1
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
2
|
Kuban W, Haduch A, Bromek E, Basińska-Ziobroń A, Gawlińska K, Gawliński D, Filip M, Daniel WA. The Effect of Maternal High-Fat or High-Carbohydrate Diet during Pregnancy and Lactation on Cytochrome P450 2D (CYP2D) in the Liver and Brain of Rat Offspring. Int J Mol Sci 2024; 25:7904. [PMID: 39063146 PMCID: PMC11276948 DOI: 10.3390/ijms25147904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 2D (CYP2D) is important in psychopharmacology as it is engaged in the metabolism of drugs, neurosteroids and neurotransmitters. An unbalanced maternal diet during pregnancy and lactation can cause neurodevelopmental abnormalities and increases the offspring's predisposition to neuropsychiatric diseases. The aim of the present study was to evaluate the effect of maternal modified types of diet: a high-fat diet (HFD) and high-carbohydrate diet (HCD) during pregnancy and lactation on CYP2D in the liver and brain of male offspring at 28 (adolescent) or 63 postnatal days (young adult). The CYP2D activity and protein level were measured in the liver microsomes and the levels of mRNAs of CYP2D1, 2D2 and 2D4 were investigated both in the liver and brain. In the liver, both HFD and HCD increased the mRNA levels of all the three investigated CYP2D genes in adolescents, but an opposite effect was observed in young adults. The CYP2D protein level increased in adolescents but not in young adults. In contrast, young adults showed significantly decreased CYP2D activity. Similar effect of HFD on the CYP2D mRNAs was observed in the prefrontal cortex, while the effect of HCD was largely different than in the liver (the CYP2D2 expression was not affected, the CYP2D4 expression was decreased in young adults). In conclusion, modified maternal diets influence the expression of individual CYP2D1, CYP2D2 and CYP2D4 genes in the liver and brain of male offspring, which may affect the metabolism of CYP2D endogenous substrates and drugs and alter susceptibility to brain diseases and pharmacotherapy outcome.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Władysława A. Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| |
Collapse
|
3
|
Zhao R, Shi H, Wang Y, Zheng S, Xu Y. Methylation of SSTR4 promoter region in multiple mental health disorders. Front Genet 2024; 15:1431769. [PMID: 39055257 PMCID: PMC11269100 DOI: 10.3389/fgene.2024.1431769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
The existence of a shared genetic basis for mental disorders has long been documented, yet research on whether acquired epigenetic modifications exhibit common alterations across diseases is limited. Previous studies have found that abnormal methylation of cg14631053 at the SSTR4 promoter region mediates the onset of alcohol use disorder. However, whether aberrant methylation of the SSTR4 gene promoter is involved in other mental health disorders remains unclear. In this study, leveraging publicly available data, we identified that changes in methylation of cg14631053 from the SSTR4 promoter region are involved in the development of bipolar disorder and schizophrenia. Furthermore, the direction of methylation changes in the SSTR4 promoter region is disease-specific: hypomethylation is associated with the onset of bipolar disorder and schizophrenia, rather than major depressive disorder. Methylation levels of cg14631053 correlate with chronological age, a correlation that can be disrupted in patients with mental health disorders including schizophrenia and bipolar disorder. In conclusion, SSTR4 promoter methylation may serve as a marker for identifying bipolar disorder and schizophrenia, providing insights into a transdiagnostic mechanism for precision medicine in the future.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiu Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Shuaiyu Zheng
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Mostafavi Abdolmaleky H, Alam R, Nohesara S, Deth RC, Zhou JR. iPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells 2024; 13:1095. [PMID: 38994948 PMCID: PMC11240613 DOI: 10.3390/cells13131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Reza Alam
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
6
|
Yuan X, Tan Y, Bajinka O, Jammeh ML, Dukureh A, Obiegbusi CN, Abdelhalim KA, Mohanad M. The connection between epigenetics and gut microbiota-current perspective. Cell Biochem Funct 2024; 42:e3941. [PMID: 38379252 DOI: 10.1002/cbf.3941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024]
Abstract
Both the epigenetic changes and gut microbiota (GM) have attracted a growing interest in establishing effective diagnostics and potential therapeutic strategies for a number of diseases. These disorders include metabolic, central nervous system-related diseases, autoimmune, and gastrointestinal infections (GI). Despite the number of studies, there is no extensive review that connects the epigenetics modifications and GM as biomarkers that could confer effective diagnostics and confer treatment options. To this end, this review hopes to give detailed information on connecting the modifications in epigenetic and GM. An updated and detailed information on the connection between the epigenetics factors and GM that influence diseases are given. In addition, the review showed some associations between the epigenetics to the maternal GM and offspring health. Finally, the limitations of the concept and prospects into this new emerging discipline were also looked into. Although this review elucidated on the maternal diet and response to offspring health with respect to GM and epigenetic modifications, there still exist various limitations to this newly emerging discipline. In addition to integrating complementary multi-omics data, longitudinal sampling will aid with the identification of functional mechanisms that may serve as therapeutic targets. To this end, this review gave a detailed perspective into harnessing disease diagnostics, prevention and treatment options through epigenetics and GM.
Collapse
Affiliation(s)
- Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yurong Tan
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Ousman Bajinka
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Modou L Jammeh
- Department of Medical Science, School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Abubakarr Dukureh
- Department of Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidera N Obiegbusi
- Department of Medical Science, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Khalid A Abdelhalim
- Industrial Research and Development, Izmir Biomedicine and Genome Center, Izmir, Turkiye
| | - Mahmoud Mohanad
- Department of Medical Microbiology, Central South University Changsha, Changsha, China
| |
Collapse
|
7
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|