1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Wang Y, Xu X, Zhang A, Yang S, Li H. Role of alternative splicing in fish immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109601. [PMID: 38701992 DOI: 10.1016/j.fsi.2024.109601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Alternative splicing serves as a pivotal source of complexity in the transcriptome and proteome, selectively connecting various coding elements to generate a diverse array of mRNAs. This process encodes multiple proteins with either similar or distinct functions, contributing significantly to the intricacies of cellular processes. The role of alternative splicing in mammalian immunity has been well studied. Remarkably, the immune system of fish shares substantial similarities with that of humans, and alternative splicing also emerges as a key player in the immune processes of fish. In this review, we offer an overview of alternative splicing and its associated functions in the immune processes of fish, and summarize the research progress on alternative splicing in the fish immunity. Furthermore, we review the impact of alternative splicing on the fish immune system's response to external stimuli. Finally, we present our perspectives on future directions in this field. Our aim is to provide valuable insights for the future investigations into the role of alternative splicing in immunity.
Collapse
Affiliation(s)
- Yunchao Wang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xinyi Xu
- Hunan Fisheries Science Institute, Changsha, 410153, China
| | - Ailong Zhang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shuaiqi Yang
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Hongyan Li
- College of Marine Life Sciences, and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266003, China.
| |
Collapse
|
3
|
Flores-Concha M, Gómez LA, Soto-Shara R, Molina RE, Coloma-Rivero RF, Montero DA, Ferrari Í, Oñate Á. Brucella abortus triggers the differential expression of immunomodulatory lncRNAs in infected murine macrophages. Front Immunol 2024; 15:1352306. [PMID: 38464511 PMCID: PMC10921354 DOI: 10.3389/fimmu.2024.1352306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction The lncRNAs (long non-coding RNAs) are the most diverse group of non-coding RNAs and are involved in most biological processes including the immune response. While some of them have been recognized for their influence on the regulation of inflammatory activity, little is known in the context of infection by Brucella abortus, a pathogen that presents significant challenges due to its ability to manipulate and evade the host immune system. This study focuses on characterize the expression profile of LincRNA-cox2, Lethe, lincRNA-EPS, Malat1 and Gas5 during infection of macrophages by B. abortus. Methods Using public raw RNA-seq datasets we constructed for a lncRNA expression profile in macrophages Brucella-infected. In addition, from public RNA-seq raw datasets of RAW264.7 cells infected with B. abortus we constructed a transcriptomic profile of lncRNAs in order to know the expression of the five immunomodulating lncRNAs studied here at 8 and 24 h post-infection. Finally, we performed in vitro infection assays in RAW264.7 cells and peritoneal macrophages to detect by qPCR changes in the expression of these lncRNAs at first 12 hours post infection, a key stage in the infection cycle where Brucella modulates the immune response to survive. Results Our results demonstrate that infection of macrophages with Brucella abortus, induces significant changes in the expression of LincRNA-Cox2, Lethe, LincRNA-EPS, Gas5, and Malat1. Discussion The change in the expression profile of these immunomodulatory lncRNAs in response to infection, suggest a potential involvement in the immune evasion strategy employed by Brucella to facilitate its intracellular survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ángel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
4
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Mardafkan N, Karamali N, Razavi ZS, Mardi A. Molecular mechanism of lncRNAs in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci 2024; 336:122322. [PMID: 38042283 DOI: 10.1016/j.lfs.2023.122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Autoimmune diseases are a diverse set of conditions defined by organ damage due to abnormal innate and acquired immune system responses. The pathophysiology of autoimmune disorders is exceedingly intricate and has yet to be fully understood. The study of long non-coding RNAs (lncRNAs), non-protein-coding RNAs with at least 200 nucleotides in length, has gained significant attention due to the completion of the human genome project and the advancement of high-throughput genomic approaches. Recent research has demonstrated how lncRNA alters disease development to different degrees. Although lncRNA research has made significant progress in cancer and generative disorders, autoimmune illnesses are a relatively new research area. Moreover, lncRNAs play crucial functions in differentiating various immune cells, and their potential relationships with autoimmune diseases have received growing attention. Because of the importance of Th17/Treg axis in auto-immune disease development, in this review, we discuss various molecular mechanisms by which lncRNAs regulate the differentiation of Th17/Treg cells. Also, we reviewed recent findings regarding the several approaches in the application of lncRNAs in the diagnosis and treatment of human autoimmune diseases, as well as current challenges in lncRNA-based therapeutic approaches to auto-immune diseases.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, Izmir, Turkey
| | - Nasibeh Mardafkan
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
5
|
Bravo S, Moya J, Leiva F, Guzman O, Vidal R. Transcriptome analyses reveal key roles of alternative splicing regulation in atlantic salmon during the infectious process of Piscirickettsiosis disease. Heliyon 2023; 9:e22377. [PMID: 38058636 PMCID: PMC10696053 DOI: 10.1016/j.heliyon.2023.e22377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
In the Chilean salmon farming industry, infection by Piscirickettsia salmonis is the primary cause of the main bacterial disease known as Piscirickettsiosis, which has an overwhelming economic impact. Although it has been demonstrated that Piscirickettsiosis modifies the expression of numerous salmonids genes, it is yet unknown how alternative splicing (AS) contributes to salmonids bacterial infection. AS, has the potential to create heterogeneity at the protein and RNA levels and has been associated as a relevant molecular mechanism in the immune response of eukaryotes to several diseases. In this study, we used RNA data to survey P. salmonis-induced modifications in the AS of Atlantic salmon and found that P. salmonis infection promoted a substantial number (158,668) of AS events. Differentially spliced genes (DSG) sensitive to Piscirickettsiosis were predominantly enriched in genes involved in RNA processing, splicing and spliceosome processes (e.g., hnRNPm, hnRPc, SRSF7, SRSF45), whereas among the DSG of resistant and susceptible to Piscirickettsiosis, several metabolic and immune processes were found, most notably associated to the regulation of GTPase, lysosome and telomere organization-maintenance. Furthermore, we found that DSG were mostly not differentially expressed (5-7 %) and were implicated in distinct biological pathways. Therefore, our results underpin AS achieving a significant regulatory performance in the response of salmonids to Piscirickettsiosis.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 of.26, Puerto Varas, Chile
| | - Francisco Leiva
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
6
|
Leal Y, Valenzuela-Muñoz V, Gallardo-Escárate C. Alternative splicing in Atlantic salmon head kidney and SHK-1 cell line during the Piscirickettsia salmonis infection: A comparative transcriptome survey. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109127. [PMID: 37813155 DOI: 10.1016/j.fsi.2023.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.
Collapse
Affiliation(s)
- Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción, 4030000, Chile.
| |
Collapse
|
7
|
Wei W, Wang G, Zhang H, Bao X, An S, Luo Q, He J, Chen L, Ning C, Lai J, Yuan Z, Chen R, Jiang J, Ye L, Liang H. Talaromyces marneffei suppresses macrophage inflammation by regulating host alternative splicing. Commun Biol 2023; 6:1046. [PMID: 37845378 PMCID: PMC10579421 DOI: 10.1038/s42003-023-05409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
Talaromyces marneffei (T. marneffei) immune escape is essential in the pathogenesis of talaromycosis. It is currently known that T. marneffei achieves immune escape through various strategies. However, the role of cellular alternative splicing (AS) in immune escape remains unclear. Here, we depict the AS landscape in macrophages upon T. marneffei infection via high-throughput RNA sequencing and detect a truncated protein of NCOR2 / SMRT, named NCOR2-013, which is significantly upregulated after T. marneffei infection. Mechanistic analysis indicates that NCOR2-013 forms a co-repression complex with TBL1XR1 / TBLR1 and HDAC3, thereby inhibiting JunB-mediated transcriptional activation of pro-inflammatory cytokines via the inhibition of histone acetylation. Furthermore, we identify TUT1 as the AS regulator that regulates NCOR2-013 production and promotes T. marneffei immune evasion. Collectively, these findings indicate that T. marneffei escapes macrophage killing through TUT1-mediated alternative splicing of NCOR2 / SMRT, providing insight into the molecular mechanisms of T. marneffei immune evasion and potential targets for talaromycosis therapy.
Collapse
Affiliation(s)
- Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong Zhang
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Bao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Sanqi An
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiang Luo
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jinhao He
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lixiang Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chuanyi Ning
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Nursing College, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingzhen Lai
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Biobank, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
8
|
Ner-Gaon H, Peleg R, Gazit R, Reiner-Benaim A, Shay T. Mapping the splicing landscape of the human immune system. Front Immunol 2023; 14:1116392. [PMID: 37711610 PMCID: PMC10499523 DOI: 10.3389/fimmu.2023.1116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Most human genes code for more than one transcript. Different ratios of transcripts of the same gene can be found in different cell types or states, indicating differential use of transcription start sites or differential splicing. Such differential transcript use (DTUs) events provide an additional layer of regulation and protein diversity. With the exceptions of PTPRC and CIITA, there are very few reported cases of DTU events in the immune system. To rigorously map DTUs between different human immune cell types, we leveraged four publicly available RNA sequencing datasets. We identified 282 DTU events between five human healthy immune cell types that appear in at least two datasets. The patterns of the DTU events were mostly cell-type-specific or lineage-specific, in the context of the five cell types tested. DTUs correlated with the expression pattern of potential regulators, namely, splicing factors and transcription factors. Of the several immune related conditions studied, only sepsis affected the splicing of more than a few genes and only in innate immune cells. Taken together, we map the DTUs landscape in human peripheral blood immune cell types, and present hundreds of genes whose transcript use changes between cell types or upon activation.
Collapse
Affiliation(s)
- Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronnie Peleg
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roi Gazit
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Reiner-Benaim
- Department of Epidemiology, Biostatistics and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
9
|
Maebele LT, Mulaudzi TV, Yasasve M, Dlamini Z, Damane BP. Immunomodulatory Gene-Splicing Dysregulation in Tumorigenesis: Unmasking the Complexity. Molecules 2023; 28:5984. [PMID: 37630236 PMCID: PMC10458946 DOI: 10.3390/molecules28165984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is a global health concern with rising incidence, morbidity, and mortality. The interaction between the tumor and immune cells within the tumor microenvironment is facilitated by signaling pathways driven by immunomodulatory proteins. Alternative splicing regulates the production of multiple immunomodulatory proteins with diverse functionality from a single mRNA transcript. Splicing factors are pivotal in modulating alternative splicing processes but are also subject to regulation. The dysregulation of alternative splicing may result from splicing factor (SF) abnormal expression levels and mutations in the cis and trans-acting elements and small nuclear RNA (snRNA) molecules. Aberrant splicing may generate abnormal mRNA transcripts encoding isoforms with altered functions that contribute to tumorigenesis or cancer progression. This review uncovers the complexity of immunomodulatory genes splicing dysregulation in oncogenesis. Identifying specific immunomodulatory splicing isoforms that contribute to cancer could be utilized to improve current immunotherapeutic drugs or develop novel therapeutic interventions for cancer.
Collapse
Affiliation(s)
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Madhavan Yasasve
- Department of Oral Medicine and Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
10
|
Bravo S, Leiva F, Moya J, Guzman O, Vidal R. Unveiling the Role of Dynamic Alternative Splicing Modulation After Infestation with Sea Lice (Caligus rogercresseyi) in Atlantic Salmon. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:223-234. [PMID: 36629943 DOI: 10.1007/s10126-023-10196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/04/2023] [Indexed: 05/06/2023]
Abstract
Sea lice are pathogenic marine ectoparasite copepods that represent a severe risk to the worldwide salmon industry. Several transcriptomic investigations have characterized the regulation of gene expression response of Atlantic salmon to sea lice infestation. These studies have focused on the levels of transcript, overlooking the potentially relevant role of alternative splicing (AS), which corresponds to an essential control mechanism of gene expression through RNA processing. In the present study, we performed a genome-wide bioinformatics characterization of differential AS event dynamics in control and infested C. rogercresseyi Atlantic salmon and in resistant and susceptible phenotypes. We identified a significant rise of alternative splicing events and AS genes after infestation and 176 differential alternative splicing events (DASE) from 133 genes. In addition, a higher number of DASE and AS genes were observed among resistant and susceptible phenotypes. Functional annotation of AS genes shows several terms and pathways associated with behavior, RNA splicing, immune response, and RNA binding. Furthermore, three protein-coding genes were identified undergoing differential transcript usage events, among resistant and susceptible phenotypes. Our findings support AS performing a relevant regulatory role in the response of salmonids to sea lice infestation.
Collapse
Affiliation(s)
- Scarleth Bravo
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Leiva
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Moya
- Benchmark Animal Health Chile, Santa Rosa 560 Of.26, Puerto Varas, Chile
| | - Osiel Guzman
- IDEVAC SpA, Francisco Bilbao 1129 Of. 306, Osorno, Chile
| | - Rodrigo Vidal
- Laboratory of Molecular Ecology, Genomics and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Wu HT, Yang GC, Shi Y, Fan CN, Li Y, Yuan MQ, Pei J, Wu Y. Spliceosomal GTPase Eftud2 regulates microglial activation and polarization. Neural Regen Res 2023; 18:856-862. [DOI: 10.4103/1673-5374.347739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Zhou L, Yang Y, Ma J, Liu M, Liu R, Ma X, Qiao C. Comprehensive analysis of alternative splicing signatures in pancreatic head cancer. IET Syst Biol 2022; 17:14-26. [PMID: 36479597 PMCID: PMC9931058 DOI: 10.1049/syb2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
The correlation between dysregulation of splicing and cancers has been increasingly recognised and confirmed. The identification of valuable alternative splicing (AS) in pancreatic head cancer (PHC) has a great significance. AS profiles in PHC were generated using the data from The Cancer Genome Atlas and TCGASpliceSeq. Then, the NMF clustering method was performed to identify overall survival-associated AS (OS-AS) subtypes in PHC patients. Subsequently, we used least absolute shrinkage and selection operator Cox regression analysis to construct an AS-related risk model. The splicing regulatory network was uncovered by Cytoscape 3.7. A total of 1694 OS-AS events were obtained. The PHC patients were divided into clusters 1 and 2. Cluster 1 had poorer prognosis and lower infiltration of immune cells. Subsequently, a prognostic signature was established that showed good performance in predicting OS and progression-free survival. The risk score of this signature was associated with the unique tumour immunity. Moreover, a nomogram incorporating the risk score and clinicopathological parameters was established. Finally, a splicing factor-AS regulatory network was developed. A comprehensive analysis of the AS events in PHC associated with prognosis and tumour immunity may help provide reliable information to guide individual treatment strategies.
Collapse
Affiliation(s)
- Lingshan Zhou
- Department of Geriatrics Ward 2the First Hospital of Lanzhou UniversityLanzhouChina
| | - Yuan Yang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina,Department of Gastroenterologythe First Hospital of Lanzhou UniversityLanzhouChina,Gansu Key Laboratory of GastroenterologyLanzhou UniversityLanzhouChina
| | - Jian Ma
- Department of General Surgerythe First Hospital of Lanzhou UniversityLanzhouChina
| | - Min Liu
- Department of Gastroenterologythe First Hospital of Lanzhou UniversityLanzhouChina,Gansu Key Laboratory of GastroenterologyLanzhou UniversityLanzhouChina
| | - Rong Liu
- Department of Geriatrics Ward 2the First Hospital of Lanzhou UniversityLanzhouChina
| | - Xiaopeng Ma
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina,Department of General Surgerythe First Hospital of Lanzhou UniversityLanzhouChina
| | - Chengdong Qiao
- Department of Geriatrics Ward 2the First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
13
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
14
|
Shesternya PA, Savchenko AA, Gritsenko OD, Vasileva AO, Kudryavtsev IV, Masterova AA, Isakov DV, Borisov AG. Features of Peripheral Blood Th-Cell Subset Composition and Serum Cytokine Level in Patients with Activity-Driven Ankylosing Spondylitis. Pharmaceuticals (Basel) 2022; 15:ph15111370. [PMID: 36355542 PMCID: PMC9695783 DOI: 10.3390/ph15111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Th cells may exhibit pathological activity depending on the regulatory and functional signals sensed under a wide range of immunopathological conditions, including ankylosing spondylitis (AS). The relationship between Th cells and cytokines is important for diagnoses and for determining treatment. Accordingly, the aim of this study was to investigate the relationship between Th-cell subset composition and serum cytokine profile for patients with activity-driven AS. In our study, patients were divided into two groups according to disease activity: low-activity AS (ASDAS-CRP < 2.1) and high-activity AS (ASDAS-CRP > 2.1). The peripheral blood Th cell subset composition was studied by flow cytometry. Using multiplex analysis, serum cytokine levels were quantified and investigated. It was found that only patients with high-activity AS had reduced central memory (CM) Th1 cells (p = 0.035) but elevated numbers of CM (p = 0.014) and effector memory (EM) Th2 cells (p < 0.001). However, no activity-driven change in the Th17 cell subset composition was observed in AS patients. Moreover, low-AS activity patients had increased numbers of Tfh17 EM cells (p < 0.001), whereas high-AS activity was associated with elevated Tfh2 EM level (p = 0.031). The serum cytokine profiles in AS patients demonstrated that cues stimulating cellular immunity were increased, but patients with high-AS activity reveled increased IL-5 level (p = 0.017). Analyzing the data obtained from AS patients allowed us to conclude that Th cell subset differentiation was mainly affected during the CM stage and characterized the IL-23/IL-17 regulatory axis, whereas increased humoral immunity was observed in the high-AS activity group.
Collapse
Affiliation(s)
- Pavel A. Shesternya
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Correspondence:
| | - Andrei A. Savchenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Olga D. Gritsenko
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | - Alexandra O. Vasileva
- Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Healthcare, 660022 Krasnoyarsk, Russia
| | | | - Alena A. Masterova
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| | - Dmitry V. Isakov
- Academician I.P. Pavlov First St. Petersburg State Medical University, Ministry of Healthcare, 197022 St. Peterburg, Russia
| | - Alexandr G. Borisov
- Federal Research Center “Krasnoyarsk Science Center”, Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia
| |
Collapse
|
15
|
Artemaki PI, Kontos CK. Alternative Splicing in Human Physiology and Disease. Genes (Basel) 2022; 13:1820. [PMID: 36292705 PMCID: PMC9601896 DOI: 10.3390/genes13101820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
Since the discovery of alternative splicing in the late 1970s, a great number of alternatively spliced transcripts have emerged; this number has exponentially increased with the advances in transcriptomics and massive parallel sequencing technologies [...].
Collapse
Affiliation(s)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
16
|
Chen XX, Zhang BH, Lu YC, Li ZQ, Chen CY, Yang YC, Chen YJ, Ma D. A novel 16-gene alternative mRNA splicing signature predicts tumor relapse and indicates immune activity in stage I–III hepatocellular carcinoma. Front Pharmacol 2022; 13:939912. [PMID: 36147313 PMCID: PMC9485890 DOI: 10.3389/fphar.2022.939912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a lethal disease with high relapse and dismal survival rates. Alternative splicing (AS) plays a crucial role in tumor progression. Herein, we aim to integratedly analyze the relapse-associated AS events and construct a signature predicting tumor relapse in stage I–III HCC. Methods: AS events of stage I–III HCC with tumor relapse or long-term relapse-free survival were profiled to identify the relapse-associated AS events. A splicing network was set up to analyze the correlation between the relapse-associated AS events and splicing factors. Cox regression analysis and receiver operating characteristic curve were performed to develop and validate the relapse-predictive AS signature. Single-sample gene set enrichment analysis (ssGSEA) and the ESTIMATE algorithm were used to assess the immune infiltration status of the HCC microenvironment between different risk subgroups. Unsupervised cluster analysis was conducted to assess the relationship between molecular subtypes and local immune status and clinicopathological features. Results: In total, 2441 ASs derived from 1634 mRNA were identified as relapse-associated AS events. By analyzing the proteins involved in the relapse-associated AS events, 1573 proteins with 11590 interactions were included in the protein–protein interaction (PPI) network. In total, 16 splicing factors and 61 relapse-associated AS events with 85 interactions were involved in the splicing network. The relevant genes involved in the PPI network and splicing network were also analyzed by Gene Ontology enrichment analysis. Finally, we established a robust 16-gene AS signature for predicting tumor relapse in stage I–III HCC with considerable AUC values in all of the training cohort, testing cohort, and entire cohort. The ssGSEA and ESTIMATE analyses showed that the AS signature was significantly associated with the immune status of the HCC microenvironment. Moreover, four molecular subgroups with distinguishing tumor relapse modes and local immune status were also revealed. Conclusion: Our study built a novel 16-gene AS signature that robustly predicts tumor relapse and indicates immune activity in stage I–III HCC, which may facilitate the deep mining of the mechanisms associated with tumor relapse and tumor immunity and the development of novel individualized treatment targets for HCC.
Collapse
Affiliation(s)
- Xu-Xiao Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| | - Bao-Hua Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yan-Cen Lu
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Qiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong-Yan Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Chen Yang
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jun Chen
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| | - Di Ma
- Department of General Surgery, Hepatobiliary Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xu-Xiao Chen, ; Yong-Jun Chen, ; Di Ma,
| |
Collapse
|
17
|
Rekad Z, Izzi V, Lamba R, Ciais D, Van Obberghen-Schilling E. The Alternative Matrisome: alternative splicing of ECM proteins in development, homeostasis and tumor progression. Matrix Biol 2022; 111:26-52. [DOI: 10.1016/j.matbio.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
|
18
|
Zhao H, Kong H, Wang B, Wu S, Chen T, Cui Y. RNA-Binding Proteins and Alternative Splicing Genes Are Coregulated in Human Retinal Endothelial Cells Treated with High Glucose. J Diabetes Res 2022; 2022:7680513. [PMID: 35308095 PMCID: PMC8926481 DOI: 10.1155/2022/7680513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/10/2023] Open
Abstract
To explore the relevant RNA-binding proteins (RBPs) and alternative splicing events (ASEs) in diabetic retinopathy (DR). We devised a comprehensive work to integrate analyses of the differentially expressed genes, including differential RBPs, and variable splicing characteristics related to DR in human retinal endothelial cells induced by low glucose and high glucose in dataset GSE117238. A total of 2320 differentially expressed genes (DEGs) were identified, including 1228 upregulated genes and 1092 downregulated genes. Further analysis screened out 232 RBP genes, and 42 AS genes overlapped DEGs. We selected high expression and consistency six RBP genes (FUS, HNRNPA2B1, CANX, EIF1, CALR, and POLR2A) for coexpression analysis. Through analysis, we found eight RASGs (MDM2, GOLGA2P7, NFE2L1, KDM4A, FAM111A, CIRBP, IDH1, and MCM7) that could be regulated by RBP. The coexpression network was conducted to further elucidate the regulatory and interaction relationship between RBPs and AS. Apoptotic progress, protein phosphorylation, and NF-kappaB cascade revealed by the functional enrichment analysis of RASGs regulated by RBPs were closely related to diabetic retinopathy. Furthermore, the expression of differentially expressed RBPs was validated by qRT-PCR in mouse retinal microvascular endothelial cells and retinas from the streptozotocin mouse model. The results showed that Fus, Hnrnpa2b1, Canx, Calr, and Polr2a were remarkedly difference in high-glucose-treated retinal microvascular endothelial cells and Fus, Hnrnpa2b1, Canx, and Calr were remarkedly difference in retinas from streptozotocin-induced diabetic mice compared to control. The regulatory network between identified RBPs and RASGs suggests the presence of several signaling pathways possibly involved in the pathogenesis of DR. The verified RBPs should be further addressed by future studies investigating associations between RBPs and the downstream of AS, as they could serve as potential biomarkers and targets for DR.
Collapse
Affiliation(s)
- Hongran Zhao
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hui Kong
- School of Medicine, Shandong University, Jinan, Shandong Province, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Bozhao Wang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Sihui Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tianran Chen
- School of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Yan Cui
- Department of Ophthalmology, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
19
|
Sun J, Fahmi NA, Nassereddeen H, Cheng S, Martinez I, Fan D, Yong J, Zhang W. Computational Methods to Study Human Transcript Variants in COVID-19 Infected Lung Cancer Cells. Int J Mol Sci 2021; 22:9684. [PMID: 34575842 PMCID: PMC8464664 DOI: 10.3390/ijms22189684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Microbes and viruses are known to alter host transcriptomes by means of infection. In light of recent challenges posed by the COVID-19 pandemic, a deeper understanding of the disease at the transcriptome level is needed. However, research about transcriptome reprogramming by post-transcriptional regulation is very limited. In this study, computational methods developed by our lab were applied to RNA-seq data to detect transcript variants (i.e., alternative splicing (AS) and alternative polyadenylation (APA) events). The RNA-seq data were obtained from a publicly available source, and they consist of mock-treated and SARS-CoV-2 infected (COVID-19) lung alveolar (A549) cells. Data analysis results show that more AS events are found in SARS-CoV-2 infected cells than in mock-treated cells, whereas fewer APA events are detected in SARS-CoV-2 infected cells. A combination of conventional differential gene expression analysis and transcript variants analysis revealed that most of the genes with transcript variants are not differentially expressed. This indicates that no strong correlation exists between differential gene expression and the AS/APA events in the mock-treated or SARS-CoV-2 infected samples. These genes with transcript variants can be applied as another layer of molecular signatures for COVID-19 studies. In addition, the transcript variants are enriched in important biological pathways that were not detected in the studies that only focused on differential gene expression analysis. Therefore, the pathways may lead to new molecular mechanisms of SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; (J.S.); (N.A.F.)
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; (J.S.); (N.A.F.)
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
| | - Heba Nassereddeen
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA;
| | - Irene Martinez
- Department of Molecular Biotechnology, Universität Heidelberg, 69120 Heidelberg, Germany;
| | - Deliang Fan
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA;
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA; (J.S.); (N.A.F.)
- Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
| |
Collapse
|