa-Harand
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gustavo Souza
- Laboratório de Citogenética e Evolução Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco. Recife PE 50670-901, Brasil.
| |
Collapse
|
14
|
Cuadrado Á, Montiel EE, Mora P, Figueroa RI, Lorite P, de Bustos A. Contribution of the satellitome to the exceptionally large genome of dinoflagellates: The case of the harmful alga Alexandrium minutum. HARMFUL ALGAE 2023; 130:102543. [PMID: 38061820 DOI: 10.1016/j.hal.2023.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Dinoflagellates are known to possess an exceptionally large genome organized in permanently condensed chromosomes. Focusing on the contribution of satellite DNA (satDNA) to the whole DNA content of genomes and its potential role in the architecture of the chromosomes, we present the characterization of the satellitome of Alexandriun minutum strain VGO577. To achieve this, we analyzed Illumina reads using graph-based clustering and performed complementary bioinformatic analyses. In this way, we discovered 180 satDNAs occupying 17.38 % of the genome. The 12 most abundant satDNAs represent the half of the satellitome but no satDNA is overrepresented, with the most abundant contributing ∼1.56 % of the genome. The largest repeat unit is 517 bp long but more than the half of the satDNAs (101) have repeat units shorter than 20 bp. We used FISH to map a selected set of 26 satDNAs. Although some satDNAs generate discrete hybridization signals at specific chromosomal locations (hybridization sites, HS), our cytological analysis showed that most satDNAs are dispersed throughout the genome, probably forming short arrays. Two satDNAs co-localize with the 45S rDNA. With the exception of telomeric DNA, no other satDNA yields HS on all chromosomes. In addition, we analyzed nine satDNAs yielding HS in VGO577 in four other A. minutum strains. Polymorphism at the intraspecific level was found for the presence/absence and/or abundance of some satDNAs, suggesting the amplification/deletion of these satDNAs following geographic separation or during culture maintenance of the strains. We also discuss how these results contribute to the understanding of chromosome architecture and evolution of dinoflagellate genomes.
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Department of Biomedicine and Biotecnology, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid 28805, Spain.
| | - Eugenia E Montiel
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain; Departamento de Biología (Genética), Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Pablo Mora
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain
| | - Rosa I Figueroa
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro 50, Vigo 36390, Spain
| | - Pedro Lorite
- Department of Experimental Biology (Genetics Area), Human and Animal Molecular Genetic Group (RNM-924), Universidad de Jaén, Jaén 23071, Spain
| | - Alfredo de Bustos
- Department of Biomedicine and Biotecnology, Universidad de Alcalá (UAH), Alcalá de Henares, Madrid 28805, Spain
| |
Collapse
|
15
|
Lukšíková K, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Krysanov EY, Jankásek M, Hiřman M, Reichard M, Ráb P, Sember A. Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes. JOURNAL OF FISH BIOLOGY 2023; 103:1501-1514. [PMID: 37661806 DOI: 10.1111/jfb.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.
Collapse
Affiliation(s)
- Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Yu Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matyáš Hiřman
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
16
|
de Almeida BRR, Farias Souza L, Alves TA, Cardoso AL, de Oliveira JA, Augusto Ribas TF, Dos Santos CEV, do Nascimento LAS, Sousa LM, da Cunha Sampaio MI, Martins C, Nagamachi CY, Pieczarka JC, Noronha RCR. Chromosomal organization of multigene families and meiotic analysis in species of Loricariidae (Siluriformes) from Brazilian Amazon, with description of a new cytotype for genus Spatuloricaria. Biol Open 2023; 12:bio060029. [PMID: 37819723 PMCID: PMC10651099 DOI: 10.1242/bio.060029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
In the Amazon, some species of Loricariidae are at risk of extinction due to habitat loss and overexploitation by the ornamental fish market. Cytogenetic data related to the karyotype and meiotic cycle can contribute to understanding the reproductive biology and help management and conservation programs of these fish. Additionally, chromosomal mapping of repetitive DNA in Loricariidae may aid comparative genomic studies in this family. However, cytogenetics analysis is limited in Amazonian locariids. In this study, chromosomal mapping of multigenic families was performed in Scobinancistrus aureatus, Scobinancistrus pariolispos and Spatuloricaria sp. Meiotic analyzes were performed in Hypancistrus zebra and Hypancistrus sp. "pão". Results showed new karyotype for Spatuloricaria sp. (2n=66, NF=82, 50m-10sm-6m). Distinct patterns of chromosomal organization of histone H1, histone H3 and snDNA U2 genes were registered in the karyotypes of the studied species, proving to be an excellent cytotaxonomic tool. Hypotheses to explain the evolutionary dynamics of these sequences in studied Loricariidae were proposed. Regarding H. zebra and H. sp. "pão", we describe the events related to synapse and transcriptional activity during the meiotic cycle, which in both species showed 26 fully synapsed bivalents, with high gene expression only during zygotene and pachytene. Both Hypancistrus species could be used may be models for evaluating changes in spermatogenesis of Loricariidae.
Collapse
Affiliation(s)
- Bruno Rafael Ribeiro de Almeida
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Pará. Campus Itaituba. Itaituba, 68183-300, Pará, Brazil
| | - Luciano Farias Souza
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Thyana Ayres Alves
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Adauto Lima Cardoso
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Juliana Amorim de Oliveira
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Talita Fernanda Augusto Ribas
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Carlos Eduardo Vasconcelos Dos Santos
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | | | - Leandro Melo Sousa
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Campus de Altamira. Altamira, CEP 68372-040, Pará, Brazil
| | - Maria Iracilda da Cunha Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Campus Universitário de Bragança.. Bragança, CEP 68600-000, Pará, Brazil
| | - Cesar Martins
- Laboratório Genômica Integrativa, Instituto de Biociências, Universidade Estadual Paulista. Botucatu, CEP 18618-970, São Paulo, Brazil
| | - Cleusa Yoshiko Nagamachi
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Julio Cesar Pieczarka
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Genética e Biologia Celular, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal do Pará. Belém 66075-750, Pará, Brazil
| |
Collapse
|
17
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
18
|
Comaills V, Castellano-Pozo M. Chromosomal Instability in Genome Evolution: From Cancer to Macroevolution. BIOLOGY 2023; 12:671. [PMID: 37237485 PMCID: PMC10215859 DOI: 10.3390/biology12050671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
The integrity of the genome is crucial for the survival of all living organisms. However, genomes need to adapt to survive certain pressures, and for this purpose use several mechanisms to diversify. Chromosomal instability (CIN) is one of the main mechanisms leading to the creation of genomic heterogeneity by altering the number of chromosomes and changing their structures. In this review, we will discuss the different chromosomal patterns and changes observed in speciation, in evolutional biology as well as during tumor progression. By nature, the human genome shows an induction of diversity during gametogenesis but as well during tumorigenesis that can conclude in drastic changes such as the whole genome doubling to more discrete changes as the complex chromosomal rearrangement chromothripsis. More importantly, changes observed during speciation are strikingly similar to the genomic evolution observed during tumor progression and resistance to therapy. The different origins of CIN will be treated as the importance of double-strand breaks (DSBs) or the consequences of micronuclei. We will also explain the mechanisms behind the controlled DSBs, and recombination of homologous chromosomes observed during meiosis, to explain how errors lead to similar patterns observed during tumorigenesis. Then, we will also list several diseases associated with CIN, resulting in fertility issues, miscarriage, rare genetic diseases, and cancer. Understanding better chromosomal instability as a whole is primordial for the understanding of mechanisms leading to tumor progression.
Collapse
Affiliation(s)
- Valentine Comaills
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
| | - Maikel Castellano-Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine—CABIMER, University of Pablo de Olavide—University of Seville—CSIC, Junta de Andalucía, 41092 Seville, Spain
- Genetic Department, Faculty of Biology, University of Seville, 41080 Seville, Spain
| |
Collapse
|
19
|
Šatović-Vukšić E, Plohl M. Satellite DNAs-From Localized to Highly Dispersed Genome Components. Genes (Basel) 2023; 14:genes14030742. [PMID: 36981013 PMCID: PMC10048060 DOI: 10.3390/genes14030742] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
According to the established classical view, satellite DNAs are defined as abundant non-coding DNA sequences repeated in tandem that build long arrays located in heterochromatin. Advances in sequencing methodologies and development of specialized bioinformatics tools enabled defining a collection of all repetitive DNAs and satellite DNAs in a genome, the repeatome and the satellitome, respectively, as well as their reliable annotation on sequenced genomes. Supported by various non-model species included in recent studies, the patterns of satellite DNAs and satellitomes as a whole showed much more diversity and complexity than initially thought. Differences are not only in number and abundance of satellite DNAs but also in their distribution across the genome, array length, interspersion patterns, association with transposable elements, localization in heterochromatin and/or in euchromatin. In this review, we compare characteristic organizational features of satellite DNAs and satellitomes across different animal and plant species in order to summarize organizational forms and evolutionary processes that may lead to satellitomes' diversity and revisit some basic notions regarding repetitive DNA landscapes in genomes.
Collapse
Affiliation(s)
- Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
21
|
Silva BSML, Picorelli ACR, Kuhn GCS. In Silico Identification and Characterization of Satellite DNAs in 23 Drosophila Species from the Montium Group. Genes (Basel) 2023; 14:300. [PMID: 36833227 PMCID: PMC9957191 DOI: 10.3390/genes14020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Satellite DNA (satDNA) is a class of tandemly repeated non-protein coding DNA sequences which can be found in abundance in eukaryotic genomes. They can be functional, impact the genomic architecture in many ways, and their rapid evolution has consequences for species diversification. We took advantage of the recent availability of sequenced genomes from 23 Drosophila species from the montium group to study their satDNA landscape. For this purpose, we used publicly available whole-genome sequencing Illumina reads and the TAREAN (tandem repeat analyzer) pipeline. We provide the characterization of 101 non-homologous satDNA families in this group, 93 of which are described here for the first time. Their repeat units vary in size from 4 bp to 1897 bp, but most satDNAs show repeat units < 100 bp long and, among them, repeats ≤ 10 bp are the most frequent ones. The genomic contribution of the satDNAs ranges from ~1.4% to 21.6%. There is no significant correlation between satDNA content and genome sizes in the 23 species. We also found that at least one satDNA originated from an expansion of the central tandem repeats (CTRs) present inside a Helitron transposon. Finally, some satDNAs may be useful as taxonomic markers for the identification of species or subgroups within the group.
Collapse
Affiliation(s)
| | | | - Gustavo C. S. Kuhn
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| |
Collapse
|
22
|
Goes CAG, dos Santos N, Rodrigues PHDM, Stornioli JHF, da Silva AB, dos Santos RZ, Vidal JAD, Silva DMZDA, Artoni RF, Foresti F, Hashimoto DT, Porto-Foresti F, Utsunomia R. The Satellite DNA Catalogues of Two Serrasalmidae (Teleostei, Characiformes): Conservation of General satDNA Features over 30 Million Years. Genes (Basel) 2022; 14:91. [PMID: 36672835 PMCID: PMC9859320 DOI: 10.3390/genes14010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Satellite DNAs (satDNAs) are tandemly repeated sequences that are usually located on the heterochromatin, and the entire collection of satDNAs within a genome is called satellitome. Primarily, these sequences are not under selective pressure and evolve by concerted evolution, resulting in elevated rates of divergence between the satDNA profiles of reproductive isolated species/populations. Here, we characterized two additional satellitomes of Characiformes fish (Colossoma macropomum and Piaractus mesopotamicus) that diverged approximately 30 million years ago, while still retaining conserved karyotype features. The results we obtained indicated that several satDNAs (50% of satellite sequences in P. mesopotamicus and 43% in C. macropomum) show levels of conservation between the analyzed species, in the nucleotide and chromosomal levels. We propose that long-life cycles and few genomic changes could slow down rates of satDNA differentiation.
Collapse
Affiliation(s)
| | - Natalia dos Santos
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | | | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Amanda Bueno da Silva
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | | | - Jhon Alex Dziechciarz Vidal
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | | | - Roberto Ferreira Artoni
- Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Fausto Foresti
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Diogo Teruo Hashimoto
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Fábio Porto-Foresti
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Ricardo Utsunomia
- Faculty of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
- Aquaculture Center of UNESP, São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
23
|
Telomeres and Their Neighbors. Genes (Basel) 2022; 13:genes13091663. [PMID: 36140830 PMCID: PMC9498494 DOI: 10.3390/genes13091663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Telomeres are essential structures formed from satellite DNA repeats at the ends of chromosomes in most eukaryotes. Satellite DNA repeat sequences are useful markers for karyotyping, but have a more enigmatic role in the eukaryotic cell. Much work has been done to investigate the structure and arrangement of repetitive DNA elements in classical models with implications for species evolution. Still more is needed until there is a complete picture of the biological function of DNA satellite sequences, particularly when considering non-model organisms. Celebrating Gregor Mendel’s anniversary by going to the roots, this review is designed to inspire and aid new research into telomeres and satellites with a particular focus on non-model organisms and accessible experimental and in silico methods that do not require specialized equipment or expensive materials. We describe how to identify telomere (and satellite) repeats giving many examples of published (and some unpublished) data from these techniques to illustrate the principles behind the experiments. We also present advice on how to perform and analyse such experiments, including details of common pitfalls. Our examples are a selection of recent developments and underexplored areas of research from the past. As a nod to Mendel’s early work, we use many examples from plants and insects, especially as much recent work has expanded beyond the human and yeast models traditional in telomere research. We give a general introduction to the accepted knowledge of telomere and satellite systems and include references to specialized reviews for the interested reader.
Collapse
|
24
|
Identification and characterization of a new family of long satellite DNA, specific of true toads (Anura, Amphibia, Bufonidae). Sci Rep 2022; 12:13960. [PMID: 35978080 PMCID: PMC9385698 DOI: 10.1038/s41598-022-18051-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Amphibians have some of the most variable genome sizes among vertebrates. Genome size variation has been attributed to repetitive and noncoding DNA, including satellite repeats, transposable elements, introns, and nuclear insertions of viral and organelle DNA. In vertebrates, satellite DNAs have been widely described in mammals, but few molecular studies have been carried out in amphibians. Here, we provide a detailed characterization of a new family of satellite DNA, present in all 15 examined species of the family Bufonidae. Southern-blot analysis and PCR reveal that this satellite is formed by monomers of 807 bp, is organized in tandem arrays, and has an AT-content of 57.4%. Phylogenetic analyses show that most clades exhibit species-specific variances, indicating that this satellite DNA has evolved by concerted evolution. The homogenization/fixation process is heterogeneous in Bufonidae, where the genera Bufo and Bufotes do not show species-specific differences, while populations from Rhinella marina exhibit population-specific changes. Additionally, variants of this satellite DNA have been identified in Duttaphrynus melanostictus and R. marina, supporting the 'library hypothesis' (a set, 'library', of satellite DNAs is shared by a species group). Physical mapping in Bufo bufo, Bufo spinosus, Epidalea calamita and Bufotes viridis provides evidence that this repetitive DNA is not dispersed in the karyotype, but accumulated in pericentromeric regions of some chromosomal pairs. This location, together with its presence in the transcriptomes of bufonids, could indicate a role in centromere function or heterochromatin formation and maintenance.
Collapse
|
25
|
Montiel EE, Mora P, Rico-Porras JM, Palomeque T, Lorite P. Satellitome of the Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the Most Diverse Among Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.826808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The red palm weevil, Rhynchophorus ferrugineus, is the most harmful species among those pests affecting palm trees. Its impact causes important economic losses around the World. Nevertheless, the genetic information of Rh. ferrugineus is very scarce. Last year, the first genome assembly was published including a rough description of its repeatome. However, no information has been added about one of the main components of repeated DNA, the satellite DNA. Herein, we presented the characterization of the satellitome of this important species that includes 112 satellite DNA families, the largest number in an insect genome. These satellite DNA families made up around 25% of the genome while the most abundant family, RferSat01-169, alone represented 20.4%. Chromosomal location of most abundant satellite DNA families performed by fluorescence in situ hybridization showed that all of them are dispersed in the euchromatin on all chromosomes but some of them are also specifically accumulated either on the pericentromeric heterochromatic regions of all chromosomes or on specific chromosomes. Finally, the transcription of satellitome families was analyzed through Rh. ferrugineus development. It was found that 55 out of 112 satellite DNA families showed transcription, some families seemed to be transcribed across all stages while a few appeared to be stage-specific, indicating a possible role of those satellite DNA sequences in the development of this species.
Collapse
|
26
|
Chen Y, Zhang T, Xian M, Zhang R, Yang W, Su B, Yang G, Sun L, Xu W, Xu S, Gao H, Xu L, Gao X, Li J. A draft genome of Drung cattle reveals clues to its chromosomal fusion and environmental adaptation. Commun Biol 2022; 5:353. [PMID: 35418663 PMCID: PMC9008013 DOI: 10.1038/s42003-022-03298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Drung cattle (Bos frontalis) have 58 chromosomes, differing from the Bos taurus 2n = 60 karyotype. To date, its origin and evolution history have not been proven conclusively, and the mechanisms of chromosome fusion and environmental adaptation have not been clearly elucidated. Here, we assembled a high integrity and good contiguity genome of Drung cattle with 13.7-fold contig N50 and 4.1-fold scaffold N50 improvements over the recently published Indian mithun assembly, respectively. Speciation time estimation and phylogenetic analysis showed that Drung cattle diverged from Bos taurus into an independent evolutionary clade. Sequence evidence of centromere regions provides clues to the breakpoints in BTA2 and BTA28 centromere satellites. We furthermore integrated a circulation and contraction-related biological process involving 43 evolutionary genes that participated in pathways associated with the evolution of the cardiovascular system. These findings may have important implications for understanding the molecular mechanisms of chromosome fusion, alpine valleys adaptability and cardiovascular function.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Tianliu Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Ming Xian
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Rui Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Weifei Yang
- 1 Gene Co., Ltd, 310051, Hangzhou, P.R. China
- Annoroad Gene Technology (Beijing) Co., Ltd, 100176, Beijing, P.R. China
| | - Baqi Su
- Drung Cattle Conservation Farm in Jiudang Wood, Drung and Nu Minority Autonomous County, Gongshan, 673500, Kunming, Yunnan, P.R. China
| | - Guoqiang Yang
- Livestock and Poultry Breed Improvement Center, Nujiang Lisu Minority Autonomous Prefecture, 673199, Kunming, Yunnan, P.R. China
| | - Limin Sun
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Wenkun Xu
- Yunnan Animal Husbandry Service, 650224, Kunming, Yunnan, P.R. China
| | - Shangzhong Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 100193, Beijing, P.R. China.
| |
Collapse
|
27
|
Breman FC, Chen G, Snijder RC, Schranz ME, Bakker FT. Repeatome-Based Phylogenetics in Pelargonium Section Ciconium (Sweet) Harvey. Genome Biol Evol 2021; 13:6454096. [PMID: 34893846 PMCID: PMC8684485 DOI: 10.1093/gbe/evab269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a “Core Ciconium” group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.
Collapse
Affiliation(s)
- Floris C Breman
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Guangnan Chen
- Biosystematics Group, Wageningen University & Research, Netherlands
| | | | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Netherlands
| | - Freek T Bakker
- Biosystematics Group, Wageningen University & Research, Netherlands
| |
Collapse
|
28
|
Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proc Natl Acad Sci U S A 2021; 118:2102842118. [PMID: 34789574 PMCID: PMC8617514 DOI: 10.1073/pnas.2102842118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) plays a role in human diseases such as cancer, but little is known about the impact of eccDNA in healthy human biology. Since eccDNA is a tiny fraction of nuclear DNA, artificial amplification has been employed to increase eccDNA amounts, resulting in the loss of native compositions. We developed an approach to enrich eccDNA populations at the native state (naïve small circular DNA, nscDNA) and investigated their origins in the human genome. We found that, in human sperm, the vast majority of nscDNA came from high-copy genomic regions, including the most variable regions between individuals. Because eccDNA can be incorporated back into chromosomes, eccDNA may promote human genetic variation. Extrachromosomal circular DNA (eccDNA) originates from linear chromosomal DNA in various human tissues under physiological and disease conditions. The genomic origins of eccDNA have largely been investigated using in vitro–amplified DNA. However, in vitro amplification obscures quantitative information by skewing the total population stoichiometry. In addition, the analyses have focused on eccDNA stemming from single-copy genomic regions, leaving eccDNA from multicopy regions unexamined. To address these issues, we isolated eccDNA without in vitro amplification (naïve small circular DNA, nscDNA) and assessed the populations quantitatively by integrated genomic, molecular, and cytogenetic approaches. nscDNA of up to tens of kilobases were successfully enriched by our approach and were predominantly derived from multicopy genomic regions including segmental duplications (SDs). SDs, which account for 5% of the human genome and are hotspots for copy number variations, were significantly overrepresented in sperm nscDNA, with three times more sequencing reads derived from SDs than from the entire single-copy regions. SDs were also overrepresented in mouse sperm nscDNA, which we estimated to comprise 0.2% of nuclear DNA. Considering that eccDNA can be integrated into chromosomes, germline-derived nscDNA may be a mediator of genome diversity.
Collapse
|
29
|
Crepaldi C, Martí E, Gonçalves ÉM, Martí DA, Parise-Maltempi PP. Genomic Differences Between the Sexes in a Fish Species Seen Through Satellite DNAs. Front Genet 2021; 12:728670. [PMID: 34659353 PMCID: PMC8514694 DOI: 10.3389/fgene.2021.728670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/13/2021] [Indexed: 11/14/2022] Open
Abstract
Neotropical fishes have highly diversified karyotypic and genomic characteristics and present many diverse sex chromosome systems, with various degrees of sex chromosome differentiation. Knowledge on their sex-specific composition and evolution, however, is still limited. Satellite DNAs (satDNAs) are tandemly repeated sequences with pervasive genomic distribution and distinctive evolutionary pathways, and investigating satDNA content might shed light into how genome architecture is organized in fishes and in their sex chromosomes. The present study investigated the satellitome of Megaleporinus elongatus, a freshwater fish with a proposed Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosome system that encompasses a highly heterochromatic and differentiated W1 chromosome. The species satellitome comprises of 140 different satDNA families, including previously isolated sequences and new families found in this study. This diversity is remarkable considering the relatively low proportion that satDNAs generally account for the M. elongatus genome (around only 5%). Differences between the sexes in regards of satDNA content were also evidenced, as these sequences are 14% more abundant in the female genome. The occurrence of sex-biased signatures of satDNA evolution in the species is tightly linked to satellite enrichment associated with W1 in females. Although both sexes share practically all satDNAs, the overall massive amplification of only a few of them accompanied the W1 differentiation. We also investigated the expansion and diversification of the two most abundant satDNAs of M. elongatus, MelSat01-36 and MelSat02-26, both highly amplified sequences in W1 and, in MelSat02-26’s case, also harbored by Z2 and W2 chromosomes. We compared their occurrences in M. elongatus and the sister species M. macrocephalus (with a standard ZW sex chromosome system) and concluded that both satDNAs have led to the formation of highly amplified arrays in both species; however, they formed species-specific organization on female-restricted sex chromosomes. Our results show how satDNA composition is highly diversified in M. elongatus, in which their accumulation is significantly contributing to W1 differentiation and not satDNA diversity per se. Also, the evolutionary behavior of these repeats may be associated with genome plasticity and satDNA variability between the sexes and between closely related species, influencing how seemingly homeologous heteromorphic sex chromosomes undergo independent satDNA evolution.
Collapse
Affiliation(s)
- Carolina Crepaldi
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Emiliano Martí
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Évelin Mariani Gonçalves
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
| | - Dardo Andrea Martí
- Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (IBS), Universidad Nacional de Misiones (UNaM), CONICET, Posadas, Argentina
| | | |
Collapse
|
30
|
Tunjić-Cvitanić M, Pasantes JJ, García-Souto D, Cvitanić T, Plohl M, Šatović-Vukšić E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int J Mol Sci 2021; 22:ijms22136798. [PMID: 34202698 PMCID: PMC8268682 DOI: 10.3390/ijms22136798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.
Collapse
Affiliation(s)
- Monika Tunjić-Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, 36310 Vigo, Spain;
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tonči Cvitanić
- Rimac Automobili d.o.o., Ljubljanska ulica 7, 10431 Sveta Nedelja, Croatia;
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
- Correspondence:
| |
Collapse
|
31
|
The B Chromosomes of Prochilodus lineatus (Teleostei, Characiformes) Are Highly Enriched in Satellite DNAs. Cells 2021; 10:cells10061527. [PMID: 34204462 PMCID: PMC8235050 DOI: 10.3390/cells10061527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
B or supernumerary chromosomes are dispensable elements that are widely present in numerous eukaryotes. Due to their non-recombining nature, there is an evident tendency for repetitive DNA accumulation in these elements. Thus, satellite DNA plays an important role in the evolution and diversification of B chromosomes and can provide clues regarding their origin. The characiform Prochilodus lineatus was one of the first discovered fish species bearing B chromosomes, with all populations analyzed so far showing one to nine micro-B chromosomes and exhibiting at least three morphological variants (Ba, Bsm, and Bm). To date, a single satellite DNA is known to be located on the B chromosomes of this species, but no information regarding the differentiation of the proposed B-types is available. Here, we characterized the satellitome of P. lineatus and mapped 35 satellite DNAs against the chromosomes of P. lineatus, of which six were equally located on all B-types and this indicates a similar genomic content. In addition, we describe, for the first time, an entire population without B chromosomes.
Collapse
|
32
|
Montiel EE, Panzera F, Palomeque T, Lorite P, Pita S. Satellitome Analysis of Rhodnius prolixus, One of the Main Chagas Disease Vector Species. Int J Mol Sci 2021; 22:6052. [PMID: 34205189 PMCID: PMC8199985 DOI: 10.3390/ijms22116052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.
Collapse
Affiliation(s)
- Eugenia E. Montiel
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Francisco Panzera
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| | - Teresa Palomeque
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Pedro Lorite
- Department of Experimental Biology, Genetics, University of Jaén. Paraje las Lagunillas sn., 23071 Jaén, Spain; (E.E.M.); (T.P.)
| | - Sebastián Pita
- Evolutionary Genetic Section, Faculty of Science, University of the Republic, Iguá 4225, Montevideo 11400, Uruguay;
| |
Collapse
|
33
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Genomic Tackling of Human Satellite DNA: Breaking Barriers through Time. Int J Mol Sci 2021; 22:4707. [PMID: 33946766 PMCID: PMC8125562 DOI: 10.3390/ijms22094707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.
Collapse
Affiliation(s)
- Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
34
|
Cytogenetic Analysis, Heterochromatin Characterization and Location of the rDNA Genes of Hycleus scutellatus (Coleoptera, Meloidae); A Species with an Unexpected High Number of rDNA Clusters. INSECTS 2021; 12:insects12050385. [PMID: 33925926 PMCID: PMC8146434 DOI: 10.3390/insects12050385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
Simple Summary The family Meloidae contains approximately 3000 species, commonly known as blister beetles for their ability to secrete a substance called cantharidin, which causes irritation and blistering in contact with animal or human skin. In recent years there have been numerous studies focused on the anticancer action of cantharidin and its derivatives. Despite the recent interest in blister beetles, cytogenetic and molecular studies in this group are scarce and most of them use only classical chromosome staining techniques. The main aim of our study was to provide new information in Meloidae. In this study, cytogenetic and molecular analyses were applied for the first time in the family Meloidae. We applied fluorescence staining with DAPI and the position of ribosomal DNA in Hycleus scutellatus was mapped by FISH. Hycleus is one of the most species-rich genera of Meloidae but no cytogenetic data have yet been published for this particular genus. Additionally, we isolated a satellite DNA family located within the pericentromeric regions of all chromosomes. The results obtained in this study may be a suitable starting point to initiate more extensive cytogenetic analyses in this important species-rich genus, and in the family Meloidae in general. Abstract Meloidae are commonly known as blister beetles, so called for the secretion of cantharidin, a toxic substance that causes irritation and blistering. There has been a recent increase in the interest of the cantharidin anticancer potential of this insect group. Cytogenetic and molecular data in this group are scarce. In this study, we performed a karyotype analysis of Hycleus scutellatus, an endemic species of the Iberian Peninsula. We determined its chromosome number, 2n = 20, as well as the presence of the X and Y sex chromosomes. In addition to a karyotype analysis, we carried out DAPI staining. By fluorescence in situ hybridization we mapped the rDNA clusters on 12 different chromosomes. Compared to others, this species shows an unusually high number of chromosomes carrying rDNA. This is one of the highest numbers of rDNA sites found in the Polyphaga suborder (Coleoptera). Additionally, we isolated a satellite DNA family (Hyscu-H), which was located within the pericentromeric regions of all chromosomes, including the sex chromosomes. The results suggest that Hyscu-H is likely to be one of the most abundant satellite DNA repeats in H. scutellatus.
Collapse
|
35
|
dos Santos RZ, Calegari RM, Silva DMZDA, Ruiz-Ruano FJ, Melo S, Oliveira C, Foresti F, Uliano-Silva M, Porto-Foresti F, Utsunomia R. A Long-Term Conserved Satellite DNA That Remains Unexpanded in Several Genomes of Characiformes Fish Is Actively Transcribed. Genome Biol Evol 2021; 13:evab002. [PMID: 33502491 PMCID: PMC8210747 DOI: 10.1093/gbe/evab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic genomes contain large amounts of repetitive DNA sequences, such as tandemly repeated satellite DNAs (satDNAs). These sequences are highly dynamic and tend to be genus- or species-specific due to their particular evolutionary pathways, although there are few unusual cases of conserved satDNAs over long periods of time. Here, we used multiple approaches to reveal that an satDNA named CharSat01-52 originated in the last common ancestor of Characoidei fish, a superfamily within the Characiformes order, ∼140-78 Ma, whereas its nucleotide composition has remained considerably conserved in several taxa. We show that 14 distantly related species within Characoidei share the presence of this satDNA, which is highly amplified and clustered in subtelomeric regions in a single species (Characidium gomesi), while remained organized as small clusters in all the other species. Defying predictions of the molecular drive of satellite evolution, CharSat01-52 shows similar values of intra- and interspecific divergence. Although we did not provide evidence for a specific functional role of CharSat01-52, its transcriptional activity was demonstrated in different species. In addition, we identified short tandem arrays of CharSat01-52 embedded within single-molecule real-time long reads of Astyanax paranae (536 bp-3.1 kb) and A. mexicanus (501 bp-3.9 kb). Such arrays consisted of head-to-tail repeats and could be found interspersed with other sequences, inverted sequences, or neighbored by other satellites. Our results provide a detailed characterization of an old and conserved satDNA, challenging general predictions of satDNA evolution.
Collapse
Affiliation(s)
- Rodrigo Zeni dos Santos
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | - Rodrigo Milan Calegari
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | | | - Francisco J Ruiz-Ruano
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology
Centre, Uppsala University, Uppsala, Sweden
| | - Silvana Melo
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | - Claudio Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | - Fausto Foresti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de
Botucatu, Universidade Estadual Paulista, UNESP, Botucatu, Sao Paulo,
Brazil
| | | | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
| | - Ricardo Utsunomia
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade
Estadual Paulista, UNESP, Campus de Bauru, Bauru, Sao Paulo, Brazil
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS,
Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janerio,
Brazil
| |
Collapse
|
36
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
37
|
Waminal NE, Pellerin RJ, Kang SH, Kim HH. Chromosomal Mapping of Tandem Repeats Revealed Massive Chromosomal Rearrangements and Insights Into Senna tora Dysploidy. FRONTIERS IN PLANT SCIENCE 2021; 12:629898. [PMID: 33643358 PMCID: PMC7902697 DOI: 10.3389/fpls.2021.629898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7-5,833 bp and 325-2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Remnyl Joyce Pellerin
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hyun Hee Kim
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
- *Correspondence: Hyun Hee Kim
| |
Collapse
|
38
|
Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Cells 2020; 9:E2714. [PMID: 33352976 PMCID: PMC7767330 DOI: 10.3390/cells9122714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
A substantial portion of the primate genome is composed of non-coding regions, so-called "dark matter", which includes an abundance of tandemly repeated sequences called satellite DNA. Collectively known as the satellitome, this genomic component offers exciting evolutionary insights into aspects of primate genome biology that raise new questions and challenge existing paradigms. A complete human reference genome was recently reported with telomere-to-telomere human X chromosome assembly that resolved hundreds of dark regions, encompassing a 3.1 Mb centromeric satellite array that had not been identified previously. With the recent exponential increase in the availability of primate genomes, and the development of modern genomic and bioinformatics tools, extensive growth in our knowledge concerning the structure, function, and evolution of satellite elements is expected. The current state of knowledge on this topic is summarized, highlighting various types of primate-specific satellite repeats to compare their proportions across diverse lineages. Inter- and intraspecific variation of satellite repeats in the primate genome are reviewed. The functional significance of these sequences is discussed by describing how the transcriptional activity of satellite repeats can affect gene expression during different cellular processes. Sex-linked satellites are outlined, together with their respective genomic organization. Mechanisms are proposed whereby satellite repeats might have emerged as novel sequences during different evolutionary phases. Finally, the main challenges that hinder the detection of satellite DNA are outlined and an overview of the latest methodologies to address technological limitations is presented.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo 18618-689, Brazil
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand;
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
39
|
Machado CRD, Domit C, Pucci MB, Gazolla CB, Glugoski L, Nogaroto V, Vicari MR. Heterochromatin and microsatellites detection in karyotypes of four sea turtle species: Interspecific chromosomal differences. Genet Mol Biol 2020; 43:e20200213. [PMID: 33270075 PMCID: PMC7734918 DOI: 10.1590/1678-4685-gmb-2020-0213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
The wide variation in size and content of eukaryotic genomes is mainly attributed to the accumulation of repetitive DNA sequences, like microsatellites, which are tandemly repeated DNA sequences. Sea turtles share a diploid number (2n) of 56, however recent molecular cytogenetic data have shown that karyotype conservatism is not a rule in the group. In this study, the heterochromatin distribution and the chromosomal location of microsatellites (CA)n, (GA)n, (CAG)n, (GATA)n, (GAA)n, (CGC)n and (GACA)n in Chelonia mydas, Caretta caretta, Eretmochelys imbricata and Lepidochelys olivacea were comparatively investigated. The obtained data showed that just the (CA)n, (GA)n, (CAG)n and (GATA)n microsatellites were located on sea turtle chromosomes, preferentially in heterochromatic regions of the microchromosomes (mc). Variations in the location of heterochromatin and microsatellites sites, especially in some pericentromeric regions of macrochromosomes, corroborate to proposal of centromere repositioning occurrence in Cheloniidae species. Furthermore, the results obtained with the location of microsatellites corroborate with the temperature sex determination mechanism proposal and the absence of heteromorphic sex chromosomes in sea turtles. The findings are useful for understanding part of the karyotypic diversification observed in sea turtles, especially those that explain the diversification of Carettini from Chelonini species.
Collapse
Affiliation(s)
- Caroline Regina Dias Machado
- Universidade Federal do Paraná, Centro Politécnico, Departamento de
Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR,
Brazil
| | - Camila Domit
- Universidade Federal do Paraná, Laboratório de Ecologia e
Conservação, Pontal do Paraná, PR, Brazil
| | | | - Camilla Borges Gazolla
- Universidade Federal do Paraná, Centro Politécnico, Departamento de
Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR,
Brazil
| | - Larissa Glugoski
- Universidade Federal de São Carlos, Programa de Pós-Graduação em
Genética Evolutiva e Biologia Molecular, São Carlos, SP, Brazil
| | - Viviane Nogaroto
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| | - Marcelo Ricardo Vicari
- Universidade Federal do Paraná, Centro Politécnico, Departamento de
Genética, Programa de Pós-Graduação em Genética, Curitiba, Ponta Grossa, PR,
Brazil
- Universidade Estadual de Ponta Grossa, Departamento de Biologia
Estrutural, Molecular e Genética, Ponta Grossa, PR, Brazil
| |
Collapse
|
40
|
HSATII RNA is induced via a noncanonical ATM-regulated DNA damage response pathway and promotes tumor cell proliferation and movement. Proc Natl Acad Sci U S A 2020; 117:31891-31901. [PMID: 33257565 DOI: 10.1073/pnas.2017734117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pericentromeric human satellite II (HSATII) repeats are normally silent but can be actively transcribed in tumor cells, where increased HSATII copy number is associated with a poor prognosis in colon cancer, and in human cytomegalovirus (HCMV)-infected fibroblasts, where the RNA facilitates viral replication. Here, we report that HCMV infection or treatment of ARPE-19 diploid epithelial cells with DNA-damaging agents, etoposide or zeocin, induces HSATII RNA expression, and a kinase-independent function of ATM is required for the induction. Additionally, various breast cancer cell lines growing in adherent, two-dimensional cell culture express HSATII RNA at different levels, and levels are markedly increased when cells are infected with HCMV or treated with zeocin. High levels of HSATII RNA expression correlate with enhanced migration of breast cancer cells, and knockdown of HSATII RNA reduces cell migration and the rate of cell proliferation. Our investigation links high expression of HSATII RNA to the DNA damage response, centered on a noncanonical function of ATM, and demonstrates a role for the satellite RNA in tumor cell proliferation and movement.
Collapse
|
41
|
Farré M, Ruiz-Herrera A. The Plasticity of Genome Architecture. Genes (Basel) 2020; 11:E1413. [PMID: 33260806 PMCID: PMC7760494 DOI: 10.3390/genes11121413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022] Open
Abstract
Understanding the origin of species and their adaptability to new environments is one of the main questions in biology [...].
Collapse
Affiliation(s)
- Marta Farré
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
42
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
43
|
Zattera ML, Gazolla CB, Soares ADA, Gazoni T, Pollet N, Recco-Pimentel SM, Bruschi DP. Evolutionary Dynamics of the Repetitive DNA in the Karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae). Front Genet 2020; 11:637. [PMID: 32793276 PMCID: PMC7385237 DOI: 10.3389/fgene.2020.00637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 01/01/2023] Open
Abstract
The large amphibian genomes contain numerous repetitive DNA components that have played an important role in the karyotypic diversification of this vertebrate group. Hypotheses based on the presumable primitive karyotype (2n = 20) of the anurans of the family Pipidae suggest that they have evolved principally through intrachromosomal rearrangements. Pipa is the only South American pipid, while all the other genera are found in Africa. The divergence of the South American lineages from the African ones occurred at least 136 million years ago and is thought to have had a strong biogeographic component. Here, we tested the potential of the repetitive DNA to enable a better understanding of the differentiation of the karyotype among the family Pipidae and to expand our capacity to interpret the chromosomal evolution in this frog family. Our results indicate a long history of conservation in the chromosome bearing the H3 histone locus, corroborating inferences on the chromosomal homologies between the species in pairs 6, 8, and 9. The chromosomal distribution of the microsatellite motifs also provides useful markers for comparative genomics at the chromosome level between Pipa carvalhoi and Xenopus tropicalis, contributing new insights into the evolution of the karyotypes of these species. We detected similar patterns in the distribution and abundance of the microsatellite arrangements, which reflect the shared organization in the terminal/subterminal region of the chromosomes between these two species. By contrast, the microsatellite probes detected a differential arrangement of the repetitive DNA among the chromosomes of the two species, allowing longitudinal differentiation of pairs that are identical in size and morphology, such as pairs 1, 2, 4, and 5. We also found evidence of the distinctive composition of the repetitive motifs of the centromeric region between the species analyzed in the present study, with a clear enrichment of the (CA) and (GA) microsatellite motifs in P. carvalhoi. Finally, microsatellite enrichment in the pericentromeric region of chromosome pairs 6, 8, and 9 in the P. carvalhoi karyotype, together with interstitial telomeric sequences (ITS), validate the hypothesis that pericentromeric inversions occurred during the chromosomal evolution of P. carvalhoi and reinforce the role of the repetitive DNA in the remodeling of the karyotype architecture of the Pipidae.
Collapse
Affiliation(s)
- Michelle Louise Zattera
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Camilla Borges Gazolla
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Amanda de Araújo Soares
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Thiago Gazoni
- Universidade Estadual Paulista (Unesp), Campus Rio Claro, Rio Claro, Brazil
| | - Nicolas Pollet
- Laboratoire Evolution Genomes Comportement Ecologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Daniel Pacheco Bruschi
- Programa de Pós-Graduação em Genética (PPG-GEN), Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
44
|
Satellitome Analysis in the Ladybird Beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes (Basel) 2020; 11:genes11070783. [PMID: 32668664 PMCID: PMC7397073 DOI: 10.3390/genes11070783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022] Open
Abstract
Hippodamia variegata is one of the most commercialized ladybirds used for the biological control of aphid pest species in many economically important crops. This species is the first Coccinellidae whose satellitome has been studied by applying new sequencing technologies and bioinformatics tools. We found that 47% of the H. variegata genome is composed of repeated sequences. We identified 30 satellite DNA (satDNA) families with a median intragenomic divergence of 5.75% and A+T content between 45.6% and 74.7%. This species shows satDNA families with highly variable sizes although the most common size is 100–200 bp. However, we highlight the existence of a satDNA family with a repeat unit of 2 kb, the largest repeat unit described in Coleoptera. PCR amplifications for fluorescence in situ hybridization (FISH) probe generation were performed for the four most abundant satDNA families. FISH with the most abundant satDNA family as a probe shows its pericentromeric location on all chromosomes. This location is coincident with the heterochromatin revealed by C-banding and DAPI staining, also analyzed in this work. Hybridization signals for other satDNA families were located only on certain bivalents and the X chromosome. These satDNAs could be very useful as chromosomal markers due to their reduced location.
Collapse
|
45
|
Wachs AS, Bohne J. Two sides of the same medal: Noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1616. [PMID: 32633083 DOI: 10.1002/wrna.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Noncoding sequences constitute the major part of the human genome and also of pre-mRNAs. Single nucleotide variants in these regions are often overlooked, but may be responsible for much of the variation of phenotypes observed. Mutations in the noncoding part of pre-mRNAs often reveal new and meaningful insights into the regulation of cellular gene expression. Thus, the mechanistic analysis of the pathological mechanism of such mutations will both foster a deeper understanding of the disease and the underlying cellular pathways. Even synonymous mutations can cause diseases, since the primary mRNA sequence not only encodes amino acids, but also encrypts information on RNA-binding proteins and secondary structure. In fact, the RNA sequence directs assembly of a specific mRNP complex, which in turn dictates the fate of the mRNA or regulates its biogenesis. The accumulation of genomic sequence information is increasing at a rapid pace. However, much of the diversity uncovered may not explain the phenotype of a certain syndrome or disease. For this reason, we also emphasize the value of mechanistic studies on pathological mechanisms being complementary to genome-wide studies and bioinformatic approaches. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Amelie S Wachs
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
46
|
Panabières F, Rancurel C, da Rocha M, Kuhn ML. Characterization of Two Satellite DNA Families in the Genome of the Oomycete Plant Pathogen Phytophthora parasitica. Front Genet 2020; 11:557. [PMID: 32582290 PMCID: PMC7290008 DOI: 10.3389/fgene.2020.00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Satellite DNA is a class of repetitive sequences that are organized in long arrays of tandemly repeated units in most eukaryotes. Long considered as selfish DNA, satellite sequences are now proposed to contribute to genome integrity. Despite their potential impact on the architecture and evolution of the genome, satellite DNAs have not been investigated in oomycetes due to the paucity of genomic data and the difficulty of assembling highly conserved satellite arrays. Yet gaining knowledge on the structure and evolution of genomes of oomycete pathogens is crucial to understanding the mechanisms underlying adaptation to their environment and to proposing efficient disease control strategies. A de novo assembly of the genome of Phytophthora parasitica, an important oomycete plant pathogen, led to the identification of several families of tandemly repeated sequences varying in size, copy number, and sequence conservation. Among them, two abundant families, designated as PpSat1 and PpSat2, displayed typical features of satellite DNA and were collectively designated as PpSat. These two satellite families differ by their length, sequence, organization, genomic environment, and evolutionary dynamics. PpSat1, but not PpSat2, presented homologs among oomycetes. This observation, as well as the characterization of transcripts of PpSat families, suggested that these satellite DNA families likely play a conserved role within this important group of pathogens.
Collapse
|
47
|
Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches ( Cobitis) and Their Clonal Hybrids. Genes (Basel) 2020; 11:genes11060617. [PMID: 32512717 PMCID: PMC7348982 DOI: 10.3390/genes11060617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 01/11/2023] Open
Abstract
Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.
Collapse
Affiliation(s)
- Anatolie Marta
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
- Institute of Zoology, Academy of Science of Moldova, MD-2028, Academiei 1, 2001 Chisinau, Moldova
- Correspondence:
| | - Dmitry Dedukh
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Oldřich Bartoš
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Liběchov, Czech Republic; (D.D.); (O.B.); (Z.M.); (K.J.)
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
48
|
Redaelli S, Conconi D, Villa N, Sala E, Crosti F, Corti C, Catusi I, Garzo M, Romitti L, Martinoli E, Patrizi A, Malgara R, Recalcati MP, Dalprà L, Lavitrano M, Riva P, Roversi G, Bentivegna A. Instability of Short Arm of Acrocentric Chromosomes: Lesson from Non-Acrocentric Satellited Chromosomes. Report of 24 Unrelated Cases. Int J Mol Sci 2020; 21:ijms21103431. [PMID: 32413994 PMCID: PMC7279238 DOI: 10.3390/ijms21103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/13/2023] Open
Abstract
Satellited non-acrocentric autosomal chromosomes (ps–qs-chromosomes) are the result of an interchange between sub- or telomeric regions of autosomes and the p arm of acrocentrics. The sequence homology at the rearrangement breakpoints appears to be, among others, the most frequent mechanism generating these variant chromosomes. The unbalanced carriers of this type of translocation may or may not display phenotypic abnormalities. With the aim to understand the causative mechanism, we revised all the ps–qs-chromosomes identified in five medical genetics laboratories, which used the same procedures for karyotype analysis, reporting 24 unrelated cases involving eight chromosomes. In conclusion, we observed three different scenarios: true translocation, benign variant and complex rearrangement. The detection of translocation partners is essential to evaluate possible euchromatic unbalances and to infer their effect on phenotype. Moreover, we emphasize the importance to perform both, molecular and conventional cytogenetics methods, to better understand the behavior of our genome.
Collapse
Affiliation(s)
- Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
| | - Nicoletta Villa
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (N.V.); (E.S.); (F.C.)
| | - Elena Sala
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (N.V.); (E.S.); (F.C.)
| | - Francesca Crosti
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (N.V.); (E.S.); (F.C.)
| | - Cecilia Corti
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (C.C.); (I.C.); (M.G.); (M.P.R.)
| | - Ilaria Catusi
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (C.C.); (I.C.); (M.G.); (M.P.R.)
| | - Maria Garzo
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (C.C.); (I.C.); (M.G.); (M.P.R.)
| | - Lorenza Romitti
- Pathology and Cytogenetics Laboratory, Clinical Pathology Department, Niguarda Ca’ Granda Hospital, 20162 Milan, Italy;
| | - Emanuela Martinoli
- Medical Genetics Laboratory, Medical Biotechnology and Translational Medicine Department, University of Milan, 20090 Milan, Italy; (E.M.); (P.R.)
| | - Antonella Patrizi
- Medical Cytogenetics Laboratory, Clinical Pathology Department, San Paolo Hospital, 20142 Milan, Italy; (A.P.); (R.M.)
| | - Roberta Malgara
- Medical Cytogenetics Laboratory, Clinical Pathology Department, San Paolo Hospital, 20142 Milan, Italy; (A.P.); (R.M.)
| | - Maria Paola Recalcati
- Medical Cytogenetics Laboratory, Istituto Auxologico Italiano IRCCS, 20095 Cusano Milanino, Italy; (C.C.); (I.C.); (M.G.); (M.P.R.)
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
- Medical Genetics Laboratory, Clinical Pathology Department, S. Gerardo Hospital, 20900 Monza, Italy; (N.V.); (E.S.); (F.C.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
| | - Paola Riva
- Medical Genetics Laboratory, Medical Biotechnology and Translational Medicine Department, University of Milan, 20090 Milan, Italy; (E.M.); (P.R.)
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (D.C.); (L.D.); (M.L.); (G.R.)
- Correspondence: ; Tel.: +39-0264488133
| |
Collapse
|