1
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
2
|
Cheng H, Yu J, Wong CC. Adenosine-to-Inosine RNA editing in cancer: molecular mechanisms and downstream targets. Protein Cell 2024:pwae039. [PMID: 39126156 DOI: 10.1093/procel/pwae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 08/12/2024] Open
Abstract
Adenosine-to-Inosine (A-to-I), one of the most prevalent RNA modifications, has recently garnered significant attention. The A-to-I modification actively contributes to biological and pathological processes by affecting the structure and function of various RNA molecules, including double stranded RNA, transfer RNA, microRNA, and viral RNA. Increasing evidence suggests that A-to-I plays a crucial role in the development of human disease, particularly in cancer, and aberrant A-to-I levels are closely associated with tumorigenesis and progression through regulation of the expression of multiple oncogenes and tumor suppressor genes. Currently, the underlying molecular mechanisms of A-to-I modification in cancer are not comprehensively understood. Here, we review the latest advances regarding the A-to-I editing pathways implicated in cancer, describing their biological functions and their connections to the disease.
Collapse
Affiliation(s)
- Hao Cheng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR 518172, China
| |
Collapse
|
3
|
Cai D, Chen SY. ADAR1 Is Essential for Smooth Muscle Homeostasis and Vascular Integrity. Cells 2024; 13:1257. [PMID: 39120288 PMCID: PMC11311430 DOI: 10.3390/cells13151257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA
| |
Collapse
|
4
|
Chattopadhyay P, Mehta P, Kanika, Mishra P, Chen Liu CS, Tarai B, Budhiraja S, Pandey R. RNA editing in host lncRNAs as potential modulator in SARS-CoV-2 variants-host immune response dynamics. iScience 2024; 27:109846. [PMID: 38770134 PMCID: PMC11103575 DOI: 10.1016/j.isci.2024.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Both host and viral RNA editing plays a crucial role in host's response to infection, yet our understanding of host RNA editing remains limited. In this study of in-house generated RNA sequencing (RNA-seq) data of 211 hospitalized COVID-19 patients with PreVOC, Delta, and Omicron variants, we observed a significant differential editing frequency and patterns in long non-coding RNAs (lncRNAs), with Delta group displaying lower RNA editing compared to PreVOC/Omicron patients. Notably, multiple transcripts of UGDH-AS1 and NEAT1 exhibited high editing frequencies. Expression of ADAR1/APOBEC3A/APOBEC3G and differential abundance of repeats were possible modulators of differential editing across patient groups. We observed a shift in crucial infection-related pathways wherein the pathways were downregulated in Delta compared to PreVOC and Omicron. Our genomics-based evidence suggests that lncRNA editing influences stability, miRNA binding, and expression of both lncRNA and target genes. Overall, the study highlights the role of lncRNAs and how editing within host lncRNAs modulates the disease severity.
Collapse
Affiliation(s)
- Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Chinky Shiu Chen Liu
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Wang H, Yang L, Liu R, He H, Zhang M, Xu Y. ADAR1 affects gastric cancer cell metastasis and reverses cisplatin resistance through AZIN1. Anticancer Drugs 2023; 34:1132-1145. [PMID: 37104086 PMCID: PMC10569681 DOI: 10.1097/cad.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 04/28/2023]
Abstract
Adenosine deaminases acting on RNA1 (ADAR1) are involved in the occurrence and development of cancers. Although the role of ADAR1 in gastric cancer metastasis has been reported, the role of ADAR1 in the mechanism of cisplatin resistance in gastric cancer is not clear. In this study, human gastric cancer tissue specimens were used to construct cisplatin-resistant gastric cancer cells; the results indicated that the mechanism underlying the inhibition of gastric cancer metastasis and reversal of cisplatin-resistant gastric cancer by ADAR1 inhibits gastric cancer occurs through the antizyme inhibitor 1 (AZIN1) pathway. We assessed ADAR1 and AZIN1 expression in the tissues of patients with low to moderately differentiated gastric cancer. Gastric cancer cells (human gastric adenocarcinoma cell line [AGS] and HGC-27 cells) and gastric cancer cisplatin-resistant cells (AGS CDDP and HGC-27 CDDP ) were selected, and the protein expression of ADAR1 and AZIN1 was detected using immunocytochemistry and immunocytofluorescence. The effects of ADAR1 small interfering RNA (siRNA) on the invasion, migration and proliferation of cisplatin-resistant gastric cancer cells were investigated. Western blot assays were used to assess the protein expression levels of ADAR1, AZIN1 and epithelial-mesenchymal transition (EMT)-related markers. In-vivo experiments, a subcutaneous tumor formation model of nude mice was established, and the effects of ADAR1 on tumor growth and AZIN1 expression level were detected by hematoxylin and eosin, immunohistochemistry and western blot. The expression of ADAR1 and AZIN1 in human gastric cancer tissue was significantly higher than that in paracancerous tissues. The colocalization of ADAR1, AZIN1 and E-cadherin expression in immunofluorescence assays indicated a significant correlation between the three. In in-vitro experiments, ADAR1 knockout not only reduced the invasion and migration ability of AGS and HGC-27 cells but also reduced that of cisplatin-resistant gastric cancer cells. ADAR1 siRNA inhibited the proliferation and decreased the colony number of cisplatin-resistant gastric cancer cells. ADAR1 siRNA decreased the expression of AZIN1 and EMT-related marker proteins (vimentin, N-cadherin, β-catenin, MMP9, MMP2 and TWIST). The effect of ADAR1 siRNA combined with AZIN1 siRNA was more significant. In-vivo, the knockdown of ADAR1 significantly inhibited tumor growth and AZIN1 expression. ADAR1 and AZIN1 are antimetastatic targets of gastric cancer, and AZIN1 is a downstream regulatory target of ADAR1. ADAR1 knockout can inhibit the metastasis of gastric cancer cells and reverse the cisplatin resistance of gastric cancer cells by downregulating the expression of AZIN1, potentially resulting in increased treatment efficacy.
Collapse
Affiliation(s)
- Honghong Wang
- Department of Pathology, People’s Hospital of Ningxia Hui Autonomous Region
| | - Lina Yang
- Department of Pathology, People’s Hospital of Ningxia Hui Autonomous Region
| | - Rui Liu
- Department of Pathology, People’s Hospital of Ningxia Hui Autonomous Region
| | - Haiyan He
- Department of Pathology, People’s Hospital of Ningxia Hui Autonomous Region
| | - Miao Zhang
- Department of Pathology, People’s Hospital of Ningxia Hui Autonomous Region
| | - Yuanyi Xu
- Department of Pathology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
6
|
Chen J, Jin J, Jiang J, Wang Y. Adenosine deaminase acting on RNA 1 (ADAR1) as crucial regulators in cardiovascular diseases: structures, pathogenesis, and potential therapeutic approach. Front Pharmacol 2023; 14:1194884. [PMID: 37663249 PMCID: PMC10469703 DOI: 10.3389/fphar.2023.1194884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases that have a major impact on global health and are the leading cause of death. A large number of chemical base modifications in ribonucleic acid (RNA) are associated with cardiovascular diseases. A variety of ribonucleic acid modifications exist in cells, among which adenosine deaminase-dependent modification is one of the most common ribonucleic acid modifications. Adenosine deaminase acting on ribonucleic acid 1 (Adenosine deaminase acting on RNA 1) is a widely expressed double-stranded ribonucleic acid adenosine deaminase that forms inosine (A-to-I) by catalyzing the deamination of adenosine at specific sites of the target ribonucleic acid. In this review, we provide a comprehensive overview of the structure of Adenosine deaminase acting on RNA 1 and summarize the regulatory mechanisms of ADAR1-mediated ribonucleic acid editing in cardiovascular diseases, indicating Adenosine deaminase acting on RNA 1 as a promising therapeutic target in cardiovascular diseases.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Junyan Jin
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jun Jiang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yaping Wang
- Department of Cardiology ofThe Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
8
|
Zhao Y, Zheng X, Li M, Zhao J, Wang X, Zhu H. ADAR1 improved Treg cell function through the miR-21b/Foxp3 axis and inhibits the progression of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Int Immunopharmacol 2023; 115:109620. [PMID: 36577155 DOI: 10.1016/j.intimp.2022.109620] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 12/27/2022]
Abstract
Th17/Treg equilibrium towards the pro-inflammatory Th17 side contributes greatly to the rejection during allogeneic hematopoietic stem cell transplantation (allo-HSCT). Forkhead box P3 (Foxp3) is important in the pathogenic conversion between Th17 and Treg cells. However, how Foxp3 expression was regulated is largely unknown. Here, we investigated the role of RNA-editing enzyme ADAR1 in Foxp3-mediated Th17/Treg imbalance and progression of acute graft-versus-host disease (aGVHD), a most serious complication in patients received allo-HSCT. Th1, Th17 and Treg cells were respectively isolated from peripheral blood CD4 + T cells of allo-HSCT patients, and we found that proportions of Th1 and Th17 were markedly increased, while Treg proportion was significantly decreased in aGVHD patients post transplantation compared with non-aGVHD patients, accompanied by decreased ADAR1 and increased miR-21b levels. RNA-immunoprecipitation (RIP) combined with gain- and loss-of-function experiments demonstrated that ADAR1 improved Treg cell functions and negatively regulated the production of miR-21b, a Foxp3-targeting miRNA. Inhibition of miR-21b improved Treg functions, and Foxp3 knockdown could eliminate the effect of miR-21b inhibition or ADAR1 overexpression on Treg function. Finally, an aGVHD mouse model was established and Ad-O/E-ADAR1 was injected into aGVHD mice to verify the effect of ADAR1 on aGVHD progression in vivo. The results showed that ADAR1 overexpression decreased Th17 proportion and increased Treg proportion in aGVHD mice and obviously improved tissue necrosis and reticular structure of aGVHD liver and lung in vivo. Collectively, ADAR1 suppresses miR-21b production and improves Foxp3-mediated Treg cell function to inhibit the progression of aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Yanru Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaoyan Zheng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Miaojing Li
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Huachao Zhu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
9
|
Wang Y, Liu Y, Zhao Z, Wu X, Lin J, Li Y, Yan W, Wu Y, Shi Y, Wu X, Xue Y, He J, Liu S, Zhang X, Xu H, Tang Y, Yin S. The involvement of ADAR1 in chronic unpredictable stress-induced cognitive impairment by targeting DARPP-32 with miR-874-3p in BALB/c mice. Front Cell Dev Biol 2023; 11:919297. [PMID: 37123418 PMCID: PMC10132208 DOI: 10.3389/fcell.2023.919297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Chronic stress exposure is the main environmental factor leading to cognitive impairment, but the detailed molecular mechanism is still unclear. Adenosine Deaminase acting on double-stranded RNA1(ADAR1) is involved in the occurrence of chronic stress-induced cognitive impairment. In addition, dopamine and Adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP-32) gene variation affects cognitive function. Therefore, we hypothesized that ADAR1 plays a key role in chronic stress-induced cognitive impairment by acting on DARPP-32. Methods: In this study, postnatal 21-day-old male BALB/c mice were exposed to chronic unpredictable stressors. After that, the mice were treated with ADAR1 inducer/inhibitor. The cognitive ability and cerebral DARPP-32 protein expression of BALB/c mice were evaluated. In order to explore the link between ADAR1 and DARPP-32, the effects of ADAR1 high/low expression on DARPP-32 protein expression in vitro were detected. Results: ADAR1 inducer alleviates cognitive impairment and recovers decreased DARPP-32 protein expression of the hippocampus and prefrontal cortex in BALB/c mice with chronic unpredictable stress exposure. In vivo and in vitro studies confirm the results predicted by bio-informatics; that is, ADAR1 affects DARPP-32 expression via miR-874-3p. Discussion: The results in this study demonstrate that ADAR1 affects the expression of DARPP-32 via miR-874-3p, which is involved in the molecular mechanism of pathogenesis in chronic unpredictable stress-induced cognitive impairment. The new findings of this study provide a new therapeutic strategy for the prevention and treatment of stress cognitive impairment from epigenetics.
Collapse
Affiliation(s)
- Yanfang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yingxin Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ziwei Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyu Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiabin Lin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufei Li
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, China
| | - Wei Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanfei Shi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xindi Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Xue
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaqian He
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuqi Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yiyuan Tang
- College of Health Solutions, Phoenix, AZ, United States
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Shengming Yin,
| |
Collapse
|
10
|
Sun C, Cai D, Chen SY. ADAR1 promotes systemic sclerosis via modulating classic macrophage activation. Front Immunol 2022; 13:1051254. [PMID: 36532023 PMCID: PMC9751044 DOI: 10.3389/fimmu.2022.1051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction As a multisystem autoimmune disorder disease, systemic sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and other internal organs. However, mechanisms underlying the inflammatory response that drives the development of SSc remain largely unknown. Methods ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific ADAR1 knockout mice were used to determine the function of ADAR1 in SSc. Histopathological analyses and western blot confirmed the role of ADAR1 in bleomycin-induced increased skin and lung fibrosis. Results In this study, we discover that adenosine deaminase acting on RNA (ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in RNA, is abundantly expressed in macrophages in the early stage of bleomycin-induced SSc. Importantly, ADAR1 is essential for SSc formation and indispensable for classical macrophage activation because ADAR1 deficiency in macrophages significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammation mediator inducible NO synthase (iNOS) and IL-1β in macrophages. Mechanistically, deletion of ADAR1 blocks macrophage activation through diminishing NF-κB signaling. Discussion Our studies reveal that ADAR1 promotes macrophage activation in the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic strategy for treating sclerosis formation.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Immune Related Diseases, Xi’an, Shaanxi, China
| | - Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
11
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
12
|
Liu J, Wang F, Zhang Y, Liu J, Zhao B. ADAR1-Mediated RNA Editing and Its Role in Cancer. Front Cell Dev Biol 2022; 10:956649. [PMID: 35898396 PMCID: PMC9309331 DOI: 10.3389/fcell.2022.956649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
It is well known that the stability of RNA, the interaction between RNA and protein, and the correct translation of protein are significant forces that drive the transition from normal cell to malignant tumor. Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA editing enzyme that catalyzes the deamination of adenosine to inosine (A-to-I), which is one dynamic modification that in a combinatorial manner can give rise to a very diverse transcriptome. ADAR1-mediated RNA editing is essential for survival in mammals and its dysregulation results in aberrant editing of its substrates that may affect the phenotypic changes in cancer. This overediting phenomenon occurs in many cancers, such as liver, lung, breast, and esophageal cancers, and promotes tumor progression in most cases. In addition to its editing role, ADAR1 can also play an editing-independent role, although current research on this mechanism is relatively shallowly explored in tumors. In this review, we summarize the nature of ADAR1, mechanisms of ADAR1 editing-dependent and editing-independent and implications for tumorigenesis and prognosis, and pay special attention to effects of ADAR1 on cancers by regulating non-coding RNA formation and function.
Collapse
Affiliation(s)
- Jizhe Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Yindan Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Jingfeng Liu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
- *Correspondence: Jingfeng Liu, ; Bixing Zhao,
| |
Collapse
|
13
|
Lin SH, Chen SCC. RNA Editing in Glioma as a Sexually Dimorphic Prognostic Factor That Affects mRNA Abundance in Fatty Acid Metabolism and Inflammation Pathways. Cells 2022; 11:cells11071231. [PMID: 35406793 PMCID: PMC8997934 DOI: 10.3390/cells11071231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
RNA editing alters the nucleotide sequence and has been associated with cancer progression. However, little is known about its prognostic and regulatory roles in glioma, one of the most common types of primary brain tumors. We characterized and analyzed RNA editomes of glioblastoma and isocitrate dehydrogenase mutated (IDH-MUT) gliomas from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas (CGGA). We showed that editing change during glioma progression was another layer of molecular alterations and that editing profiles predicted the prognosis of glioblastoma and IDH-MUT gliomas in a sex-dependent manner. Hyper-editing was associated with poor survival in females but better survival in males. Moreover, noncoding editing events impacted mRNA abundance of the host genes. Genes associated with inflammatory response (e.g., EIF2AK2, a key mediator of innate immunity) and fatty acid oxidation (e.g., acyl-CoA oxidase 1, the rate-limiting enzyme in fatty acid β-oxidation) were editing-regulated and associated with glioma progression. The above findings were further validated in CGGA samples. Establishment of the prognostic and regulatory roles of RNA editing in glioma holds promise for developing editing-based therapeutic strategies against glioma progression. Furthermore, sexual dimorphism at the epitranscriptional level highlights the importance of developing sex-specific treatments for glioma.
Collapse
|
14
|
Nakano M, Nakajima M. A-to-I RNA editing and m6A modification modulating expression of drug-metabolizing enzymes. Drug Metab Dispos 2022; 50:624-633. [DOI: 10.1124/dmd.121.000390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
|
15
|
Franklin A, Steele EJ. RNA-directed DNA repair and antibody somatic hypermutation. Trends Genet 2021; 38:426-436. [PMID: 34740453 DOI: 10.1016/j.tig.2021.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 10/19/2022]
Abstract
Somatic hypermutation at antibody loci affects both deoxyadenosine-deoxythymidine (A/T) and deoxycytidine-deoxyguanosine (C/G) pairs. Deamination of C to deoxyuridine (U) by activation-induced deaminase (AID) explains how mutation at C/G pairs is potentiated. Mutation at A/T pairs is triggered during the initial stages of repair of AID-generated U lesions and occurs through an as yet unknown mechanism in which polymerase η has a major role. Recent evidence confirms that human polymerase η can act as a reverse transcriptase. Here, we compare the popular suggestion of mutation at A/T pairs through nucleotide mispairing (owing to polymerase error) during short-patch repair synthesis with the alternative proposal of mutation at A/T pairs through RNA editing and RNA-directed DNA repair.
Collapse
Affiliation(s)
- Andrew Franklin
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
16
|
Zhang X, Yan W, Xue Y, Xu H, Li J, Zhao Z, Sun Y, Wang Y, He J, Huang Y, Yu D, Xiao Z, Yin S. Roles of miR-432 and circ_0000418 in mediating the anti-depressant action of ADAR1. Neurobiol Stress 2021; 15:100396. [PMID: 34568523 PMCID: PMC8449188 DOI: 10.1016/j.ynstr.2021.100396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022] Open
Abstract
Adenosine deaminase acting on RNA1 (ADAR1) is a newly discovered epigenetic molecule marker that is sensitive to environmental stressors. A recent study has demonstrated that ADAR1 affects BDNF expression via miR-432 and is involved in antidepressant action. However, the detailed molecular mechanism is still unclear. We have uncovered a new molecular mechanism showing the involvement of miR-432 and circ_0000418 in mediating the antidepressant action of ADAR1. We demonstrate that the ADAR1 inducer (IFN-γ) alleviates the depressive-like behaviors of BALB/c mice treated with chronic unpredictable stress (CUS) exposure. Moreover, both in vivo and in vitro studies show that ADAR1 differently impacts miR-432 and circ_0000418 expressions. Furthermore, the in vitro results demonstrate that circ_0000418 oppositely affects BDNF expression. Together, our results indicate that ADAR1 affects CUS-induced depressive-like behavior and BDNF expression by acting on miR-432 and circ_0000418. Elucidation of this new molecular mechanism will not only provide insights into further understanding the important role of ADAR1 in stress-induced depressive-like behavior but also suggest a potential therapeutic strategy for developing novel anti-depressive drugs. MiR-432 and circ_0000418 mediates the antidepressant action of ADAR1. MiR-432 and circ_0000418 interactively affect BDNF expression. LIN28B is involved in the interaction among ADAR1, miR-432, and circ_0000418. HNRNPC is involved in the regulatory role of circ_0000418 on BDNF.
Collapse
Affiliation(s)
- Xiaonan Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Wei Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Ying Xue
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinying Li
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Ziwei Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Ye Sun
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Yanfang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Jiaqian He
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuyue Huang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Deqin Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Zhaoyang Xiao
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| |
Collapse
|
17
|
Wu Y, Guo Y, Yu H, Guo T. RNA editing affects cis-regulatory elements and predicts adverse cancer survival. Cancer Med 2021; 10:6114-6127. [PMID: 34319007 PMCID: PMC8419749 DOI: 10.1002/cam4.4146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND RNA editing exerts critical impacts on numerous biological processes and thus are implicated in crucial human phenotypes, including tumorigenesis and prognosis. While previous studies have analyzed aggregate RNA editing activity at the sample level and associated it with overall cancer survival, there is not yet a large-scale disease-specific survival study to examine genome-wide RNA editing sites' prognostic value taking into account the host gene expression and clinical variables. METHODS In this study, we solved comprehensive Cox proportional models of disease-specific survival on individual RNA-editing sites plus host gene expression and critical demographic covariates. This allowed us to interrogate the prognostic value of a large number of RNA-editing sites at single-nucleotide resolution. RESULTS As a result, we identified 402 gene-proximal RNA-editing sites that generally predict adverse cancer survival. For example, an RNA-editing site residing in ZNF264 indicates poor survival of uterine corpus endometrial carcinoma, with a hazard ratio of 2.13 and an adjusted p-value of 4.07 × 10-7 . Some of these prognostic RNA-editing sites mediate the binding of RNA binding proteins and microRNAs, thus propagating their impacts to extensive regulatory targets. CONCLUSIONS In conclusion, RNA editing affects cis-regulatory elements and predicts adverse cancer survival.
Collapse
Affiliation(s)
- Yuan‐Ming Wu
- School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
- Stem Cell and Tissue Engineering Research CenterGuizhou Medical UniversityGuizhouChina
| | - Yan Guo
- Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNMUSA
| | - Hui Yu
- Comprehensive Cancer CenterUniversity of New MexicoAlbuquerqueNMUSA
| | - Tao Guo
- Guizhou Provincial People’s HospitalGuiyangChina
| |
Collapse
|
18
|
Frassinelli L, Orecchini E, Al-Wardat S, Tripodi M, Mancone C, Doria M, Galardi S, Ciafrè SA, Michienzi A. The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biol 2021; 18:75-87. [PMID: 34224323 PMCID: PMC8677026 DOI: 10.1080/15476286.2021.1940020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosines to inosines in double-stranded RNAs (RNA editing A-to-I). ADAR1 and ADAR2 were previously reported as HIV-1 proviral factors. The aim of this study was to investigate the composition of the ADAR2 ribonucleoprotein complex during HIV-1 expression. By using a dual-tag affinity purification procedure in cells expressing HIV-1 followed by mass spectrometry analysis, we identified 10 non-ribosomal ADAR2-interacting factors. A significant fraction of these proteins was previously found associated to the Long INterspersed Element 1 (LINE1 or L1) ribonucleoparticles and to regulate the life cycle of L1 retrotransposons. Considering that we previously demonstrated that ADAR1 is an inhibitor of LINE-1 retrotransposon activity, we investigated whether also ADAR2 played a similar function. To reach this goal, we performed specific cell culture retrotransposition assays in cells overexpressing or ablated for ADAR2. These experiments unveil a novel function of ADAR2 as suppressor of L1 retrotransposition. Furthermore, we showed that ADAR2 binds the basal L1 RNP complex. Overall, these data support the role of ADAR2 as regulator of L1 life cycle.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Sofian Al-Wardat
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy.,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Margherita Doria
- Unit of Primary Immunodeficiency, Bambino Gesu` Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
19
|
Vlachogiannis NI, Verrou KM, Stellos K, Sfikakis PP, Paraskevis D. The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection. Clin Immunol 2021; 226:108699. [PMID: 33639276 PMCID: PMC7904470 DOI: 10.1016/j.clim.2021.108699] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
RNA editing is a fundamental biological process with 2 major forms, namely adenosine-to-inosine (A-to-I, recognized as A-to-G) and cytosine-to-uracil (C-to-U) deamination, mediated by ADAR and APOBEC enzyme families, respectively. A-to-I RNA editing has been shown to directly affect the genome/transcriptome of RNA viruses with significant repercussions for viral protein synthesis, proliferation and infectivity, while it also affects recognition of double-stranded RNAs by cytosolic receptors controlling the host innate immune response. Recent evidence suggests that RNA editing may be present in SARS-CoV-2 genome/transcriptome. The majority of mapped mutations in SARS-CoV-2 genome are A-to-G/U-to-C(opposite strand) and C-to-U/G-to-A(opposite strand) substitutions comprising potential ADAR-/APOBEC-mediated deamination events. A single nucleotide substitution can have dramatic effects on SARS-CoV-2 infectivity as shown by the D614G(A-to-G) substitution in the spike protein. Future studies utilizing serial sampling from patients with COVID-19 are warranted to delineate whether RNA editing affects viral replication and/or the host immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kleio-Maria Verrou
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece; Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| |
Collapse
|
20
|
Uzonyi A, Nir R, Shliefer O, Stern-Ginossar N, Antebi Y, Stelzer Y, Levanon EY, Schwartz S. Deciphering the principles of the RNA editing code via large-scale systematic probing. Mol Cell 2021; 81:2374-2387.e3. [PMID: 33905683 DOI: 10.1016/j.molcel.2021.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.
Collapse
Affiliation(s)
- Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ofir Shliefer
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaron Antebi
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
21
|
Chiang DC, Li Y, Ng SK. The Role of the Z-DNA Binding Domain in Innate Immunity and Stress Granules. Front Immunol 2021; 11:625504. [PMID: 33613567 PMCID: PMC7886975 DOI: 10.3389/fimmu.2020.625504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Both DNA and RNA can maintain left-handed double helical Z-conformation under physiological condition, but only when stabilized by Z-DNA binding domain (ZDBD). After initial discovery in RNA editing enzyme ADAR1, ZDBD has also been described in pathogen-sensing proteins ZBP1 and PKZ in host, as well as virulence proteins E3L and ORF112 in viruses. The host-virus antagonism immediately highlights the importance of ZDBD in antiviral innate immunity. Furthermore, Z-RNA binding has been shown to be responsible for the localization of these ZDBD-containing proteins to cytoplasmic stress granules that play central role in coordinating cellular response to stresses. This review sought to consolidate current understanding of Z-RNA sensing in innate immunity and implore possible roles of Z-RNA binding within cytoplasmic stress granules.
Collapse
Affiliation(s)
- De Chen Chiang
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Siew Kit Ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
22
|
Khan MI, Nur SM, Adhami V, Mukhtar H. Epigenetic regulation of RNA sensors: Sentinels of immune response. Semin Cancer Biol 2021; 83:413-421. [PMID: 33484869 DOI: 10.1016/j.semcancer.2020.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Living host system possess mechanisms like innate immune system to combat against inflammation, stress singling, and cancer. These mechanisms are initiated by PAMP and DAMP mediated recognition by PRR. PRR is consist of variety of nucleic acid sensors like-RNA sensors. They play crucial role in identifying exogenous and endogenous RNA molecules, which subsequently mediate pro/inflammatory cytokine, IFN and ISGs response in traumatized or tumorigenic conditions. The sensors can sensitize wide range of nucleic acid particle in term of size and structure, while each category sensors belongs subclasses with differentially expressed in cell and distinguished functioning mechanisms. They are also able to make comparison between self and non-self-nucleic acid molecules through specific mechanisms. Besides exhibiting anti-inflammatory and anti-tumorigenic responses, RNA sensors cover the broad spectrum of response mechanisms. Transcriptionally RNA sensors undergo with tight epigenetic regulations. In this review study, we will be going to discuss about the details of RNA sensors, their functional mechanisms and epi-transactional regulations.
Collapse
Affiliation(s)
- Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vaqar Adhami
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Hasan Mukhtar
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, USA.
| |
Collapse
|
23
|
The involvement of ADAR1 in antidepressant action by regulating BDNF via miR-432. Behav Brain Res 2021; 402:113087. [PMID: 33412228 DOI: 10.1016/j.bbr.2020.113087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a biomarker of depression. Recent studies have found adenosine deaminase acting on RNA1 (ADAR1) is a novel target being sensitive to stress at epigenetic level. The epigenetic regulation mechanism of stress-related depression is still unclear so far. To explore the potential regulating mechanism of ADAR1 on BDNF, over and low expression of ADAR1 in PC12 and SH-SY5Y cell lines are prepared. In the meanwhile, chronic unpredictable stress (CUS) mice are treated with ADAR1 inducer (interferon-γ, IFN-γ). ADAR1 regulates BDNF expression, which is proven by that over and low expressions of ADAR1 increase and decrease BDNF mRNA and protein respectively in vitro. Additionally, ADAR1 inducer alleviates the depressive-like behavior of CUS mice by recovering the decreased BDNF protein in brain and serum. Moreover, over and low expressions of ADAR1 reduce and enhance microRNA-432 (miR-432) expression respectively in vitro. Furtherly, over and low miR-432 expressions lead to decreased and increased BDNF and ADAR1 mRNA, protein and immunoreactivity respectively in vitro. The above results demonstrate that ADAR1 is involved in antidepressant action by regulating BDNF via miR-432. Those novel findings can provide a new idea for the study of epigenetic regulation mechanism, early diagnosis, and effective treatment of stress-related depression.
Collapse
|
24
|
Abstract
The type I interferonopathies comprise a heterogenous group of monogenic diseases associated with a constitutive activation of type I interferon signaling.The elucidation of the genetic causes of this group of diseases revealed an alteration of nucleic acid processing and signaling.ADAR1 is among the genes found mutated in patients with this type of disorders.This enzyme catalyzes the hydrolytic deamination of adenosines in inosines within a double-stranded RNA target (RNA editing of A to I). This RNA modification is widespread in human cells and deregulated in a variety of human diseases, ranging from cancers to neurological abnormalities.In this review, we briefly summarize the knowledge about the RNA editing alterations occurring in patients with mutations in ADAR1 gene and how these alterations might cause the inappropriate IFN activation.
Collapse
Affiliation(s)
- Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
25
|
Genome-Wide Characterization of RNA Editing Sites in Primary Gastric Adenocarcinoma through RNA-seq Data Analysis. Int J Genomics 2020; 2020:6493963. [PMID: 33415135 PMCID: PMC7768588 DOI: 10.1155/2020/6493963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
RNA editing is a posttranscriptional nucleotide modification in humans. Of the various types of RNA editing, the adenosine to inosine substitution is the most widespread in higher eukaryotes, which is mediated by the ADAR family enzymes. Inosine is recognized by the biological machinery as guanosine; therefore, editing could have substantial functional effects throughout the genome. RNA editing could contribute to cancer either by exclusive editing of tumor suppressor/promoting genes or by introducing transcriptomic diversity to promote cancer progression. Here, we provided a comprehensive overview of the RNA editing sites in gastric adenocarcinoma and highlighted some of their possible contributions to gastric cancer. RNA-seq data corresponding to 8 gastric adenocarcinoma and their paired nontumor counterparts were retrieved from the GEO database. After preprocessing and variant calling steps, a stringent filtering pipeline was employed to distinguish potential RNA editing sites from SNPs. The identified potential editing sites were annotated and compared with those in the DARNED database. Totally, 12362 high-confidence adenosine to inosine RNA editing sites were detected across all samples. Of these, 12105 and 257 were known and novel editing events, respectively. These editing sites were unevenly distributed across genomic regions, and nearly half of them were located in 3′UTR. Our results revealed that 4868 editing sites were common in both normal and cancer tissues. From the remaining sites, 3985 and 3509 were exclusive to normal and cancer tissues, respectively. Further analysis revealed a significant number of differentially edited events among these sites, which were located in protein coding genes and microRNAs. Given the distinct pattern of RNA editing in gastric adenocarcinoma and adjacent normal tissue, edited sites have the potential to serve as the diagnostic biomarkers and therapeutic targets in gastric cancer.
Collapse
|
26
|
Shiromoto Y, Sakurai M, Qu H, Kossenkov AV, Nishikura K. Processing of Alu small RNAs by DICER/ADAR1 complexes and their RNAi targets. RNA (NEW YORK, N.Y.) 2020; 26:1801-1814. [PMID: 32817447 PMCID: PMC7668262 DOI: 10.1261/rna.076745.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 06/08/2023]
Abstract
In addition to adenosine-to-inosine RNA editing activities, ADAR1 has been shown to have various RNA editing-independent activities including modulation of RNAi efficacy. We previously reported that ADAR1 forms a heterodimer complex with DICER and facilitates processing of pre-miRNAs to mature miRNAs. In addition to miRNA synthesis, DICER is involved in processing of long dsRNAs into small RNAs (endo-siRNAs). Generation of retrotransposon-derived endo-siRNAs by DICER and their functions in regulation of transcripts in mouse oocytes has been previously reported. However, the synthesis and functions of endo-siRNAs in somatic cells remain largely unknown. Here, we report that ADAR1 together with DICER generates endogenous small RNAs, Alu endo-siRNAs by cleaving long double-stranded regions of inverted Alu repeats. We identified AGO2-loaded Alu endo-siRNAs, which are highly expressed in commonly used cell lines. These Alu endo-siRNAs carrying both sense and antisense Alu sequences seem to target a set of genes containing a single Alu sequence, either antisense or sense, respectively, within their 3'UTR. In silico screening identified potential RNA silencing target genes for these Alu endo-siRNAs. We present results of a proof-of-concept experiment, in which sense Alu endo-siRNAs derived from AluSz and AluJr family elements target CUB Domain Containing Protein 1 mRNAs containing an antisense copy of AluJb in their 3'UTRs and consequently induce apoptosis in HeLa cells. Our results clearly indicate that Alu endo-siRNAs are functional also in somatic cells.
Collapse
Affiliation(s)
| | | | - Helen Qu
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
27
|
Di Lazzaro G, Graziola F, Sancesario A, Insalaco A, Moneta GM, Castelli E, Bertini E, Travaglini L, Stregapede F, Capuano A, Vasco G, Schirinzi T. Movement disorders in ADAR1 disease: Insights from a comprehensive cohort. Parkinsonism Relat Disord 2020; 79:100-104. [PMID: 32911246 DOI: 10.1016/j.parkreldis.2020.08.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
ADAR1 variants are associated to rare and heterogenous neurological conditions, including Aicardi-Goutières syndrome type 6, bilateral striatal necrosis, and dyschromatosis symmetrica hereditaria. Movement disorders (MDs) commonly occur in ADAR1-related diseases although a complete overview on the phenomenology has not been provided yet. Here, a cohort of 57 patients with ADAR1-related diseases, including 3 unpublished patients and 54 previously reported cases, was reviewed. Data on demographics, clinical features of MDs, genetics and biomarkers were collected and descriptive statistics, group analysis for genotype and logistic regression were run. Manifestations of MD characterized the onset of ADAR1-related disease in 60% of patients. Specifically, dystonia occurred in 39% of cases, even as severe status dystonicus, while prevalence of other MDs was lower. Patients often presented brain lesions (>90%) and progressive disease course (43%), fatal in some cases. Clinical presentation and outcome differed among patients with distinct genotype. This review shows that phenomenology of MDs in ADAR1-related diseases is wide and heterogeneous, although a severe motor syndrome (often characterized by dystonia) secondary to brain lesions represents the most common manifestation. Waiting for future development of disease-modifying treatments, an appropriate symptomatic intervention is crucial for ADAR1 patients. Accordingly, a deeper knowledge of phenomenology is fundamental.
Collapse
Affiliation(s)
- Giulia Di Lazzaro
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Federica Graziola
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Sancesario
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonella Insalaco
- Department of Rheumatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gian Marco Moneta
- Department of Rheumatology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Castelli
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Bertini
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorena Travaglini
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Fabrizia Stregapede
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandro Capuano
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Gessica Vasco
- Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy; Department of Neurosciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
28
|
Non-Coding RNA Editing in Cancer Pathogenesis. Cancers (Basel) 2020; 12:cancers12071845. [PMID: 32650588 PMCID: PMC7408896 DOI: 10.3390/cancers12071845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
In the last two decades, RNA post-transcriptional modifications, including RNA editing, have been the subject of increasing interest among the scientific community. The efforts of the Human Genome Project combined with the development of new sequencing technologies and dedicated bioinformatic approaches created to detect and profile RNA transcripts have served to further our understanding of RNA editing. Investigators have determined that non-coding RNA (ncRNA) A-to-I editing is often deregulated in cancer. This discovery has led to an increased number of published studies in the field. However, the eventual clinical application for these findings remains a work in progress. In this review, we provide an overview of the ncRNA editing phenomenon in cancer. We discuss the bioinformatic strategies for RNA editing detection as well as the potential roles for ncRNA A to I editing in tumor immunity and as clinical biomarkers.
Collapse
|
29
|
Niu G, Zou D, Li M, Zhang Y, Sang J, Xia L, Li M, Liu L, Cao J, Zhang Y, Wang P, Hu S, Hao L, Zhang Z. Editome Disease Knowledgebase (EDK): a curated knowledgebase of editome-disease associations in human. Nucleic Acids Res 2020; 47:D78-D83. [PMID: 30357418 PMCID: PMC6323952 DOI: 10.1093/nar/gky958] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022] Open
Abstract
RNA editing, as an essential co-/post-transcriptional RNA modification type, plays critical roles in many biological processes and involves with a variety of human diseases. Although several databases have been developed to collect RNA editing data in both model and non-model animals, there still lacks a resource integrating associations between editome and human disease. In this study, we present Editome-Disease Knowledgebase (EDK; http://bigd.big.ac.cn/edk), an integrated knowledgebase of RNA editome-disease associations manually curated from published literatures. In the current version, EDK incorporates 61 diseases associated with 248 experimentally validated abnormal editing events located in 32 mRNAs, 16 miRNAs, 1 lncRNA and 11 viruses, and 44 aberrant activities involved with 6 editing enzymes, which together are curated from more than 200 publications. In addition, to facilitate standardization of editome-disease knowledge integration, we propose a data curation model in EDK, factoring an abundance of relevant information to fully capture the context of editome-disease associations. Taken together, EDK is a comprehensive collection of editome-disease associations and bears the great utility in aid of better understanding the RNA editing machinery and complex molecular mechanisms associated with human diseases.
Collapse
Affiliation(s)
- Guangyi Niu
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengwei Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansheng Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Xia
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Liu
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabao Cao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei Wang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Hao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. Tel: +86 10 84097261; Fax: +86 10 84097720; . Correspondence may also be addressed to Lili Hao.
| | - Zhang Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- To whom correspondence should be addressed. Tel: +86 10 84097261; Fax: +86 10 84097720; . Correspondence may also be addressed to Lili Hao.
| |
Collapse
|
30
|
El Azzouzi H, Vilaça AP, Feyen DAM, Gommans WM, de Weger RA, Doevendans PAF, Sluijter JPG. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front Cardiovasc Med 2020; 7:30. [PMID: 32258062 PMCID: PMC7093378 DOI: 10.3389/fcvm.2020.00030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA-editing enzyme that is involved in several functions including the deamination of adenosine to inosine, RNA interference (RNAi) mechanisms and microRNA (miRNA) processing, rendering ADAR1 essential for life. Methods and Results: To investigate whether maintenance of ADAR1 expression is required for normal myocardial homeostasis, we bypassed the early embryonic lethality of ADAR1-null mice through the use of a tamoxifen-inducible Cre recombinase under the control of the cardiac-specific α-myosin heavy chain promoter (αMHC). Targeted ADAR1 deletion in adult mice caused a significant increase in lethality accompanied by severe ventricular remodeling and quick and spontaneous cardiac dysfunction, induction of stress markers and overall reduced expression of miRNAs. Administration of a selective inhibitor of the unfolded protein response (UPR) stress significantly blunted the deleterious effects and improved cardiac function thereby prolonging animal survival. In vitro restoring miR-199a-5p levels in cardiomyocytes lacking ADAR1 diminished UPR activation and concomitant apoptosis. Conclusions: Our findings demonstrate an essential role for ADAR1 in cardiomyocyte survival and maintenance of cardiac function through a mechanism that integrates ADAR1 dependent miRNA processing and the suppression of UPR stress.
Collapse
Affiliation(s)
- Hamid El Azzouzi
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Andreia P Vilaça
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dries A M Feyen
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Willemijn M Gommans
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Roel A de Weger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A F Doevendans
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Circulatory Health Laboratory, Department of Cardiology, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands.,Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Ullah M, Akbar A, Yannarelli G. Clinical Applications of RNA Editing Technology for the Early Detection of Cancer and Future Directions. Technol Cancer Res Treat 2020; 19:1533033820964194. [PMID: 33124527 PMCID: PMC7607768 DOI: 10.1177/1533033820964194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early detection of cancer has great clinical importance and potentially improves cure, survival rate and treatment outcome. RNA editing technology can be used as targeted and precise molecular scissors to cut and replace disease-causing genes with healthy ones. This is a post transcriptional modification that can lead to the recoding of proteins. RNA editing technology is in its infancy, but it can be used for early diagnoses and effective treatment of cancer. The full potential of precision medicine will be achieved by using the knowledge of RNA reversible-recoding to edit the protein. RNA editing technology could be used to expose chemo resistant cancer cells, dormant cancer stem cells and other malignant tumors. RNA editing generates RNA and protein diversity to accelerate and enhance the screening window for early detection of cancer. We propose that the RNA editing sites could be used as a novel tool for early detection of cancer.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, CA, USA
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, CA, USA
| | - Asma Akbar
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, CA, USA
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, CA, USA
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| |
Collapse
|
32
|
Vlachogiannis NI, Gatsiou A, Silvestris DA, Stamatelopoulos K, Tektonidou MG, Gallo A, Sfikakis PP, Stellos K. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun 2020; 106:102329. [PMID: 31493964 PMCID: PMC7479519 DOI: 10.1016/j.jaut.2019.102329] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Adenosine-to-inosine (A-to-I) RNA editing of Alu retroelements is a primate-specific mechanism mediated by adenosine deaminases acting on RNA (ADARs) that diversifies transcriptome by changing selected nucleotides in RNA molecules. We tested the hypothesis that A-to-I RNA editing is altered in rheumatoid arthritis (RA). METHODS Synovium expression analysis of ADAR1 was investigated in 152 RA patients and 50 controls. Peripheral blood mononuclear cells derived from 14 healthy subjects and 19 patients with active RA at baseline and after 12-week treatment were examined for ADAR1p150 and ADAR1p110 isoform expression by RT-qPCR. RNA editing activity was analysed by AluSx+ Sanger-sequencing of cathepsin S, an extracellular matrix degradation enzyme involved in antigen presentation. RESULTS ADAR1 was significantly over-expressed in RA synovium regardless of disease duration. Similarly, ADAR1p150 isoform expression was significantly increased in the blood of active RA patients. Individual nucleotide analysis revealed that A-to-I RNA editing rate was also significantly increased in RA patients. Both baseline ADAR1p150 expression and individual adenosine RNA editing rate of cathepsin S AluSx+ decreased after treatment only in those patients with good clinical response. Upregulation of the expression and/or activity of the RNA editing machinery were associated with a higher expression of edited Alu-enriched genes including cathepsin S and TNF receptor-associated factors 1,2,3 and 5. CONCLUSION A previously unrecognized regulation and role of ADAR1p150-mediated A-to-I RNA editing in post-transcriptional control in RA underpins therapeutic response and fuels inflammatory gene expression, thus representing an interesting therapeutic target.
Collapse
Affiliation(s)
- Nikolaos I Vlachogiannis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece; Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Aikaterini Gatsiou
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Dept., Children Hospital Bambino Gesù IRCCS, Rome, Italy
| | - Petros P Sfikakis
- First Department of Propaedeutic Internal Medicine and Joint Rheumatology Program, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Cardiovascular Disease Prevention Hub, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Freeman Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
33
|
Wang P, Yu S, Liu J, Zhang D, Kang X. Seven novel mutations of ADAR in multi-ethnic pedigrees with dyschromatosis symmetrica hereditaria in China. Mol Genet Genomic Med 2019; 7:e00905. [PMID: 31423758 PMCID: PMC6785447 DOI: 10.1002/mgg3.905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Dyschromatosis symmetrica hereditaria (DSH;OMIM: #127400) is a rare autosomal dominant skin disease of hyperpigmented and hypopigmented macules on the dorsal aspects of the feet and hands. The adenosine deaminase RNA‐Specific (ADAR;OMIM: *146920) gene was identified as causing DSH. Although more than 200 mutations are reported, no research has included the pedigrees of ethnic minorities in China. To investigate clinical features and genetic factors among multi‐ethnic families, seven multi‐ethnic pedigrees with DSH were collected for analysis of hereditary characteristics and ADAR mutations. Methods All 15 exons and exon–intron sequences of the ADAR gene were amplified and Sanger sequenced from 25 patients and 36 normal controls from seven multi‐ethnic DSH families with 100 healthy normal controls. Seven mutations were analyzed by Polyphen 2, SIFT and Provean. All mutations in ADAR with DSH were reviewed and genetic and clinical features were summarized for analysis. The ADEAMc domain may be a hot spot of ADAR mutations among patients with DSH. Results Seven novel mutations were identified in seven multi‐ethnic pedigrees: c.497delA(p.Arg105fs), c.3352C>T(p.Gln1058*) and c.3722delT(p.Ser1181fs) were found in three Uygur families with DSH; c.1330A>G(p.Val332Met) and c.2702A>T(p.His841Leu) were found in two Kazakh pedigrees and c.1176G>A(p.Lys326Glu) and c.2861G>A(p.Arg892His) in two Hui pedigrees. We summarized 203 different mutations of ADAR from people with DSH. Conclusions Seven novel mutations were identified in seven multi‐ethnic families with DSH. Our study expands the genetic spectrum of ADAR mutations in DSH.
Collapse
Affiliation(s)
- Peng Wang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shirong Yu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianyong Liu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dezhi Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
34
|
Teoh PJ, Chung TH, Chng PYZ, Toh SHM, Chng WJ. IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica 2019; 105:1391-1404. [PMID: 31413087 PMCID: PMC7193471 DOI: 10.3324/haematol.2019.221176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/12/2019] [Indexed: 12/28/2022] Open
Abstract
1q21 amplification is an important prognostic marker in multiple myeloma. In this study we identified that IL6R (the interleukin-6 membrane receptor) and ADAR1 (an RNA editing enzyme) are critical genes located within the minimally amplified 1q21 region. Loss of individual genes caused suppression to the oncogenic phenotypes, the magnitude of which was enhanced when both genes were concomitantly lost. Mechanistically, IL6R and ADAR1 collaborated to induce a hyper-activation of the oncogenic STAT3 pathway. High IL6R confers hypersensitivity to interleukin-6 binding, whereas, ADAR1 forms a constitutive feed-forward loop with STAT3 in a P150-isoform-predominant manner. In this respect, ADAR1-P150 acts as a direct transcriptional target for STAT3 and this STAT3-induced-P150 in turn directly interacts with and stabilizes the former protein, leading to a larger pool of proteins acting as oncogenic transcription factors for pro-survival genes. The importance of both IL6R and ADAR1-P150 in STAT3 signaling was further validated when concomitant knockdown of both genes impeded IL6-induced-STAT3 pathway activation. Clinical evaluation of various datasets of myeloma patients showed that low expression of either one or both genes was closely associated with a compromised STAT3 signature, confirming the involvement of IL6R and ADAR1 in the STAT3 pathway and underscoring their essential role in disease pathogenesis. In summary, our findings highlight the complexity of the STAT3 pathway in myeloma, in association with 1q21 amplification. This study therefore reveals a novel perspective on 1q21 abnormalities in myeloma and a potential therapeutic target for this cohort of high-risk patients.
Collapse
Affiliation(s)
- Phaik Ju Teoh
- Cancer Science Institute of Singapore, National University of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore
| | - Pamela Y Z Chng
- Cancer Science Institute of Singapore, National University of Singapore
| | - Sabrina H M Toh
- Cancer Science Institute of Singapore, National University of Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
35
|
Lee YS, Kunkeaw N, Lee YS. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1558. [PMID: 31231984 DOI: 10.1002/wrna.1558] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Protein kinase R (PKR), originally known as an antiviral protein, senses various stresses as well as pathogen-driven double-stranded RNAs. Thereby activated PKR provokes diverse downstream events, including eIF2α phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells activation. Consequently, PKR induces apoptosis and inflammation, both of which are highly important in cancer as much as its original antiviral role. Therefore, cellular proteins and RNAs should tightly control PKR activity. PKR and its regulators are often dysregulated in cancer and it is undoubted that such dysregulation contributes to tumorigenesis. However, PKR's precise role in cancer is still in debate, due to incomprehensible and even contradictory data. In this review, we introduce important cellular PKR regulators and discuss about their roles in cancer. Among them, we pay particular attention to nc886, a PKR repressor noncoding RNA that has been identified relatively recently, because its expression pattern in cancer can explain interesting yet obscure oncologic aspects of PKR. Based on nc886 and its regulation of PKR, we have proposed a tumor surveillance model, which reconciles contradictory data about PKR in cancer. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Nawapol Kunkeaw
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Yeon-Su Lee
- Division of Clinical Research, Research Institute, National Cancer Center, Goyang, Korea
| |
Collapse
|
36
|
Wang W, Wang Y, Piao H, Li B, Huang M, Zhu Z, Li D, Wang T, Xu R, Liu K. Circular RNAs as potential biomarkers and therapeutics for cardiovascular disease. PeerJ 2019; 7:e6831. [PMID: 31119072 PMCID: PMC6511224 DOI: 10.7717/peerj.6831] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are genetic regulators that were earlier considered as "junk". In contrast to linear RNAs, they have covalently linked ends with no polyadenylated tails. CircRNAs can act as RNA-binding proteins, sequestering agents, transcriptional regulators, as well as microRNA sponges. In addition, it is reported that some selected circRNAs are transformed into functional proteins. These RNA molecules always circularize through covalent bonds, and their presence has been demonstrated across species. They are usually abundant and stable as well as evolutionarily conserved in tissues (liver, lung, stomach), saliva, exosomes, and blood. Therefore, they have been proposed as the "next big thing" in molecular biomarkers for several diseases, particularly in cancer. Recently, circRNAs have been investigated in cardiovascular diseases (CVD) and reported to play important roles in heart failure, coronary artery disease, and myocardial infarction. Here, we review the recent literature and discuss the impact and the diagnostic and prognostic values of circRNAs in CVD.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Maoxun Huang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Rihao Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin, China
| |
Collapse
|
37
|
Gao S, Cai Y, Zhang H, Hu F, Hou L, Xu Q. Long noncoding RNA DLEU1 aggravates pancreatic ductal adenocarcinoma carcinogenesis via the miR-381/CXCR4 axis. J Cell Physiol 2019; 234:6746-6757. [PMID: 30382579 DOI: 10.1002/jcp.27421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022]
Abstract
Recent evidence has highlighted that long noncoding RNAs (lncRNA) are associated with many diseases, particularly cancer. However, current understanding of the lncRNA deleted in lymphocytic leukemia 1 (DLEU1) in pancreatic ductal adenocarcinoma (PDAC) remains limited. Our studies indicated that the DLEU1 expression level was upregulated in PDAC tissue samples compared with adjacent normal tissue. Moreover, the aberrant overexpression of DLEU1 indicated poor prognosis of patients with PDAC. Loss-of-function experiments revealed that DLEU1 knockdown inhibited the proliferation, migration, and invasion of PDAC cells in vitro and decreased tumor growth in vivo. Bioinformatics analysis predicted that miR-381 potentially targeted the DLEU1 3'-untranslated region (UTR), suggesting an interaction between miR-381 and DLEU1. Furthermore, miR-381 also targeted the chemokine receptor-4 (CXCR4) messenger RNA 3'-UTR, which was validated by luciferase reporter assay. Taken together, our study demonstrated the oncogenic role of DLEU1 in clinical PDAC specimens and cellular experiments, showing the potential involvement of DLEU1/miR-381/CXCR4 pathway. These results provide novel insight into PDAC tumorigenesis.
Collapse
Affiliation(s)
- Song Gao
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| | - Yunyun Cai
- Department of Integrated Traditional Western Medicine, Minhang Branch of Fudan University of Shanghai Cancer Center, Shanghai, China
| | - Hu Zhang
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Hu
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| | - Lengchen Hou
- Department of Anesthesiology, Shanghai 10th People's Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenths People's Hospital, Tongji University, Shanghai, China
- Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
38
|
Laffleur B, Basu U. Biology of RNA Surveillance in Development and Disease. Trends Cell Biol 2019; 29:428-445. [PMID: 30755352 DOI: 10.1016/j.tcb.2019.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/03/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023]
Abstract
The 'RNA world', in which RNA molecules stored information and acquired enzymatic properties, has been proposed to have preceded organism life. RNA is now recognized for its central role in biology, with accumulating evidence implicating coding and noncoding (nc)RNAs in myriad mechanisms regulating cellular physiology and disequilibrium in transcriptomes resulting in pathological conditions. Nascently synthesized RNAs are subjected to stringent regulation by sophisticated RNA surveillance pathways. In this review, we integrate these pathways from a developmental viewpoint, proposing RNA surveillance as the convergence of mechanisms that ensure the exact titration of RNA molecules in a spatiotemporally controlled manner, leading to development without the onset of pathological conditions, including cancer.
Collapse
Affiliation(s)
- Brice Laffleur
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
39
|
Zhang X, Gao X, Hu J, Xie Y, Zuo Y, Xu H, Zhu S. ADAR1p150 Forms a Complex with Dicer to Promote miRNA-222 Activity and Regulate PTEN Expression in CVB3-Induced Viral Myocarditis. Int J Mol Sci 2019; 20:ijms20020407. [PMID: 30669342 PMCID: PMC6359435 DOI: 10.3390/ijms20020407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADAR) are enzymes that regulate RNA metabolism through post-transcriptional mechanisms. ADAR1 is involved in a variety of pathological conditions including inflammation, cancer, and the host defense against viral infections. However, the role of ADAR1p150 in vascular disease remains unclear. In this study, we examined the expression of ADAR1p150 and its role in viral myocarditis (VMC) in a mouse model. VMC mouse cardiomyocytes showed significantly higher expression of ADAR1p150 compared to the control samples. Coimmunoprecipitation verified that ADAR1p150 forms a complex with Dicer in VMC. miRNA-222, which is involved in many cardiac diseases, is highly expressed in cardiomyocytes in VMC. In addition, the expression of miRNA-222 was promoted by ADAR1p150/Dicer. Among the target genes of miRNA-222, the expression of phosphatase-and-tensin (PTEN) protein was significantly reduced in VMC. By using a bioinformatics tool, we found a potential binding site of miRNA-222 on the PTEN gene’s 3′-UTR, suggesting that miRNA-222 might play a regulatory role. In cultured cells, miR-222 suppressed PTEN expression. Our findings suggest that ADAR1p150 plays a key role in complexing with Dicer and promoting the expression of miRNA-222, the latter of which suppresses the expression of the target gene PTEN during VMC. Our work reveals a previously unknown role of ADAR1p150 in gene expression in VMC.
Collapse
Affiliation(s)
- Xincai Zhang
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Xiangting Gao
- Department of Pathology, School of Medicine, Shihezi University, Shihezi 215021, China.
| | - Jun Hu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuxin Xie
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Yuanyi Zuo
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Hongfei Xu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| | - Shaohua Zhu
- Institute of Forensic Medicine, Soochow University, Suzhou 215021, China.
| |
Collapse
|
40
|
Giacopuzzi E, Gennarelli M, Sacco C, Filippini A, Mingardi J, Magri C, Barbon A. Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables. BMC Genomics 2018; 19:963. [PMID: 30587120 PMCID: PMC6307200 DOI: 10.1186/s12864-018-5364-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND A-to-I RNA editing is a co-/post-transcriptional modification catalyzed by ADAR enzymes, that deaminates Adenosines (A) into Inosines (I). Most of known editing events are located within inverted ALU repeats, but they also occur in coding sequences and may alter the function of encoded proteins. RNA editing contributes to generate transcriptomic diversity and it is found altered in cancer, autoimmune and neurological disorders. Emerging evidences indicate that editing process could be influenced by genetic variations, biological and environmental variables. RESULTS We analyzed RNA editing levels in human blood using RNA-seq data from 459 healthy individuals and identified 2079 sites consistently edited in this tissue. As expected, analysis of gene expression revealed that ADAR is the major contributor to editing on these sites, explaining ~ 13% of observed variability. After removing ADAR effect, we found significant associations for 1122 genes, mainly involved in RNA processing. These genes were significantly enriched in genes encoding proteins interacting with ADARs, including 276 potential ADARs interactors and 9 ADARs direct partners. In addition, our analysis revealed several factors potentially influencing RNA editing in blood, including cell composition, age, Body Mass Index, smoke and alcohol consumption. Finally, we identified genetic loci associated with editing levels, including known ADAR eQTLs and a small region on chromosome 7, containing LOC730338, a lincRNA gene that appears to modulate ADARs mRNA expression. CONCLUSIONS Our data provides a detailed picture of the most relevant RNA editing events and their variability in human blood, giving interesting insights on potential mechanisms behind this post-transcriptional modification and its regulation in this tissue.
Collapse
Affiliation(s)
- Edoardo Giacopuzzi
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25123 Brescia, Italy
| | - Massimo Gennarelli
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| | - Chiara Sacco
- Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio, Fatebenefratelli, 25123 Brescia, Italy
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| | - Alice Filippini
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| | - Jessica Mingardi
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| | - Chiara Magri
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, Biology and Genetic Unit, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
41
|
Sagredo EA, Blanco A, Sagredo AI, Pérez P, Sepúlveda-Hermosilla G, Morales F, Müller B, Verdugo R, Marcelain K, Harismendy O, Armisén R. ADAR1-mediated RNA-editing of 3'UTRs in breast cancer. Biol Res 2018; 51:36. [PMID: 30290838 PMCID: PMC6172785 DOI: 10.1186/s40659-018-0185-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022] Open
Abstract
Background Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA (ADAR) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. Results We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3′UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3′UTRs. Interestingly, editing was particularly increased in the 3′UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). Conclusions Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer. Electronic supplementary material The online version of this article (10.1186/s40659-018-0185-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eduardo A Sagredo
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alejandro Blanco
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Alfredo I Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Paola Pérez
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile
| | - Gonzalo Sepúlveda-Hermosilla
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile
| | - Fernanda Morales
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Bettina Müller
- Servicio de Oncología Médica, Instituto Nacional del Cáncer, Avenida Profesor Zañartu 1010, Santiago, Chile.,Grupo Oncológico Cooperativo Chileno de Investigación GOCCHI, Santiago, Chile
| | - Ricardo Verdugo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Katherine Marcelain
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Olivier Harismendy
- Moores Cancer Center and Division of Biomedical Informatics, Department of Medicine, School of Medicine, University of California, San Diego, CA, USA.
| | - Ricardo Armisén
- Center of Excellence in Precision Medicine, Pfizer Chile, Obispo Arturo Espinoza Campos 2526, 7810305, Santiago, Chile. .,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile. .,Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile. .,Grupo Oncológico Cooperativo Chileno de Investigación GOCCHI, Santiago, Chile.
| |
Collapse
|
42
|
Jin B, Jin H, Wu H, Xu J, Li B. Long non-coding RNA SNHG15 promotes CDK14 expression via miR-486 to accelerate non-small cell lung cancer cells progression and metastasis. J Cell Physiol 2018; 233:7164-7172. [PMID: 29630731 PMCID: PMC6001572 DOI: 10.1002/jcp.26543] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been validated to play important role in multiple cancers, including non-small cell lung cancer (NSCLC). In present study, our team investigate the biologic role of SNHG15 in the NSCLC tumorigenesis. LncRNA SNHG15 was significantly upregulated in NSCLC tissue samples and cells, and its overexpression was associated with poor prognosis of NSCLC patients. In vitro, loss-of-functional cellular experiments showed that SNHG15 silencing significantly inhibited the proliferation, promoted the apoptosis, and induced the cycle arrest at G0//G1 phase. In vivo, xenograft assay showed that SNHG15 silencing suppressed tumor growth of NSCLC cells. Besides, SNHG15 silencing decreased CDK14 protein expression both in vivo and vitro. Bioinformatics tools and luciferase reporter assay confirmed that miR-486 both targeted the 3'-UTR of SNHG15 and CDK14 and was negatively correlated with their expression levels. In summary, our study conclude that the ectopic overexpression of SNHG15 contribute to the NSCLC tumorigenesis by regulating CDK14 protein via sponging miR-486, providing a novel insight for NSCLC pathogenesis and potential therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Bing Jin
- Department of Chest SurgeryNanyang City Center HospitalNanyangChina
| | - Hua Jin
- Department of RespirationJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Hai‐Bo Wu
- Fudan UniversityYangpu District, ShanghaiChina
| | - Jian‐Jun Xu
- Fudan UniversityYangpu District, ShanghaiChina
| | - Bing Li
- Central LaboratoryJinshan Hospital Affiliated to Fudan UniversityJinshan District, ShanghaiChina
| |
Collapse
|
43
|
ADAR1 affects HCV infection by modulating innate immune response. Antiviral Res 2018; 156:116-127. [PMID: 29906476 DOI: 10.1016/j.antiviral.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) is a globally prevalent infectious pathogen. As many as 80% of people infected with HCV do not control the virus and develop a chronic infection. Response to interferon (IFN) therapy is widely variable in chronic HCV infected patients, suggesting that HCV has evolved mechanisms to suppress and evade innate immunity responsible for its control and elimination. Adenosine deaminase acting on RNA 1 (ADAR1) is a relevant factor in the regulation of the innate immune response. The loss of ADAR1 RNA-editing activity and the resulting loss of inosine bases in RNA are critical in producing aberrant RLR-mediated innate immune response, mediated by RNA sensors MDA5 and RIG-I. Here, we describe ADAR1 role as a regulator of innate and antiviral immune function in HCV infection, both in vitro and in patients. Polymorphisms within ADAR1 gene were found significantly associated to poor clinical outcome to HCV therapy and advanced liver fibrosis in a cohort of HCV and HIV-1 coinfected patients. Moreover, ADAR1 knockdown in primary macrophages and Huh7 hepatoma cells enhanced IFN and IFN stimulated gene expression and increased HCV replication in vitro. Overall, our results demonstrate that ADAR1 regulates innate immune signaling and is an important contributor to the outcome of the HCV virus-host interaction. ADAR1 is a potential target to boost antiviral immune response in HCV infection.
Collapse
|
44
|
Li J, Xie J, Liu S, Li X, Zhang D, Wang X, Jiang J, Hu W, Zhang Y, Jin B, Zhuang R, Yin W. ADAR1 attenuates allogeneic graft rejection by suppressing miR‐21 biogenesis in macrophages and promoting M2 polarization. FASEB J 2018; 32:5162-5173. [DOI: 10.1096/fj.201701449r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junjie Li
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jiangang Xie
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Shanshou Liu
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xiao Li
- Department of Hepatobiliary SurgerySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Dongliang Zhang
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xianqi Wang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jinquan Jiang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wei Hu
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Yuan Zhang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Boquan Jin
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Ran Zhuang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wen Yin
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
45
|
Filippini A, Bonini D, Giacopuzzi E, La Via L, Gangemi F, Colombi M, Barbon A. Differential Enzymatic Activity of Rat ADAR2 Splicing Variants Is Due to Altered Capability to Interact with RNA in the Deaminase Domain. Genes (Basel) 2018; 9:genes9020079. [PMID: 29419780 PMCID: PMC5852575 DOI: 10.3390/genes9020079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
In mammals, adenosine (A) to inosine (I) RNA editing is performed by adenosine deaminases acting on RNA (ADAR), ADAR1 and ADAR2 enzymes, encoded by mRNAs that might undergo splicing process. In rat, two splicing events produce several isoforms of ADAR2, called ADAR2a, ADAR2b, ADAR2e, and ADAR2f, but only ADAR2a and ADAR2b are translated into an active protein. In particular, they differ for ten amino acids located in the catalytic domain of ADAR2b. Here, we focused on these two isoforms, analyzing the splicing pattern and their different function during rat neuronal maturation. We found an increase of editing levels in cortical neurons overexpressing ADAR2a compared to those overexpressing ADAR2b. These results indicate ADAR2a isoform as the most active one, as reported for the homologous human short variant. Furthermore, we showed that the differential editing activity is not due to a different dimerization of the two isoforms; it seems to be linked to the ten amino acids loop of ADAR2b that might interfere with RNA binding, occupying the space volume in which the RNA should be present in case of binding. These data might shed light on the complexity of ADAR2 regulations.
Collapse
Affiliation(s)
- Alice Filippini
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Daniela Bonini
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Edoardo Giacopuzzi
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Luca La Via
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Fabrizio Gangemi
- Division of Physics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Colombi
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Alessandro Barbon
- Division of Biology and Genetics-Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
46
|
Orecchini E, Frassinelli L, Galardi S, Ciafrè SA, Michienzi A. Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosome Res 2018; 26:45-59. [PMID: 29396793 DOI: 10.1007/s10577-018-9572-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/07/2018] [Indexed: 02/05/2023]
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons represent the only functional family of autonomous transposable elements in humans and formed 17% of our genome. Even though most of the human L1 sequences are inactive, a limited number of copies per individual retain the ability to mobilize by a process termed retrotransposition. The ongoing L1 retrotransposition may result in insertional mutagenesis that could lead to negative consequences such as genetic disease and cancer. For this reason, cells have evolved several mechanisms of defense to restrict L1 activity. Among them, a critical role for cellular deaminases [activation-induced deaminase (AID)/apolipoprotein B mRNA-editing catalytic polypeptide-like (APOBEC) and adenosine deaminases that act on RNA (ADAR) enzymes] has emerged. The majority of the AID/APOBEC family of proteins are responsible for the deamination of cytosine to uracil (C-to-U editing) within DNA and RNA targets. The ADARs convert adenosine bases to inosines (A-to-I editing) within double-stranded RNA (dsRNA) targets. This review will discuss the current understanding of the regulation of LINE-1 retrotransposition mediated by these enzymes.
Collapse
Affiliation(s)
- Elisa Orecchini
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Loredana Frassinelli
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Galardi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Michienzi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
47
|
Lee PY. Vasculopathy, Immunodeficiency, and Bone Marrow Failure: The Intriguing Syndrome Caused by Deficiency of Adenosine Deaminase 2. Front Pediatr 2018; 6:282. [PMID: 30406060 PMCID: PMC6200955 DOI: 10.3389/fped.2018.00282] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/17/2018] [Indexed: 01/02/2023] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic form of systemic vasculopathy that often presents during early childhood. Linked to biallelic mutations in ADA2 (previously CECR1), DADA2 was initially described as a syndrome of recurrent fever, livedo racemosa, early-onset strokes, and peripheral vasculopathy that resembles polyarteritis nodosum. However, the wide spectrum of clinical findings and heterogeneity of disease, even among family members with identical mutations, is increasingly recognized. Evidence of systemic inflammation and vasculopathy is not uniformly present in DADA2 patients and some can remain asymptomatic through adulthood. Humoral immunodeficiency characterized by low immunoglobulin levels and increased risk of infection is another common feature of DADA2. Variable cytopenias including pure red cell aplasia that mimics Diamond-Blackfan anemia can also be primary manifestations of DADA2. How defects in a single gene translate into these heterogeneous presentations remains to be answered. In this review, we will summarize lessons learned from the pleiotropic clinical manifestations of DADA2.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Allergy, Immunology and Rheumatology, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
48
|
Tang ZL, Wang S, Tu C, Wang T, Ma CW, Liu Y, Xiao SX, Wang XP. Eight Novel Mutations of the ADAR1 Gene in Chinese Patients with Dyschromatosis Symmetrica Hereditaria. Genet Test Mol Biomarkers 2017; 22:104-108. [PMID: 29185800 PMCID: PMC5806071 DOI: 10.1089/gtmb.2017.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS To identify potential novel gene mutations in Chinese patients with dyschromatosis symmetrica hereditaria (DSH). METHODS We enrolled 8 Chinese patients with familial DSH, 5 Chinese patients with sporadic DSH, and 100 randomly selected healthy individuals in this study. The genome of each participant was extracted from peripheral blood samples. Sanger sequencing of the ADAR1 gene was performed after polymerase chain reaction amplifications. Comparisons between the DNA sequences of the affected individuals and the NCBI database were performed. RESULTS We detected eight novel heterozygous mutations and five previously reported mutations in the ADAR1 gene in our patients. The novel mutations include c.1934 + 3A>G, c.2749A>G, c.2311insA, c.3233G>A, c.3019 + 1G>T, c.2894C>A, c.1202_1205del, and c.2280C>A. These detected novel mutations are predicted to induce two frame-shift mutations, one nonsense mutation, three missense mutations, and two splice-site mutations. CONCLUSIONS The findings of this study expand our knowledge of the range of ADAR1 gene mutations in DSH and will contribute to identifying correlations between the various DSH phenotypes and genotypes. Furthermore, they may provide insight into the underlying pathogenic mechanism.
Collapse
Affiliation(s)
- Zhuang-Li Tang
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Shuang Wang
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Chen Tu
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Tian Wang
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Cheng-Wen Ma
- 2 Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Yan Liu
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Sheng-Xiang Xiao
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| | - Xiao-Peng Wang
- 1 Department of Dermatology and Venereology, the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
49
|
The role of A-to-I RNA editing in cancer development. Curr Opin Genet Dev 2017; 48:51-56. [PMID: 29127844 DOI: 10.1016/j.gde.2017.10.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most common type of post-transcriptional nucleotide modification in humans, which is catalyzed in ADAR enzymes. Recent genomic studies have revealed thousands of altered RNA editing events in various cancer tissues, leading to diverse functional consequences. A critical role of individual A-to-I RNA editing events in cancer has been reported. Here, we review the current state of our knowledge on key A-to-I RNA editing events in coding and non-coding regions for their roles in cancer development and discuss their potential clinical utility. A better understanding of A-to-I RNA editing and its oncogenic mechanisms may facilitate the development of novel cancer therapeutic strategies.
Collapse
|
50
|
Parker WB, Sorscher EJ. Use of E. coli Purine Nucleoside Phosphorylase in the Treatment of Solid Tumors. Curr Pharm Des 2017; 23:CPD-EPUB-86774. [PMID: 29119917 PMCID: PMC6224313 DOI: 10.2174/1381612823666171109101851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The selective expression of non-human genes in tumor tissue to activate non-toxic compounds (Gene Directed Prodrug Enzyme Therapy, GDEPT) is a novel strategy designed for killing tumor cells in patients with little or no systemic toxicity. Numerous non-human genes have been evaluated, but none have yet been successful in the clinic. METHODS Unlike human purine nucleoside phosphorylase (PNP), E. coli PNP accepts adenine containing nucleosides as substrates, and is therefore able to selectively activate non-toxic purine analogs in tumor tissue. Various in vitro and in vivo assays have been utilized to evaluate E. coli PNP as a potential activating enzyme. RESULTS We and others have demonstrated excellent in vitro and in vivo anti-tumor activity with various GDEPT strategies utilizing E. coli PNP to activate purine nucleoside analogs. A phase I clinical trial utilizing recombinant adenoviral vector for delivery of E. coli PNP to solid tumors followed by systemic administration of fludarabine phosphate (NCT01310179; IND# 14271) has recently been completed. In this trial, significant anti-tumor activity was demonstrated with negligible toxicity related to the therapy. The mechanism of cell kill (inhibition of RNA and protein synthesis) is distinct from all currently used anticancer drugs and all experimental compounds under development. The approach has demonstrated excellent ability to kill neighboring tumor cells that do not express E. coli PNP, is active against non-proliferating and proliferating tumors cells (as well as tumor stem cells, stroma), and is therefore very effective against solid tumors with a low growth fraction. CONCLUSION The unique attributes distinguish this approach from other GDEPT strategies and are precisely those required to mediate significant improvements in antitumor therapy.
Collapse
|