1
|
Kumar J, Kumar A, Gupta Y, Vashisht K, Kumar S, Sharma A, Kumar R, Sharon A, Tripathi PK, Das R, Singh OP, Singh S, Chakraborti S, Sunil S, Pandey KC. A cub and sushi domain-containing protein with esterase-like activity confers insecticide resistance in the Indian malaria vector Anopheles stephensi. J Biol Chem 2024; 300:107759. [PMID: 39260695 PMCID: PMC11474193 DOI: 10.1016/j.jbc.2024.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Chemical insecticides (organophosphates and pyrethroids) in the form of IRS (Indoor Residual Sprays) and LLINs (Long Lasting Insecticidal Nets) are the cornerstone for vector control, globally. However, their incessant use has resulted in widespread development of resistance in mosquito vectors, warranting continuous monitoring and investigation of the underlying mechanisms of resistance. Here, we identified a previously uncharacterized- Cub and Sushi Domain containing Insecticide Resistance (CSDIR) protein and generated evidence for its role in mediating insecticide resistance in the Anopheles stephensi. A strong binding affinity of the CSDIR protein towards different classes of insecticide molecules-malathion (KD 6.43 μM) and deltamethrin (KD 46.7 μM) were demonstrated using MD simulation studies and Surface Plasmon Resonance (SPR) experiments. Further, the recombinant CSDIR913-1190 protein exhibited potent esterase-like activity (α-naphthyl acetate (α-NA)- 1.356 ± 0.262 mM/min/mg and β-naphthyl acetate (β -NA)- 1.777 ± 0.220 mM/min/mg). Interestingly, dsRNA-mediated gene silencing of the CSDIR transcripts caused >60% mortality in resistant An. stephensi upon 1-h exposure to deltamethrin and malathion insecticides, compared to the control group. A significant reduction in the esterase-like activity was also observed against α-NA (p = 0.004) and β-NA (p = 0.025) in CSDIR silenced mosquitoes compared to the control group. Using computational analysis and experimental data, our results provided significant evidence of the involvement of the CSDIR protein in mediating insecticide resistance in Anopheles mosquitoes. Thereby making the CSDIR protein, a novel candidate for exploration of novel insecticide molecules. These data would also be helpful in further understanding the development of metabolic resistance by the Anopheles vector.
Collapse
Affiliation(s)
- Jatin Kumar
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ankit Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Yash Gupta
- Department of Medicine, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Kapil Vashisht
- ICMR- National Institute of Malaria Research, New Delhi, India
| | - Shivam Kumar
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, Jharkhand, India
| | - Arvind Sharma
- ICMR- National Institute of Malaria Research, New Delhi, India
| | - Raj Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ashoke Sharon
- Department of Chemistry, Birla Institute of Technology-Mesra, Ranchi, Jharkhand, India
| | | | - Ram Das
- ICMR- National Institute of Malaria Research, New Delhi, India
| | | | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumyananda Chakraborti
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kailash C Pandey
- ICMR- National Institute of Malaria Research, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
2
|
Moss S, Jones RT, Pretorius E, da Silva ET, Higgins M, Kristan M, Acford-Palmer H, Collins EL, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Phenotypic evidence of deltamethrin resistance and identification of selective sweeps in Anopheles mosquitoes on the Bijagós Archipelago, Guinea-Bissau. Sci Rep 2024; 14:22840. [PMID: 39354094 PMCID: PMC11445403 DOI: 10.1038/s41598-024-73996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Vector control in the Bijagós Archipelago of Guinea-Bissau currently relies on pyrethroid insecticide-treated nets. However, data on insecticide resistance in Guinea-Bissau is limited. This study identified deltamethrin resistance in the Anopheles gambiae sensu lato complex on Bubaque island using WHO tube tests in November 2022. Whole genome sequencing of An. gambiae sensu stricto mosquitoes identified six single nucleotide polymorphisms (SNPs) previously associated with, or putatively associated with, insecticide resistance: T791M, L995F, N1570Y, A1746S and P1874L in the vgsc gene, and L119V in the gste2 gene. Twenty additional non-synonymous SNPs were identified in insecticide-resistance associated genes. Four of these SNPs were present at frequencies over 5% in the population: T154S, I126F and G26S in the vgsc gene and A65S in ace1. Genome wide selection scans using Garud's H12 statistic identified two selective sweeps: one in chromosome X and one in chromosome 2R. Both selective sweeps overlap with metabolic genes previously associated with insecticide resistance, including cyp9k1 and the cyp6aa/cyp6p gene cluster. This study presents the first phenotypic testing for deltamethrin resistance and the first whole genome sequence data for Anophelesgambiae mosquitoes from the Bijagós, contributing data of significance for vector control policy in this region.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St, George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Dennis TPW, Pescod P, Barasa S, Cerdeira LT, Lucas ER, Clarkson CS, Miles A, Asidi A, Manzambi EZ, Metelo E, Zanga J, Nsalambi S, Irish SR, Donnelly MJ, Agossa F, Weetman D, Tezzo FW. Cryptic population structure and insecticide resistance in Anopheles gambiae from the southern Democratic Republic of Congo. Sci Rep 2024; 14:21782. [PMID: 39294180 PMCID: PMC11410927 DOI: 10.1038/s41598-024-70885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024] Open
Abstract
The Democratic Republic of Congo (DRC) suffers from one of the highest malaria burdens worldwide, but information on its Anopheles vector populations is relatively limited. Preventative malaria control in DRC is reliant on pyrethroid-treated nets, raising concerns over the potential impacts of insecticide resistance. We sampled Anopheles gambiae from three geographically distinct populations (Kimpese, Kapolowe and Mikalayi) in southern DRC, collecting from three sub-sites per population and characterising mosquito collections from each for resistance to pyrethroids using WHO tube bioassays. Resistance to each of three different pyrethroids was generally high in An. gambiae with < 92% mortality in all tests, but varied between collections, with mosquitoes from Kimpese being the most resistant. Whole genome sequencing of 165 An. gambiae revealed evidence for genetic differentiation between Kimpese and Kapolowe/Mikalayi, but not between the latter two sample sites despite separation of approximately 800 km. Surprisingly, there was evidence of population structure at a small spatial scale between collection subsites in Kimpese, despite separation of just tens of kilometres. Intra-population (H12) and inter-population (FST) genome scans identified multiple peaks corresponding to genes associated with insecticide resistance such as the voltage gated sodium channel (Vgsc) target site on chromosome 2L, a Cyp6 cytochrome P450 cluster on chromosome arm 2R, and the Cyp9k1 P450 gene on chromosome X. In addition, in the Kimpese subsites, the P450 redox partner gene Cpr showed evidence for contemporary selection (H12) and population differentiation (FST) meriting further exploration as a potential resistance associated marker.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Poppy Pescod
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sonia Barasa
- Pan-African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Alex Asidi
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Road, Derby, DE22 3NA, UK
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| | - Emile Z Manzambi
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| | - Emery Metelo
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Science and Technology, University of Kinshasa, Kinshasa, République Démocratique du Congo
| | - Josue Zanga
- Faculty of Medicine, University of Kinshasa, B.P. 834 KIN XI, Kinshasa, République Démocratique du Congo
| | - Steve Nsalambi
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Veterinary Medicine, National University of Education, B.P 8815 Kinshasa, Kinshasa, République Démocratique du Congo
| | - Seth R Irish
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fiacre Agossa
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Medicine, University of Kinshasa, B.P. 834 KIN XI, Kinshasa, République Démocratique du Congo
- U.S. President's Malaria Initiative (PMI) Evolve Project, Abt Associates, 6130 Executive Boulevard, Rockville, MD, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Francis Wat'senga Tezzo
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| |
Collapse
|
4
|
Moss S, Pretorius E, Ceesay S, da Silva ET, Hutchins H, Ndiath MO, Acford-Palmer H, Collins EL, Higgins M, Phelan J, Jones RT, Vasileva H, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Whole genome sequence analysis of population structure and insecticide resistance markers in Anopheles melas from the Bijagós Archipelago, Guinea-Bissau. Parasit Vectors 2024; 17:396. [PMID: 39294791 PMCID: PMC11412053 DOI: 10.1186/s13071-024-06476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Anopheles melas is an understudied malaria vector with a potential role in malaria transmission on the Bijagós Archipelago of Guinea-Bissau. This study presents the first whole-genome sequencing and population genetic analysis for this species from the Bijagós. To our knowledge, this also represents the largest population genetic analysis using WGS data from non-pooled An. melas mosquitoes. METHODS WGS was conducted for 30 individual An. melas collected during the peak malaria transmission season in 2019 from six different islands on the Bijagós Archipelago. Bioinformatics tools were used to investigate the population structure and prevalence of insecticide resistance markers in this mosquito population. RESULTS Insecticide resistance mutations associated with pyrethroid resistance in Anopheles gambiae s.s. from the Bijagós were absent in the An. melas population, and no signatures of selective sweeps were identified in insecticide resistance-associated genes. Analysis of structural variants identified a large duplication encompassing the cytochrome-P450 gene cyp9k1. Phylogenetic analysis using publicly available mitochondrial genomes indicated that An. melas from the Bijagós split into two phylogenetic groups because of differentiation on the mitochondrial genome attributed to the cytochrome C oxidase subunits COX I and COX II and the NADH dehydrogenase subunits 1, 4, 4L and 5. CONCLUSIONS This study identified an absence of insecticide-resistant SNPs common to An. gambiae in the An. melas population, but did identify structural variation over insecticide resistance-associated genes. Furthermore, this study presents novel insights into the population structure of this malaria vector using WGS analysis. Additional studies are required to further understand the role of this vector in malaria transmission.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sainey Ceesay
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Harry Hutchins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Mamadou Ousmane Ndiath
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jody Phelan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St. George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut Für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
5
|
Ibrahim SS, Kouamo MFM, Muhammad A, Irving H, Riveron JM, Tchouakui M, Wondji CS. Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/- b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus. Int J Mol Sci 2024; 25:8092. [PMID: 39125661 PMCID: PMC11311542 DOI: 10.3390/ijms25158092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 08/12/2024] Open
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management.
Collapse
Affiliation(s)
- Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano PMB 3011, Nigeria
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Mersimine F. M. Kouamo
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
- Center of Biotechnology Research, Bayero University, Kano PMB 3011, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| | - Jacob M. Riveron
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Magellan Tchouakui
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
| | - Charles S. Wondji
- Center for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (M.F.M.K.); (J.M.R.); (M.T.)
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; (A.M.); (H.I.)
| |
Collapse
|
6
|
Wangrawa DW, Odero JO, Baldini F, Okumu F, Badolo A. Distribution and insecticide resistance profile of the major malaria vector Anopheles funestus group across the African continent. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:119-137. [PMID: 38303659 DOI: 10.1111/mve.12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
There has been significant progress in malaria control in the last 2 decades, with a decline in mortality and morbidity. However, these gains are jeopardised by insecticide resistance, which negatively impacts the core interventions, such as insecticide-treated nets (ITN) and indoor residual spraying (IRS). While most malaria control and research efforts are still focused on Anopheles gambiae complex mosquitoes, Anopheles funestus remains an important vector in many countries and, in some cases, contributes to most of the local transmission. As countries move towards malaria elimination, it is important to ensure that all dominant vector species, including An. funestus, an important vector in some countries, are targeted. The objective of this review is to compile and discuss information related to A. funestus populations' resistance to insecticides and the mechanisms involved across Africa, emphasising the sibling species and their resistance profiles in relation to malaria elimination goals. Data on insecticide resistance in An. funestus malaria vectors in Africa were extracted from published studies. Online bibliographic databases, including Google Scholar and PubMed, were used to search for relevant studies. Articles published between 2000 and May 2023 reporting resistance of An. funestus to insecticides and associated mechanisms were included. Those reporting only bionomics were excluded. Spatial variation in species distribution and resistance to insecticides was recorded from 174 articles that met the selection criteria. It was found that An. funestus was increasingly resistant to the four classes of insecticides recommended by the World Health Organisation for malaria vector control; however, this varied by country. Insecticide resistance appears to reduce the effectiveness of vector control methods, particularly IRS and ITN. Biochemical resistance due to detoxification enzymes (P450s and glutathione-S-transferases [GSTs]) in An. funestus was widely recorded. However, An. funestus in Africa remains susceptible to other insecticide classes, such as organophosphates and neonicotinoids. This review highlights the increasing insecticide resistance of An. funestus mosquitoes, which are important malaria vectors in Africa, posing a significant challenge to malaria control efforts. While An. funestus has shown resistance to the recommended insecticide classes, notably pyrethroids and, in some cases, organochlorides and carbamates, it remains susceptible to other classes of insecticides such as organophosphates and neonicotinoids, providing potential alternative options for vector control strategies. The study underscores the need for targeted interventions that consider the population structure and geographical distribution of An. funestus, including its sibling species and their insecticide resistance profiles, to effectively achieve malaria elimination goals.
Collapse
Affiliation(s)
- Dimitri W Wangrawa
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Département des Sciences de la Vie et de la Terre, Université Norbert Zongo, Koudougou, Burkina Faso
| | - Joel O Odero
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Francesco Baldini
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Fredros Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Ifakara, Tanzania
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
7
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583874. [PMID: 38559088 PMCID: PMC10979859 DOI: 10.1101/2024.03.11.583874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Zoh MG, Bonneville JM, Laporte F, Tutagata J, Sadia CG, Fodjo BK, Mouhamadou CS, McBeath J, Schmitt F, Horstmann S, Reynaud S, David JP. Deltamethrin and transfluthrin select for distinct transcriptomic responses in the malaria vector Anopheles gambiae. Malar J 2023; 22:256. [PMID: 37667239 PMCID: PMC10476409 DOI: 10.1186/s12936-023-04673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The widespread use of pyrethroid insecticides in Africa has led to the development of strong resistance in Anopheles mosquitoes. Introducing new active ingredients can contribute to overcome this phenomenon and ensure the effectiveness of vector control strategies. Transfluthrin is a polyfluorinated pyrethroid whose structural conformation was thought to prevent its metabolism by cytochrome P450 monooxygenases in malaria vectors, thus representing a potential alternative for managing P450-mediated resistance occurring in the field. In this study, a controlled selection was used to compare the dynamics of resistance between transfluthrin and the widely used pyrethroid deltamethrin in the mosquito Anopheles gambiae. Then, the associated molecular mechanisms were investigated using target-site mutation genotyping and RNA-seq. METHODS A field-derived line of An. gambiae carrying resistance alleles at low frequencies was used as starting material for a controlled selection experiment. Adult females were selected across 33 generations with deltamethrin or transfluthrin, resulting in three distinct lines: the Delta-R line (selected with deltamethrin), the Transflu-R line (selected with transfluthrin) and the Tiassale-S line (maintained without selection). Deltamethrin and transfluthrin resistance levels were monitored in each selected line throughout the selection process, as well as the frequency of the L1014F kdr mutation. At generation 17, cross-resistance to other public health insecticides was investigated and transcriptomes were sequenced to compare gene transcription variations and polymorphisms associated with adaptation to each insecticide. RESULTS A rapid increase in resistance to deltamethrin and transfluthrin was observed throughout the selection process in each selected line in association with an increased frequency of the L1014F kdr mutation. Transcriptomic data support a broader response to transfluthrin selection as compared to deltamethrin selection. For instance, multiple detoxification enzymes and cuticle proteins were specifically over-transcribed in the Transflu-R line including the known pyrethroid metabolizers CYP6M2, CYP9K1 and CYP6AA1 together with other genes previously associated with resistance in An. gambiae. CONCLUSION This study confirms that recurrent exposure of adult mosquitoes to pyrethroids in a public health context can rapidly select for various resistance mechanisms. In particular, it indicates that in addition to target site mutations, the polyfluorinated pyrethroid transfluthrin can select for a broad metabolic response, which includes some P450s previously associated to resistance to classical pyrethroids. This unexpected finding highlights the need for an in-depth study on the adaptive response of mosquitoes to newly introduced active ingredients in order to effectively guide and support decision-making programmes in malaria control.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France.
- Vector Control Product Evaluation Centre (VCPEC) Institut Pierre Richet (VCPEC IPR)/INSP, Bouaké, Côte d'Ivoire.
| | - Jean-Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Frederic Laporte
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Jordan Tutagata
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | | | - Behi K Fodjo
- Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | | | - Justin McBeath
- Envu, Milton Hall, Ely Road. Milton, Cambridge, CB24 6WZ, UK
| | - Frederic Schmitt
- Envu, 2022 Environmental Science FR S.A.S, 3 Place Giovanni Da Verrazzano, 69009, Lyon, France
| | - Sebastian Horstmann
- Envu, 2022 ES Deutschland GmbH, Alfred-Nobel-Straße 50, 40789, Monheim, Germany
| | - Stéphane Reynaud
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), Grenoble-Alpes University, Savoie Mont-Blanc University, CNRS, 38041, Grenoble, France
| |
Collapse
|
10
|
Nolden M, Velten R, Paine MJI, Nauen R. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105356. [PMID: 36963931 DOI: 10.1016/j.pestbp.2023.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert Velten
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
11
|
Mugenzi LMJ, A Tekoh T, S Ibrahim S, Muhammad A, Kouamo M, Wondji MJ, Irving H, Hearn J, Wondji CS. The duplicated P450s CYP6P9a/b drive carbamates and pyrethroids cross-resistance in the major African malaria vector Anopheles funestus. PLoS Genet 2023; 19:e1010678. [PMID: 36972302 PMCID: PMC10089315 DOI: 10.1371/journal.pgen.1010678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 04/11/2023] [Accepted: 02/23/2023] [Indexed: 03/29/2023] Open
Abstract
Cross-resistance to insecticides in multiple resistant malaria vectors is hampering resistance management. Understanding its underlying molecular basis is critical to implementation of suitable insecticide-based interventions. Here, we established that the tandemly duplicated cytochrome P450s, CYP6P9a/b are driving carbamate and pyrethroid cross-resistance in Southern African populations of the major malaria vector Anopheles funestus. Transcriptome sequencing revealed that cytochrome P450s are the most over-expressed genes in bendiocarb and permethrin-resistant An. funestus. The CYP6P9a and CYP6P9b genes are overexpressed in resistant An. funestus from Southern Africa (Malawi) versus susceptible An. funestus (Fold change (FC) is 53.4 and 17 respectively), while the CYP6P4a and CYP6P4b genes are overexpressed in resistant An. funestus in Ghana, West Africa, (FC is 41.1 and 17.2 respectively). Other up-regulated genes in resistant An. funestus include several additional cytochrome P450s (e.g. CYP9J5, CYP6P2, CYP6P5), glutathione-S transferases, ATP-binding cassette transporters, digestive enzymes, microRNA and transcription factors (FC<7). Targeted enrichment sequencing strongly linked a known major pyrethroid resistance locus (rp1) to carbamate resistance centering around CYP6P9a/b. In bendiocarb resistant An. funestus, this locus exhibits a reduced nucleotide diversity, significant p-values when comparing allele frequencies, and the most non-synonymous substitutions. Recombinant enzyme metabolism assays showed that both CYP6P9a/b metabolize carbamates. Transgenic expression of CYP6P9a/b in Drosophila melanogaster revealed that flies expressing both genes were significantly more resistant to carbamates than controls. Furthermore, a strong correlation was observed between carbamate resistance and CYP6P9a genotypes with homozygote resistant An. funestus (CYP6P9a and the 6.5kb enhancer structural variant) exhibiting a greater ability to withstand bendiocarb/propoxur exposure than homozygote CYP6P9a_susceptible (e.g Odds ratio = 20.8, P<0.0001 for bendiocarb) and heterozygotes (OR = 9.7, P<0.0001). Double homozygote resistant genotype (RR/RR) were even more able to survive than any other genotype combination showing an additive effect. This study highlights the risk that pyrethroid resistance escalation poses to the efficacy of other classes of insecticides. Available metabolic resistance DNA-based diagnostic assays should be used by control programs to monitor cross-resistance between insecticides before implementing new interventions.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Sulaiman S Ibrahim
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Department of Biochemistry, Bayero University, Kano, Nigeria
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Mersimine Kouamo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Murielle J Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland's Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
12
|
Peng H, Wang H, Guo X, Lv W, Liu L, Wang H, Cheng P, Liu H, Gong M. In Vitro and In Vivo Validation of CYP6A14 and CYP6N6 Participation in Deltamethrin Metabolic Resistance in Aedes albopictus. Am J Trop Med Hyg 2023; 108:609-618. [PMID: 36746656 PMCID: PMC9978559 DOI: 10.4269/ajtmh.22-0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 02/08/2023] Open
Abstract
The extensive use of chemical insecticides for public health and agricultural purposes has increased the occurrence and development of insecticide resistance. This study used transcriptome sequencing to screen 10 upregulated metabolic detoxification enzyme genes from Aedes albopictus resistant strains. Of these, CYP6A14 and CYP6N6 were found to be substantially overexpressed in the deltamethrin-induced expression test, indicating their role in deltamethrin resistance in Ae. albopictus. Furthermore, the corresponding 60-kDa recombinant proteins, CYP6A14 and CYP6N6, were successfully expressed using the Escherichia coli expression system. Enzyme activity studies revealed that CYP6A14 (5.84 U/L) and CYP6N6 (6.3 U/L) have cytochrome P450 (CYP450) enzyme activity. In vitro, the metabolic analysis revealed that the recombinant proteins degraded deltamethrin into 1-oleoyl-sn-glycero-3-phosphoethanolamine and 2',2'-dibromo-2'-deoxyguanosine. Subsequently, the CYP450 genes in larvae of Ae. albopictus were silenced by RNA interference technology to study deltamethrin resistance in vivo. The silencing of CYP6A14 and CYP6N6 increased the mortality rate of mosquitoes without affecting their survival time, spawning quantity, hatching rate, and other normal life activities. Altogether, CYP6A14 and CYP6N6 belong to the CYP6 family and mutually increase deltamethrin resistance in Ae. albopictus.
Collapse
Affiliation(s)
- Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenxiang Lv
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| |
Collapse
|
13
|
Tchouakui M, Assatse T, Tazokong HR, Oruni A, Menze BD, Nguiffo-Nguete D, Mugenzi LMJ, Kayondo J, Watsenga F, Mzilahowa T, Osae M, Wondji CS. Detection of a reduced susceptibility to chlorfenapyr in the malaria vector Anopheles gambiae contrasts with full susceptibility in Anopheles funestus across Africa. Sci Rep 2023; 13:2363. [PMID: 36759650 PMCID: PMC9911381 DOI: 10.1038/s41598-023-29605-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
New insecticides have recently been produced to help control pyrethroid-resistant malaria vectors including the pyrrole, chlorfenapyr. Monitoring the susceptibility of mosquito populations against this new product and potential cross-resistance with current insecticides is vital for better resistance management. In this study, we assessed the resistance status of the major malaria vectors Anopheles gambiae and Anopheles funestus to chlorfenapyr across Africa and explored potential cross-resistance with known pyrethroid resistance markers. Efficacy of chlorfenapyr 100 µg/ml against An. gambiae and An. funestus from five Cameroonian locations, the Democratic Republic of Congo, Ghana, Uganda, and Malawi was assessed using CDC bottle assays. Synergist assays were performed with PBO (4%), DEM (8%) and DEF (0.25%) and several pyrethroid-resistant markers were genotyped in both species to assess potential cross-resistance between pyrethroids and chlorfenapyr. Resistance to chlorfenapyr was detected in An. gambiae populations from DRC (Kinshasa) (mortality rate: 64.3 ± 7.1%) Ghana (Obuasi) (65.9 ± 7.4%), Cameroon (Mangoum; 75.2 ± 7.7% and Nkolondom; 86.1 ± 7.4). In contrast, all An. funestus populations were fully susceptible. A negative association was observed between the L1014F-kdr mutation and chlorfenapyr resistance with a greater frequency of homozygote resistant mosquitoes among the dead mosquitoes after exposure compared to alive (OR 0.5; P = 0.02) whereas no association was found between GSTe2 (I114T in An. gambiae; L119F in An. funestus) and resistance to chlorfenapyr. A significant increase of mortality to chlorfenapyr 10 µg/ml was observed in An. funestus after to PBO, DEM and DEF whereas a trend for a decreased mortality was observed in An. gambiae after PBO pre-exposure. This study reveals a greater risk of chlorfenapyr resistance in An. gambiae populations than in An. funestus. However, the higher susceptibility in kdr-resistant mosquitoes points to higher efficacy of chlorfenapyr against the widespread kdr-based pyrethroid resistance.
Collapse
Affiliation(s)
- Magellan Tchouakui
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
| | - Tatiane Assatse
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Hervé R Tazokong
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Ambrose Oruni
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Benjamin D Menze
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Daniel Nguiffo-Nguete
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Leon M J Mugenzi
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon
| | - Jonathan Kayondo
- Entomology Department, Uganda Virus Research Institute (UVRI), P.O.Box 49, Entebbe, Uganda
| | - Francis Watsenga
- Institut National de Recherche Biomédicale, P.O Box 1197, Kinshasa, Democratic Republic of Congo
| | - Themba Mzilahowa
- Entomology Department, Malaria Alert Centre (MAC), Kamuzu University of Health Sciences (KUHeS), P.O Box 265, Blantyre, Malawi
| | - Michael Osae
- Radiation Entomology and Pest Management Centre, Ghana Atomic Energy Commission, Legon, PO Box LG80, Accra, Ghana
| | - Charles S Wondji
- Medical Entomology Department, Centre for Research in Infectious Diseases (CRID), P.O. Box 13501, Yaoundé, Cameroon.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
- International Institute of Tropical Agriculture (IITA), P.O. Box 2008, Yaoundé, Cameroon.
| |
Collapse
|
14
|
Nolden M, Paine MJI, Nauen R. Sequential phase I metabolism of pyrethroids by duplicated CYP6P9 variants results in the loss of the terminal benzene moiety and determines resistance in the malaria mosquito Anopheles funestus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103813. [PMID: 35870762 DOI: 10.1016/j.ibmb.2022.103813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid resistance in Anopheles funestus is threatening the eradication of malaria. One of the major drivers of pyrethroid resistance in An. funestus are cytochrome P450 monooxygenases CYP6P9a and CYP6P9b, which are found upregulated in resistant An. funestus populations from Sub-Saharan Africa and are known to metabolise pyrethroids. Here, we have functionally expressed CYP6P9a and CYP6P9b variants and investigated their interactions with azole-fungicides and pyrethroids. Some azole fungicides such as prochloraz inhibited CYP6P9a and CYP6P9b at nanomolar concentrations, whereas pyrethroids were weak inhibitors (>100 μM). Amino acid sequence comparisons suggested that a valine to isoleucine substitution at position 310 in the active site cavity of CYP6P9a and CYP6P9b, respectively, might affect substrate binding and metabolism. We therefore swapped the residues by site directed mutagenesis to produce CYP6P9aI310V and CYP6P9bV310I. CYP6P9bV310I produced stronger metabolic activity towards coumarin substrates and pyrethroids, particularly permethrin. The V310I mutation was previously also detected in a pyrethroid resistant field population of An. funestus in Benin. Additionally, we found the first metabolite of permethrin and deltamethrin after hydroxylation, 4'OH permethrin and 4'OH deltamethrin, were also suitable substrates for CYP6P9-variants, and were depleted by both enzymes to a higher extent than as their respective parent compounds (approximately 20% more active). Further, we found that both metabolites were toxic against An. funestus FANG (pyrethroid susceptible) but not towards FUMOZ-R (pyrethroid resistant) mosquitoes, the latter suggesting detoxification by overexpressed CYP6P9a and CYP6P9b. We confirmed by mass-spectrometric analysis that CYP6P9a and CYP6P9b are capable of cleaving phenoxybenzyl-ethers in type I pyrethroid permethrin and type II pyrethroid deltamethrin and that both enzymes preferentially metabolise trans-permethrin. This provides new insight into the metabolism of pyrethroids and a greater understanding of the molecular mechanisms of pyrethroid resistance in An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789, Monheim am Rhein, Germany.
| |
Collapse
|
15
|
Njoroge H, van't Hof A, Oruni A, Pipini D, Nagi S, Lynd A, Lucas ER, Tomlinson S, Grau‐Bove X, McDermott D, Wat'senga FT, Manzambi EZ, Agossa FR, Mokuba A, Irish S, Kabula B, Mbogo C, Bargul J, Paine MJI, Weetman D, Donnelly MJ. Identification of a rapidly-spreading triple mutant for high-level metabolic insecticide resistance in Anopheles gambiae provides a real-time molecular diagnostic for antimalarial intervention deployment. Mol Ecol 2022; 31:4307-4318. [PMID: 35775282 PMCID: PMC9424592 DOI: 10.1111/mec.16591] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022]
Abstract
Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236 M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolize pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets cotreated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid cotreated LLINs across African countries.
Collapse
Affiliation(s)
- Harun Njoroge
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Kenya Medical Research Institute (KEMRI) Centre for Geographic Medicine CoastKEMRI‐Wellcome Trust Research ProgrammeKilifiKenya
| | - Arjen van't Hof
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Ambrose Oruni
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- College of Veterinary MedicineAnimal Resources and Bio‐securityMakerere UniversityKampalaUganda
| | - Dimitra Pipini
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Sanjay C. Nagi
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Amy Lynd
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Eric R. Lucas
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Sean Tomlinson
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Xavi Grau‐Bove
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Daniel McDermott
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Emile Z. Manzambi
- Institut National de Recherche BiomédicaleKinshasaDemocratic Republic of Congo
| | - Fiacre R. Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt AssociatesRockvilleMarylandUSA
| | - Arlette Mokuba
- USAID President's Malaria Initiative, VectorLink Project, Abt AssociatesRockvilleMarylandUSA
| | - Seth Irish
- U.S. President's Malaria Initiative and Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Bilali Kabula
- Amani Research CentreNational Institute for Medical ResearchTanzania
| | - Charles Mbogo
- Population Health UnitKEMRI‐Wellcome Trust Research ProgrammeNairobiKenya
- KEMRI‐Centre for Geographic Medicine Research CoastKilifiKenya
| | - Joel Bargul
- Department of BiochemistryJomo Kenyatta University of Agriculture and TechnologyJujaKenya
- The Animal Health DepartmentInternational Centre of Insect Physiology and EcologyNairobiKenya
| | - Mark J. I. Paine
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - David Weetman
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Martin J. Donnelly
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Parasites and Microbes ProgrammeWellcome Sanger InstituteCambridgeUK
| |
Collapse
|
16
|
Hearn J, Djoko Tagne CS, Ibrahim SS, Tene-Fossog B, Mugenzi LMJ, Irving H, Riveron JM, Weedall GD, Wondji CS. Multi-omics analysis identifies a CYP9K1 haplotype conferring pyrethroid resistance in the malaria vector Anopheles funestus in East Africa. Mol Ecol 2022; 31:3642-3657. [PMID: 35546741 PMCID: PMC9321817 DOI: 10.1111/mec.16497] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
Abstract
Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi‐omics approach, followed‐up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field‐applicable markers to better track resistance Africa‐wide.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Carlos S Djoko Tagne
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39 Bambili, Bamenda, Cameroon
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Billy Tene-Fossog
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Leon M J Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth D Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon
| |
Collapse
|
17
|
Kusimo MO, Mackenzie-Impoinvil L, Ibrahim SS, Muhammad A, Irving H, Hearn J, Lenhart AE, Wondji CS. Pyrethroid resistance in the New World malaria vector Anopheles albimanus is mediated by cytochrome P450 CYP6P5. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105061. [PMID: 35430064 PMCID: PMC9125164 DOI: 10.1016/j.pestbp.2022.105061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Pyrethroid resistance in the malaria vector Anopheles albimanus presents an obstacle to malaria elimination in the Americas. Here, An. albimanus CYP6P5 (the most overexpressed P450 in a Peruvian population) was functionally characterized. Recombinant CYP6P5 metabolized the type II pyrethroids, deltamethrin and α-cypermethrin with comparable affinities (KM of 3.3 μM ± 0.4 and 3.6 μM ± 0.5, respectively), but exhibited a 2.7-fold higher catalytic rate for α-cypermethrin (kcat of 6.02 min-1 ± 0.2) versus deltamethrin (2.68 min-1 ± 0.09). Time-course assays revealed progressive depletion of the above pyrethroids with production of four HPLC-detectable metabolites. Low depletion was obtained with type I pyrethroid, permethrin. Transgenic expression in Drosophila melanogaster demonstrated that overexpression of CYP6P5 alone conferred type II pyrethroid resistance, with only 16% and 55.3% mortalities in flies exposed to 0.25% α-cypermethrin and 0.15% deltamethrin, respectively. Synergist bioassays using P450 inhibitor piperonylbutoxide significantly recovered susceptibility (mortality = 73.6%, p < 0.001) in synergized flies exposed to 4% piperonylbutoxide, plus 0.25% α-cypermethrin, compared to non-synergized flies (mortality = 4.9%). Moderate resistance was also observed towards 4% DDT. These findings established the preeminent role of CYP6P5 in metabolic resistance in An. albimanus, highlighting challenges associated with deployment of insecticide-based control tools in the Americas.
Collapse
Affiliation(s)
- Michael O Kusimo
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon.
| | - Lucy Mackenzie-Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centre for Global Health, Centres for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; Department of Biochemistry, Bayero University, PMB 3011 Kano, Nigeria.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK; Centre for Biotechnology Research, Bayero University, PMB 3011 Kano, Nigeria
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| | - Audrey E Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centre for Global Health, Centres for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Charles S Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Liverpool L3 5QA, UK
| |
Collapse
|
18
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
19
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
20
|
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103647. [PMID: 34530119 DOI: 10.1016/j.ibmb.2021.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes. A synergist bioassay with PBO significantly recovered susceptibility for permethrin and deltamethrin indicating P450-based metabolic resistance. Analyses of the coding sequence of CYP325A Africa-wide detected high-levels of polymorphism, but with no predominant alleles selected by pyrethroid resistance. Geographical amino acid changes were detected notably in Cameroon. In silico homology modelling and molecular docking simulations predicted that CYP325A binds and metabolises type I and type II pyrethroids. Heterologous expression of recombinant CYP325A and metabolic assays confirmed that the most-common Cameroonian haplotype metabolises both type I and type II pyrethroids with depletion rate twice that the of the DR Congo haplotype. Analysis of the 1 kb putative promoter of CYP325A revealed reduced diversity in resistant mosquitoes compared to susceptible ones, suggesting a potential selective sweep in this region. The establishment of CYP325A as a pyrethroid resistance metabolising gene further explains pyrethroid resistance in Central African populations of An. funestus. Our work will facilitate future efforts to detect the causative resistance markers in the promoter region of CYP325A to design field applicable DNA-based diagnostic tools.
Collapse
Affiliation(s)
- Amelie N R Wamba
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Faculty of Science, Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Department of Biochemistry, Bayero University, PMB, 3011, Kano, Nigeria.
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Centre for Biotechnology Research, Bayero University, Kano, PMB, 3011, Kano Nigeria.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jude D Bigoga
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson - University of Yaoundé I, P.O. Box 3851, Messa, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
21
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
22
|
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104666. [PMID: 32980073 DOI: 10.1016/j.pestbp.2020.104666] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the substantial progress achieved in the characterization of cytochrome P450 (CYP) -based resistance mechanisms in mosquitoes, a number of questions remain unanswered. These include: (i) the regulation and physiology of resistance conferring CYPs; (ii) the actual contribution of CYPs in resistance alone or in combination with other detoxification partners or other resistance mechanisms; (iii) the association between overexpression levels and allelic variation, with the catalytic activity and the intensity of resistance and (iv) the true value of molecular diagnostics targeting CYP markers, for driving decision making in the frame of Insecticide Resistance Management applications. Furthermore, the translation of CYP - based insecticide resistance research in mosquitoes into practical applications, is being developed, but it is not fully exploited, as yet. Examples include the production of high throughput platforms for screening the liability (stability) or inhibition potential of novel insecticidal leads and synergists (add-ons), as well as the exploration of the negative cross resistance concept (i.e. detoxification of certain insecticides, but activation of others pro-insecticides). The goal of this review is to critically summarise the current knowledge and the gaps of the CYP-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors. The progress and limitations of the protein and the reverse/forward genetic approaches, the understanding and importance of molecular and physiological aspects, as well as the current and future exploitation routes of CYP research are discussed.
Collapse
Affiliation(s)
- John Vontas
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece.
| | - Eva Katsavou
- Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| |
Collapse
|
23
|
Weedall GD, Riveron JM, Hearn J, Irving H, Kamdem C, Fouet C, White BJ, Wondji CS. An Africa-wide genomic evolution of insecticide resistance in the malaria vector Anopheles funestus involves selective sweeps, copy number variations, gene conversion and transposons. PLoS Genet 2020; 16:e1008822. [PMID: 32497040 PMCID: PMC7297382 DOI: 10.1371/journal.pgen.1008822] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/16/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Insecticide resistance in malaria vectors threatens to reverse recent gains in malaria control. Deciphering patterns of gene flow and resistance evolution in malaria vectors is crucial to improving control strategies and preventing malaria resurgence. A genome-wide survey of Anopheles funestus genetic diversity Africa-wide revealed evidences of a major division between southern Africa and elsewhere, associated with different population histories. Three genomic regions exhibited strong signatures of selective sweeps, each spanning major resistance loci (CYP6P9a/b, GSTe2 and CYP9K1). However, a sharp regional contrast was observed between populations correlating with gene flow barriers. Signatures of complex molecular evolution of resistance were detected with evidence of copy number variation, transposon insertion and a gene conversion between CYP6P9a/b paralog genes. Temporal analyses of samples before and after bed net scale up suggest that these genomic changes are driven by this control intervention. Multiple independent selective sweeps at the same locus in different parts of Africa suggests that local evolution of resistance in malaria vectors may be a greater threat than trans-regional spread of resistance haplotypes. Malaria control currently relies heavily on insecticide-based vector control interventions. Unfortunately, resistance to insecticides is threatening their continued effectiveness. Metabolic resistance has the greatest operational significance, yet it remains unclear how mosquito populations evolutionarily respond to the massive selection pressure from control interventions including insecticide-treated nets. Deciphering patterns of gene flow between populations of major malaria vectors such as Anopheles funestus and elucidating genomic signature of resistance evolution are crucial for designing resistance management strategies and preventing malaria resurgence. Here, we performed a genome-wide survey of An. funestus genetic diversity from across its continental range using reduced-genome representation (ddRADseq) and whole genome (PoolSeq) approaches revealing evidence of significant barriers to gene flow impacting the spread of insecticide resistance alleles. This study detected signatures of strong selective sweeps occurring in genomic regions controlling cytochrome P450-based and glutathione s-transferase metabolic resistance to insecticides in this species. Fine-scale analysis of the major pyrethroid resistance-associated genomic regions revealed complex molecular evolution with evidence of copy number variation, transposon insertion and gene conversion highlighting the risk that if this level of selection and spread of resistance continues unabated, our ability to control malaria with current interventions will be compromised.
Collapse
Affiliation(s)
- Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (GDW); (CSW)
| | - Jacob M. Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
| | - Colince Kamdem
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Caroline Fouet
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Bradley J. White
- Department of Entomology, University of California, Riverside, California, United States of America
- Verily Life Sciences, South San Francisco, California, United States of America
| | - Charles S. Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- LSTM Research Unit at CRID, Yaoundé, Cameroon
- * E-mail: (GDW); (CSW)
| |
Collapse
|
24
|
Kim K, Yang JO, Sung JY, Lee JY, Park JS, Lee HS, Lee BH, Ren Y, Lee DW, Lee SE. Minimization of energy transduction confers resistance to phosphine in the rice weevil, Sitophilus oryzae. Sci Rep 2019; 9:14605. [PMID: 31601880 PMCID: PMC6787191 DOI: 10.1038/s41598-019-50972-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/10/2019] [Indexed: 11/09/2022] Open
Abstract
Infestation of phosphine (PH3) resistant insects threatens global grain reserves. PH3 fumigation controls rice weevil (Sitophilus oryzae) but not highly resistant insect pests. Here, we investigated naturally occurring strains of S. oryzae that were moderately resistant (MR), strongly resistant (SR), or susceptible (wild-type; WT) to PH3 using global proteome analysis and mitochondrial DNA sequencing. Both PH3 resistant (PH3-R) strains exhibited higher susceptibility to ethyl formate-mediated inhibition of cytochrome c oxidase than the WT strain, whereas the disinfectant PH3 concentration time of the SR strain was much longer than that of the MR strain. Unlike the MR strain, which showed altered expression levels of genes encoding metabolic enzymes involved in catabolic pathways that minimize metabolic burden, the SR strain showed changes in the mitochondrial respiratory chain. Our results suggest that the acquisition of strong PH3 resistance necessitates the avoidance of oxidative phosphorylation through the accumulation of a few non-synonymous mutations in mitochondrial genes encoding complex I subunits as well as nuclear genes encoding dihydrolipoamide dehydrogenase, concomitant with metabolic reprogramming, a recognized hallmark of cancer metabolism. Taken together, our data suggest that reprogrammed metabolism represents a survival strategy of SR insect pests for the compensation of minimized energy transduction under anoxic conditions. Therefore, understanding the resistance mechanism of PH3-R strains will support the development of new strategies to control insect pests.
Collapse
Affiliation(s)
- Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Jeong Oh Yang
- Animal and Plant Quarantine Agency (APQA), Gimcheon, 39660, Korea
| | - Jae-Yoon Sung
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Ji-Young Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jeong Sun Park
- Animal and Plant Quarantine Agency (APQA), Gimcheon, 39660, Korea
| | - Heung-Sik Lee
- Animal and Plant Quarantine Agency (APQA), Gimcheon, 39660, Korea
| | - Byung-Ho Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Yonglin Ren
- School of Veterinary and Life Science, Murdoch University, 90 South St., Murdoch, WA, 6150, Australia
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea.
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
25
|
Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res 2019; 29:1250-1261. [PMID: 31345938 PMCID: PMC6673711 DOI: 10.1101/gr.245795.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
Abstract
Polymorphisms in genetic copy number can influence gene expression, coding sequence, and zygosity, making them powerful actors in the evolutionary process. Copy number variants (CNVs) are however understudied, being more difficult to detect than single-nucleotide polymorphisms. We take advantage of the intense selective pressures on the major malaria vector Anopheles gambiae, caused by the widespread use of insecticides for malaria control, to investigate the role of CNVs in the evolution of insecticide resistance. Using the whole-genome sequencing data from 1142 samples in the An. gambiae 1000 genomes project, we identified 250 gene-containing CNVs, encompassing a total of 267 genes of which 28 were in gene families linked to metabolic insecticide resistance, representing significant enrichment of these families. The five major gene clusters for metabolic resistance all contained CNVs, with 44 different CNVs being found across these clusters and multiple CNVs frequently covering the same genes. These 44 CNVs are widespread (45% of individuals carry at least one of them) and have been spreading through positive selection, indicated by their high local frequencies and extended haplotype homozygosity. Our results demonstrate the importance of CNVs in the response to selection, highlighting the urgent need to identify the contribution of each CNV to insecticide resistance and to track their spread as the use of insecticides in malaria endemic countries intensifies and as the operational deployment of next-generation bed nets targeting metabolic resistance gathers pace. Our detailed descriptions of CNVs found across the species range provide the tools to do so.
Collapse
Affiliation(s)
- Eric R Lucas
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Nicholas J Harding
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
26
|
Mackenzie-Impoinvil L, Weedall GD, Lol JC, Pinto J, Vizcaino L, Dzuris N, Riveron J, Padilla N, Wondji C, Lenhart A. Contrasting patterns of gene expression indicate differing pyrethroid resistance mechanisms across the range of the New World malaria vector Anopheles albimanus. PLoS One 2019; 14:e0210586. [PMID: 30699158 PMCID: PMC6353143 DOI: 10.1371/journal.pone.0210586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/25/2018] [Indexed: 11/18/2022] Open
Abstract
Decades of unmanaged insecticide use and routine exposure to agrochemicals have left many populations of malaria vectors in the Americas resistant to multiple classes of insecticides, including pyrethroids. The molecular basis of pyrethroid resistance is relatively uncharacterised in American malaria vectors, preventing the design of suitable resistance management strategies. Using whole transcriptome sequencing, we characterized the mechanisms of pyrethroid resistance in Anopheles albimanus from Peru and Guatemala. An. albimanus were phenotyped as either deltamethrin or alpha-cypermethrin resistant. RNA from 1) resistant, 2) unexposed, and 3) a susceptible laboratory strain of An. albimanus was sequenced and analyzed using RNA-Seq. Expression profiles of the three groups were compared based on the current annotation of the An. albimanus reference genome. Several candidate genes associated with pyrethroid resistance in other malaria vectors were found to be overexpressed in resistant An. albimanus. In addition, gene ontology terms related to serine-type endopeptidase activity, extracellular activity and chitin metabolic process were also commonly overexpressed in the field caught resistant and unexposed samples from both Peru and Guatemala when compared to the susceptible strain. The cytochrome P450 CYP9K1 was overexpressed 14x in deltamethrin and 8x in alpha-cypermethrin-resistant samples from Peru and 2x in deltamethrin-resistant samples from Guatemala, relative to the susceptible laboratory strain. CYP6P5 was overexpressed 68x in deltamethrin-resistant samples from Peru but not in deltamethrin-resistant samples from Guatemala. When comparing overexpressed genes between deltamethrin-resistant and alpha-cypermethrin-resistant samples from Peru, a single P450 gene, CYP4C26, was overexpressed 9.8x (p<0.05) in alpha-cypermethrin-resistant samples. In Peruvian deltamethrin-resistant samples, the knockdown resistance mutation (kdr) variant alleles at position 1014 were rare, with approximately 5% frequency, but in the alpha-cypermethrin-resistant samples, the frequency of these alleles was approximately 15-30%. Functional validation of the candidate genes and the kdr mutation as a resistance marker for alpha-cypermethrin will confirm the role of these mechanisms in conferring pyrethroid resistance.
Collapse
Affiliation(s)
- Lucy Mackenzie-Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Juan C. Lol
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala
| | - Jesús Pinto
- Instituto Nacional de Salud Lima, Lima, Peru
| | - Lucrecia Vizcaino
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nicole Dzuris
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacob Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Norma Padilla
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala
| | - Charles Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|