1
|
Blanco V, Kalcsits L. Relating microtensiometer-based trunk water potential with sap flow, canopy temperature, and trunk and fruit diameter variations for irrigated 'Honeycrisp' apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1393028. [PMID: 38855474 PMCID: PMC11157117 DOI: 10.3389/fpls.2024.1393028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Instrumentation plays a key role in modern horticulture. Thus, the microtensiomenter, a new plant-based sensor that continuously monitors trunk water potential (Ψtrunk) can help in irrigation management decisions. To compare the response of the Ψtrunk with other continuous tree water status indicators such as the sap flow rate, the difference between canopy and air temperatures, or the variations of the trunk and fruit diameter, all the sensors were installed in 2022 in a commercial orchard of 'Honeycrisp' apple trees with M.9 rootstocks in Washinton State (USA). From the daily evolution of the Ψtrunk, five indicators were considered: predawn, midday, minimum, daily mean, and daily range (the difference between the daily maximum and minimum values). The daily range of Ψtrunk was the most linked to the maximum daily shrinkage (MDS; R2 = 0.42), the canopy-to-air temperature (Tc-Ta; R2 = 0.32), and the sap flow rate (SF; R2 = 0.30). On the other hand, the relative fruit growth rate (FRGR) was more related to the minimum Ψtrunk (R2 = 0.33) and the daily mean Ψtrunk (R2 = 0.32) than to the daily range of Ψtrunk. All indicators derived from Ψtrunk identified changes in tree water status after each irrigation event and had low coefficients of variation and high sensitivity. These results encourage Ψtrunk as a promising candidate for continuous monitoring of tree water status, however, more research is needed to better relate these measures with other widely studied plant-based indicators and identify good combinations of sensors and threshold values.
Collapse
Affiliation(s)
- Victor Blanco
- Department of Horticulture, Washington State University, Pullman, WA, United States
- Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology (IRTA), Lleida, Spain
| | - Lee Kalcsits
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
2
|
Garofalo SP, Giannico V, Lorente B, García AJG, Vivaldi GA, Thameur A, Salcedo FP. Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images. FRONTIERS IN PLANT SCIENCE 2024; 15:1302435. [PMID: 38571714 PMCID: PMC10989058 DOI: 10.3389/fpls.2024.1302435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Introduction In the context of climate change, monitoring the spatial and temporal variability of plant physiological parameters has become increasingly important. Remote spectral imaging and GIS software have shown effectiveness in mapping field variability. Additionally, the application of machine learning techniques, essential for processing large data volumes, has seen a significant rise in agricultural applications. This research was focused on carob tree, a drought-resistant tree crop spread through the Mediterranean basin. The study aimed to develop robust models to predict the net assimilation and stomatal conductance of carob trees and to use these models to analyze seasonal variability and the impact of different irrigation systems. Methods Planet satellite images were acquired on the day of field data measurement. The reflectance values of Planet spectral bands were used as predictors to develop the models. The study employed the Random Forest modeling approach, and its performances were compared with that of traditional multiple linear regression. Results and discussion The findings reveal that Random Forest, utilizing Planet spectral bands as predictors, achieved high accuracy in predicting net assimilation (R² = 0.81) and stomatal conductance (R² = 0.70), with the yellow and red spectral regions being particularly influential. Furthermore, the research indicates no significant difference in intrinsic water use efficiency between the various irrigation systems and rainfed conditions. This work highlighted the potential of combining satellite remote sensing and machine learning in precision agriculture, with the goal of the efficient monitoring of physiological parameters.
Collapse
Affiliation(s)
- Simone Pietro Garofalo
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Vincenzo Giannico
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Beatriz Lorente
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | - Antonio José García García
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | | | - Afwa Thameur
- Laboratory of Biodiversity, Molecules, Application (BMA), Higher Institute of Applied Biology Medenine, University of Gabes, Medenine, Tunisia
| | - Francisco Pedrero Salcedo
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura – Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
3
|
Wheeler WD, Black B, Bugbee B. Assessing water stress in a high-density apple orchard using trunk circumference variation, sap flow index and stem water potential. FRONTIERS IN PLANT SCIENCE 2023; 14:1214429. [PMID: 37600171 PMCID: PMC10435262 DOI: 10.3389/fpls.2023.1214429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Introduction Automated plant-based measurements of water stress have the potential to advance precision irrigation in orchard crops. Previous studies have shown correlations between sap flow, line variable differential transform (LVDT) dendrometers and fruit tree drought response. Here we report season-long automated measurement of maximum daily change in trunk diameter using band dendrometers and heated needles to measure a simplified sap flow index (SFI). Methods Measurements were made on two apple cultivars that were stressed at 7 to 12 day intervals by withholding irrigation until the average stem water potential (ΨStem) dropped below -1.5 MPa, after which irrigation was restored and the drought cycle repeated. Results Dendrometer measurements of maximum daily trunk shrinkage (MDS) were highly correlated (r² = 0.85) with pressure chamber measurements of stem water potential. The SFI measurements were less correlated with stem water potential but were highly correlated with evaporative demand (r² = 0.82) as determined by the Penman-Monteith equation (ETr). Discussion The high correlation of SFI to ETr suggests that high-density orchards resemble a continuous surface, unlike orchards with widely spaced trees. The correlations of MDS and SFI to ΨStem were higher during the early season than the late season growth. Band dendrometers are less labor intensive to install than LVDT dendrometers and are non-invasive so are well suited to commercialization.
Collapse
Affiliation(s)
- William D. Wheeler
- Crop Physiology Laboratory, Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Brent Black
- Pomology Extension, Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Bruce Bugbee
- Crop Physiology Laboratory, Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| |
Collapse
|
4
|
Tomasella M, Calderan A, Mihelčič A, Petruzzellis F, Braidotti R, Natale S, Lisjak K, Sivilotti P, Nardini A. Best Procedures for Leaf and Stem Water Potential Measurements in Grapevine: Cultivar and Water Status Matter. PLANTS (BASEL, SWITZERLAND) 2023; 12:2412. [PMID: 37446973 DOI: 10.3390/plants12132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refošk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination.
Collapse
Affiliation(s)
- Martina Tomasella
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| | - Alberto Calderan
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Alenka Mihelčič
- Department of Fruit Growing, Agricultural Institute of Slovenia, Viticulture and Enology, Hacquetova Ulica 17, SI-1000 Ljubljana, Slovenia
| | - Francesco Petruzzellis
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| | - Riccardo Braidotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Sara Natale
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121 Padova, Italy
| | - Klemen Lisjak
- Department of Fruit Growing, Agricultural Institute of Slovenia, Viticulture and Enology, Hacquetova Ulica 17, SI-1000 Ljubljana, Slovenia
| | - Paolo Sivilotti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Andrea Nardini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy
| |
Collapse
|
5
|
Appiah SA, Li J, Lan Y, Darko RO, Alordzinu KE, Al Aasmi A, Asenso E, Issaka F, Afful EA, Wang H, Qiao S. Real-Time Assessment of Mandarin Crop Water Stress Index. SENSORS (BASEL, SWITZERLAND) 2022; 22:4018. [PMID: 35684639 PMCID: PMC9185456 DOI: 10.3390/s22114018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023]
Abstract
The use of plant-based indicators and other conventional means to detect the level of water stress in crops may be challenging, due to their difficulties in automation, their arduousness, and their time-consuming nature. Non-contact and non-destructive sensing methods can be used to detect the level of water stress in plants continuously and to provide automatic sensing and controls. This research aimed at determining the viability, efficiency, and swiftness in employing the commercial Workswell WIRIS Agro R infrared camera (WWARIC) in monitoring water stress and scheduling appropriate irrigation regimes in mandarin plants. The experiment used a four-by-three randomized complete block design with 80−100% FC water treatment as full field capacity and three deficit irrigation treatments at 70−75% FC, 60−65% FC, and 50−55% FC. Air temperature, canopy temperature, and vapor pressure deficits were measured and employed to deduce the empirical crop water stress index, using the Idso approach (CWSI(Idso)) as well as baseline equations to calculate non-water stress and water stressed conditions. The relative leaf water content (RLWC) of mandarin plants was also determined for the growing season. From the experiment, CWSI(Idso) and CWSI were estimated using the Workswell Wiris Agro R infrared camera (CWSIW) and showed a high correlation (R2 = 0.75 at p < 0.05) in assessing the extent of water stress in mandarin plants. The results also showed that at an altitude of 12 m above the mandarin canopy, the WWARIC was able to identify water stress using three modes (empirical, differential, and theoretical). The WWARIC’s color map feature, presented in real time, makes the camera a suitable device, as there is no need for complex computations or expert advice before determining the extent of the stress the crops are subjected to. The results prove that this novel use of the WWARIC demonstrated sufficient precision, swiftness, and intelligibility in the real-time detection of the mandarin water stress index and, accordingly, assisted in scheduling irrigation.
Collapse
Affiliation(s)
- Sadick Amoakohene Appiah
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| | - Jiuhao Li
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| | - Yubin Lan
- College of Engineering, National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China;
| | - Ransford Opoku Darko
- Department of Agricultural Engineering, University of Cape Coast, Cape Coast PMB, Ghana;
| | - Kelvin Edom Alordzinu
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| | - Alaa Al Aasmi
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| | - Evans Asenso
- Department of Agricultural Engineering, University of Ghana, Accra P.O. Box LG 77, Ghana;
| | - Fuseini Issaka
- Soil, Water and Environmental Engineering Division, Soil Research Institute of Ghana, Kumasi PMB, Ghana;
| | - Ebenezer Acheampong Afful
- Soil Science Division, Cocoa Research Institute of Ghana (Ghana COCOBOD), New Tafo-Akim P.O. Box 8, Ghana;
| | - Hao Wang
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| | - Songyang Qiao
- College of Water Conservancy and Civil Engineering, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou 510642, China; (S.A.A.); (K.E.A.); (A.A.A.); (H.W.); (S.Q.)
| |
Collapse
|
6
|
Precision Oliviculture: Research Topics, Challenges, and Opportunities—A Review. REMOTE SENSING 2022. [DOI: 10.3390/rs14071668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Since the beginning of the 21st century, there has been an increase in the agricultural area devoted to olive growing and in the consumption of extra virgin olive oil (EVOO). The continuous change in cultivation techniques implemented poses new challenges to ensure environmental and economic sustainability. In this context, precision oliviculture (PO) is having an increasing scientific interest and impact on the sector. Its implementation depends on various technological developments: sensors for local and remote crop monitoring, global navigation satellite system (GNSS), equipment and machinery to perform site-specific management through variable rate application (VRA), implementation of geographic information systems (GIS), and systems for analysis, interpretation, and decision support (DSS). This review provides an overview of the state of the art of technologies that can be employed and current applications and their potential. It also discusses the challenges and possible solutions and implementations of future technologies such as IoT, unmanned ground vehicles (UGV), and machine learning (ML).
Collapse
|
7
|
Blanco V, Kalcsits L. Microtensiometers Accurately Measure Stem Water Potential in Woody Perennials. PLANTS 2021; 10:plants10122780. [PMID: 34961251 PMCID: PMC8709327 DOI: 10.3390/plants10122780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022]
Abstract
Stem water potential (Ψstem) is considered to be the standard measure of plant water status. However, it is measured with the pressure chamber (PC), an equipment that can neither provide continuous information nor be automated, limiting its use. Recent developments of microtensiometers (MT; FloraPulse sensors), which can continuously measure water tension in woody tissue of the trunk of the tree, can potentially highlight the dynamic nature of plant water relations. Thus, this study aimed to validate and assess the usefulness of the MT by comparing the Ψstem provided by MT with those same measurements from the PC. Here, two irrigation treatments (a control and a deficit treatment) were applied in a pear (Pyrus communis L.) orchard in Washington State (USA) to capture the full range of water potentials in this environment. Discrete measurements of leaf gas exchange, canopy temperature and Ψstem measured with PC and MT were made every two hours for four days from dawn to sunset. There were strong linear relationships between the Ψstem-MT and Ψstem-PC (R2 > 0.8) and with vapor pressure deficit (R2 > 0.7). However, Ψstem-MT was more variable and lower than Ψstem-PC when Ψstem-MT was below −1.5 MPa, especially during the evening. Minimum Ψstem-MT occurred later in the afternoon compared to Ψstem-PC. Ψstem showed similar sensitivity and coefficients of variation for both PC and MT acquired data. Overall, the promising results achieved indicated the potential for MT to be used to continuously assess tree water status.
Collapse
Affiliation(s)
- Victor Blanco
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA;
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA
| | - Lee Kalcsits
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA;
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA
- Correspondence:
| |
Collapse
|
8
|
Ferhat Taleb S, Benalia NEH, Sadoun R. Evolutionary algorithm applications for IoTs dedicated to precise irrigation systems: state of the art. EVOLUTIONARY INTELLIGENCE 2021. [DOI: 10.1007/s12065-021-00676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Continuous Monitoring of Olive Fruit Growth by Automatic Extensimeter in Response to Vapor Pressure Deficit from Pit Hardening to Harvest. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, several studies on olive fruit growth have focused on circadian monitoring as an important orchard management tool. The olive fruit growth trend is described by double sigmoid model with four growth phases, where the third phase spans from the end of pit hardening to initial fruit maturation, and the last phase includes olive maturation up to fruit drop. Environmental factors play an important role in fruit growth, with vapor pressure deficit (VPD) being a keystone factor. Our experiment was designed to hourly monitor olive (Olea europaea L. cv. ‘Frantoio’) fruit transversal diameter from approximately initial pit hardening (II Phase), extension (III Phase) until harvest time (IV Phase) in the attempt to determine whether fruit growth dynamically responds to environmental variables such as diurnal VPD change in different stages of fruit development. Automatic extensimeters were applied in open field and VPD was calculated from data of our weather station. Throughout the experiment period, the circadian model of fruit growth showed two steps: shrinkage and expansion. Almost in all days of the third phase of fruit growth, daily response of transversal diameter to VPD formed complete clockwise hysteresis loops. During the fourth phase of fruit growth, with increasing fruit maturation, the complete clockwise hysteresis loop experienced some abnormality. At the fourth stage of fruit growth there were incomplete and partial clockwise hysteresis loops. We conclude that hysteresis can be employed to detect the shift between the end of the third phase (cell expansion) and the beginning of the fourth phase (fruit maturation) of fruit growth. The disappearance of the complete clockwise hysteresis loop and the substitution with incomplete, or partial clockwise hysteresis loops was observable only in the fourth stage of fruit growth. These results can be valuable for any smart fruit management of olive fruit production.
Collapse
|
10
|
Optimization of Vineyard Water Management: Challenges, Strategies, and Perspectives. WATER 2021. [DOI: 10.3390/w13060746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Water availability is endangering the production, quality, and economic viability of growing wine grapes worldwide. Climate change projections reveal warming and drying trends for the upcoming decades, constraining the sustainability of viticulture. In this context, a great research effort over the last years has been devoted to understanding the effects of water stress on grapevine performance. Moreover, irrigation scheduling and other management practices have been tested in order to alleviate the deleterious effects of water stress on wine production. The current manuscript provides a comprehensive overview of the advances in the research on optimizing water management in vineyards, including the use of novel technologies (modeling, remote sensing). In addition, methods for assessing vine water status are summarized. Moreover, the manuscript will focus on the interactions between grapevine water status and biotic stressors. Finally, future perspectives for research are provided. These include the performance of multifactorial studies accounting for the interrelations between water availability and other stressors, the development of a cost-effective and easy-to-use tool for assessing vine water status, and the study of less-known cultivars under different soil and climate conditions.
Collapse
|
11
|
Improvement of Spatial Interpolation of Precipitation Distribution Using Cokriging Incorporating Rain-Gauge and Satellite (SMOS) Soil Moisture Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13051039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Precipitation data provide a crucial input for examining hydrological issues, including watershed management and mitigation of the effects of floods, drought, and landslides. However, they are collected frequently from the scarce and often insufficient network of ground-based rain-gauge stations to generate continuous precipitation maps. Recently, precipitation maps derived from satellite data have not been sufficiently linked to ground-based rain gauges and satellite-derived soil moisture to improve the assessment of precipitation distribution using spatial statistics. Kriging methods are used to enhance the estimation of the spatial distribution of precipitations. The aim of this study was to assess two geostatistical methods, ordinary kriging (OK) and ordinary cokriging (OCK), and one deterministic method (i.e., inverse distance weighting (IDW)) for improved spatial interpolation of quarterly and monthly precipitations in Poland and near-border areas of the neighbouring countries (~325,000 or 800,000 km2). Quarterly precipitation data collected during a 5-year period (2010–2014) from 113–116 rain-gauge stations located in the study area were used. Additionally, monthly precipitations in the years 2014–2017 from over 400 rain-gauge stations located in Poland were used. The spatiotemporal data on soil moisture (SM) from the Soil Moisture and Ocean Salinity (SMOS) global satellite (launched in 2009) were used as an auxiliary variable in addition to precipitation for the OCK method. The predictive performance of the spatial distribution of precipitations was the best for OCK for all quarters, as indicated by the coefficient of determination (R2 = 0.944–0.992), and was less efficient (R2 = 0.039–0.634) for the OK and IDW methods. As for monthly precipitation, the performance of OCK was considerably higher than that of IDW and OK, similarly as with quarterly precipitation. The performance of all interpolation methods was better for monthly than for quarterly precipitations. The study indicates that SMOS data can be a valuable source of auxiliary data in the cokriging and/or other multivariate methods for better estimation of the spatial distribution of precipitations in various regions of the world.
Collapse
|
12
|
Abstract
Water, energy and food security are crucial for a sustainable long-term economy [...]
Collapse
|
13
|
Marino G, Scalisi A, Guzmán-Delgado P, Caruso T, Marra FP, Lo Bianco R. Detecting Mild Water Stress in Olive with Multiple Plant-Based Continuous Sensors. PLANTS (BASEL, SWITZERLAND) 2021; 10:131. [PMID: 33440632 PMCID: PMC7827840 DOI: 10.3390/plants10010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
A comprehensive characterization of water stress is needed for the development of automated irrigation protocols aiming to increase olive orchard environmental and economical sustainability. The main aim of this study is to determine whether a combination of continuous leaf turgor, fruit growth, and sap flow responses improves the detection of mild water stress in two olive cultivars characterized by different responses to water stress. The sensitivity of the tested indicators to mild stress depended on the main mechanisms that each cultivar uses to cope with water deficit. One cultivar showed pronounced day to day changes in leaf turgor and fruit relative growth rate in response to water withholding. The other cultivar reduced daily sap flows and showed a pronounced tendency to reach very low values of leaf turgor. Based on these responses, the sensitivity of the selected indicators is discussed in relation to drought response mechanisms, such as stomatal closure, osmotic adjustment, and tissue elasticity. The analysis of the daily dynamics of the monitored parameters highlights the limitation of using non-continuous measurements in drought stress studies, suggesting that the time of the day when data is collected has a great influence on the results and consequent interpretations, particularly when different genotypes are compared. Overall, the results highlight the need to tailor plant-based water management protocols on genotype-specific physiological responses to water deficit and encourage the use of combinations of plant-based continuously monitoring sensors to establish a solid base for irrigation management.
Collapse
Affiliation(s)
- Giulia Marino
- Department of Plant Sciences, University of California, Davis, CA 95616, USA;
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Tatura, VIC 3616, Australia
| | | | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, 90133 Palermo, Italy; (A.S.); (T.C.); (F.P.M.)
| |
Collapse
|
14
|
Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sustainability of irrigated agriculture is threatening due to adverse climate change, given future projections that every one in four people on Earth might be suffering from extreme water scarcity by the year 2025. Pressurized irrigation systems and appropriate irrigation schedules can increase water productivity (i.e., product yield per unit volume of water consumed by the crop) and reduce the evaporative or system loss of water as opposed to traditional surface irrigation methods. However, in water-scarce countries, irrigation management frequently becomes a complex task. Deficit irrigation and the use of non-conventional water resources (e.g., wastewater, brackish groundwater) has been adopted in many cases as part of a climate change mitigation measures to tackle the water poverty issue. Protected cultivation systems such as greenhouses or screenhouses equipped with artificial intelligence systems present another sustainable option for improving water productivity and may help to alleviate water scarcity in these countries. This article presents a comprehensive review of the literature, which deals with sustainable irrigation for open-field and protected cultivation systems under the impact of climatic change in vulnerable areas, including the Mediterranean region.
Collapse
|
15
|
Briglia N, Williams K, Wu D, Li Y, Tao S, Corke F, Montanaro G, Petrozza A, Amato D, Cellini F, Doonan JH, Yang W, Nuzzo V. Image-Based Assessment of Drought Response in Grapevines. FRONTIERS IN PLANT SCIENCE 2020; 11:595. [PMID: 32499808 PMCID: PMC7242646 DOI: 10.3389/fpls.2020.00595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2020] [Indexed: 05/08/2023]
Abstract
Many plants can modify their leaf profile rapidly in response to environmental stress. Image-based data are increasingly used to retrieve reliable information on plant water status in a non-contact manner that has the potential to be scaled to high-throughput and repeated through time. This paper examined the variation of leaf angle as measured by both 3D images and goniometer in progressively drought stressed grapevine. Grapevines, grown in pots, were subjected to a 21-day period of drought stress receiving 100% (CTRL), 60% (IRR 60%) and 30% (IRR 30%) of maximum soil available water capacity. Leaf angle was (i) measured manually (goniometer) and (ii) computed by a 3D reconstruction method (multi-view stereo and structure from motion). Stomatal conductance, leaf water potential, fluorescence (F v /F m ), leaf area and 2D RGB data were simultaneously collected during drought imposition. Throughout the experiment, values of leaf water potential ranged from -0.4 (CTRL) to -1.1 MPa (IRR 30%) and it linearly influenced the leaf angle when measured manually (R 2 = 0.86) and with 3D image (R 2 = 0.73). Drought was negatively related to stomatal conductance and leaf area growth particularly in IRR 30% while photosynthetic parameters (i.e., F v /F m ) were not impaired by water restriction. A model for leaf area estimation based on the number of pixels of 2D RGB images developed at a different phenotyping robotized platform in a closely related experiment was successfully employed (R 2 = 0.78). At the end of the experiment, top view 2D RGB images showed a ∼50% reduction of greener fraction (GGF) in CTRL and IRR 60% vines compared to initial values, while GGF in IRR 30% increased by approximately 20%.
Collapse
Affiliation(s)
- Nunzio Briglia
- Dipartimento delle Culture Europee e del Mediterraneo, Università degli Studi della Basilicata, Matera, Italy
| | - Kevin Williams
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| | - Dan Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yaochen Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Sha Tao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Fiona Corke
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| | - Giuseppe Montanaro
- Dipartimento delle Culture Europee e del Mediterraneo, Università degli Studi della Basilicata, Matera, Italy
| | - Angelo Petrozza
- ALSIA, Centro Ricerche Metapontum Agrobios, Metaponto, Italy
| | - Davide Amato
- Dipartimento delle Culture Europee e del Mediterraneo, Università degli Studi della Basilicata, Matera, Italy
| | | | - John H. Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth, United Kingdom
| | - Wanneng Yang
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth, United Kingdom
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Vitale Nuzzo
- Dipartimento delle Culture Europee e del Mediterraneo, Università degli Studi della Basilicata, Matera, Italy
| |
Collapse
|
16
|
Assessing the Water-Stress Baselines by Thermal Imaging for Irrigation Management in Almond Plantations under Water Scarcity Conditions. WATER 2020. [DOI: 10.3390/w12051298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This work examines the use of thermal imaging to determine the crop water status in young almond trees under sustained deficit irrigation strategies (SDIs). The research was carried out during two seasons (2018–2019) in three cultivars (Prunus dulcis Mill., cvs. Guara, Lauranne, and Marta) subjected to three irrigation treatments: a full irrigation treatment (FI) at 100% of irrigation requirements (IR), and two SDIs that received 75% and 65% of the IR, respectively. Crop water monitoring was done by measurements of canopy temperature, leaf water potential (Ψleaf), and stomatal conductance. Thermal readings were used to define the non-water-stress baselines (NWSB) and water-stress baselines (WSB) for each treatment and cultivar. According to our findings, Ψleaf was the most responsive parameter to reflect differences in almond water status. In addition, NWSB and WSB allowed the determination of the crop water-stress index (CWSI) and the increment of canopy temperature (ITC) for each SDI treatment, obtaining threshold values of CWSI (0.12–0.15) and ITC (~1 °C) that would ensure maximum water savings by minimizing the effects on yield. The findings highlight the importance of determining the different NWSB and WSB for different almond cultivars and its potential use for proper irrigation scheduling.
Collapse
|
17
|
A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093092] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viticulture and winemaking are important socioeconomic sectors in many European regions. Climate plays a vital role in the terroir of a given wine region, as it strongly controls canopy microclimate, vine growth, vine physiology, yield, and berry composition, which together determine wine attributes and typicity. New challenges are, however, predicted to arise from climate change, as grapevine cultivation is deeply dependent on weather and climate conditions. Changes in viticultural suitability over the last decades, for viticulture in general or the use of specific varieties, have already been reported for many wine regions. Despite spatially heterogeneous impacts, climate change is anticipated to exacerbate these recent trends on suitability for wine production. These shifts may reshape the geographical distribution of wine regions, while wine typicity may also be threatened in most cases. Changing climates will thereby urge for the implementation of timely, suitable, and cost-effective adaptation strategies, which should also be thoroughly planned and tuned to local conditions for an effective risk reduction. Although the potential of the different adaptation options is not yet fully investigated, deserving further research activities, their adoption will be of utmost relevance to maintain the socioeconomic and environmental sustainability of the highly valued viticulture and winemaking sector in Europe.
Collapse
|
18
|
Mira-García AB, Conejero W, Vera J, Ruiz-Sánchez MC. Leaf Water Relations in Lime Trees Grown under Shade Netting and Open-Air. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9040510. [PMID: 32326660 PMCID: PMC7238151 DOI: 10.3390/plants9040510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 06/01/2023]
Abstract
Physiological plant water status indicators are useful for managing precision irrigation in regions with limited water resources. The aim of this work was to evaluate the effect of shade netting on the diurnal and seasonal variations of several plant water status indicators in young lime trees (Citrus latifolia Tan., cv. Bearss), grown at the CEBAS-CSIC experimental station in Murcia, Spain. Stem water potential (Ψstem), leaf gas exchange (net photosynthesis (Pn) and stomatal conductance (gs)), and canopy temperature (Tc) were measured on representative days of winter and summer. The Ψstem daily pattern was quite similar in both seasons under both conditions. However, the circadian rhythm of leaf gas exchange was affected by shade conditions, especially in summer, when shaded leaves showed maximum gs values for a longer time, allowing higher net photosynthesis (37%). Canopy temperature behaved similarly in both conditions, nevertheless, lower values were recorded in open-air than in shaded trees in the two seasons. The canopy-to-air temperature difference (Tc-Ta), however, was lower in shaded trees during the daylight hours, indicating the higher degree of leaf cooling that was facilitated by high gs values. The possibility of continuously recording Tc makes it (or the proposed canopy thermal index, CTI) a promising index for precise irrigation scheduling. Shade netting was seen to favour gas exchange, suggesting that it may be considered alternative to open-air for use in semi-arid areas threatened by climate change.
Collapse
|
19
|
Scalisi A, Marino G, Marra FP, Caruso T, Lo Bianco R. A Cultivar-Sensitive Approach for the Continuous Monitoring of Olive ( Olea europaea L.) Tree Water Status by Fruit and Leaf Sensing. FRONTIERS IN PLANT SCIENCE 2020; 11:340. [PMID: 32265975 PMCID: PMC7108149 DOI: 10.3389/fpls.2020.00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Sustainable irrigation is crucial to reduce water use and management costs in modern orchard systems. Continuous plant-based sensing is an innovative approach for the continuous monitoring of plant water status. Olive (Olea europaea L.) genotypes can respond to drought using different leaf and fruit physiological and morphological mechanisms. This study aimed to identify whether fruit and leaf water dynamics of two different olive cultivars were differently affected by water deficit and their response to changes of midday stem water potential (Ψstem), the most common indicator of plant water status. Plant water status indicators such as leaf stomatal conductance (gs) and Ψstem were measured in the Sicilian olive cultivars Nocellara del Belice (NB) and Olivo di Mandanici (MN), in stage II and III of fruit development. Fruit gauges and leaf patch clamp pressure probes were mounted on trees and their raw data were converted in relative rates of fruit diameter change (RRfruit) and leaf pressure change (RRleaf), sensitive indicators of tissue water exchanges. The analysis of diel, diurnal and nocturnal fluctuations of RRfruit and RRleaf highlighted differences, often opposite, between the two cultivars under water deficit. A combination of statistical parameters extrapolated from RRfruit and RRleaf diurnal and nocturnal curves were successfully used to obtain significant multiple linear models for the estimation of midday Ψstem. Fruit and leaf water exchanges suggest that olive cultivar can either privilege fruit or leaf water status, with MN likely preserving leaf water status and NB increasing fruit tissue elasticity under severe water deficit. The results highlight the advantages of the integration of fruit and leaf water dynamics to estimate plant water status and the need for genotype-specific models in olive.
Collapse
Affiliation(s)
- Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Tatura, VIC, Australia
| | - Giulia Marino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Francesco Paolo Marra
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Abstract
A growing international human population and rising living standards are increasing the demand for agricultural products. Under higher pressure over natural resources, environmental concerns are increasing as well, challenging current water use decision-making processes in irrigated agriculture. Higher agricultural productivity means water should be applied more efficiently, which requires instant information on weather, soil, and plant conditions throughout the growing season. An information-based irrigation scheduling application tightened to the spatiotemporal variability of the fields is critical for enhancing the current irrigation system and making better irrigation scheduling decisions. The aim of this study is to review current irrigation scheduling methodologies based on two case studies (woody and field crops) located in semi-arid areas of Southeast Spain. We realize that optimal irrigation programming requires consistent investment in equipment, expenditure on operation and maintenance, and qualified technical and maintenance services. These technological approaches will be worthwhile in farms with low water availability, high profitability, and significant technical-economic capacity.
Collapse
|
21
|
Wang M, Zhang L, Zhang Z, Li M, Wang D, Zhang X, Xi Z, Keefover-Ring K, Smart LB, DiFazio SP, Olson MS, Yin T, Liu J, Ma T. Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. THE NEW PHYTOLOGIST 2020. [PMID: 31550399 DOI: 10.1016/j.foreco.2021.119330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phylogenetic analysis is complicated by interspecific gene flow and the presence of shared ancestral polymorphisms, particularly those maintained by balancing selection. In this study, we aimed to examine the prevalence of these factors during the diversification of Populus, a model tree genus in the Northern Hemisphere. We constructed phylogenetic trees of 29 Populus taxa using 80 individuals based on re-sequenced genomes. Our species tree analyses recovered four main clades in the genus based on consensus nuclear phylogenies, but in conflict with the plastome phylogeny. A few interspecific relationships remained unresolved within the multiple-species clade because of inconsistent gene trees. Our results indicated that gene flow has been widespread within each clade and also occurred among the four clades during their early divergence. We identified 45 candidate genes with ancient polymorphisms maintained by balancing selection. These genes were mainly associated with mating compatibility, growth and stress resistance. Both gene flow and selection-mediated ancient polymorphisms are prevalent in the genus Populus. These are potentially important contributors to adaptive variation. Our results provide a framework for the diversification of model tree genus that will facilitate future comparative studies.
Collapse
Affiliation(s)
- Mingcheng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhiyang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Mengmeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Deyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xu Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ken Keefover-Ring
- Departments of Botany and Geography, University of Wisconsin-Madison, 430 Lincoln Dr., Madison, WI, 53706, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 25606, USA
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Box 43131, Lubbock, TX, 79409-3131, USA
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Monitoring the Effects of Water Stress in Cotton using the Green Red Vegetation Index and Red Edge Ratio. REMOTE SENSING 2019. [DOI: 10.3390/rs11070873] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The main objective of this work was to study the feasibility of using the green red vegetation index (GRVI) and the red edge ratio (RE/R) obtained from UAS imagery for monitoring the effects of soil water deficit and for predicting fibre quality in a surface-irrigated cotton crop. The performance of these indices to track the effects of water stress on cotton was compared to that of the normalised difference vegetation index (NDVI) and crop water stress index (CWSI). The study was conducted during two consecutive seasons on a commercial farm where three irrigation frequencies and two nitrogen rates were being tested. High-resolution multispectral images of the site were acquired on four dates in 2017 and six dates in 2018, encompassing a range of matric potential values. Leaf stomatal conductance was also measured at the image acquisition times. At harvest, lint yield and fibre quality (micronaire) were determined for each treatment. Results showed that within each year, the N rates tested (> 180 kg N ha-1) did not have a statistically significant effect on the spectral indices. Larger intervals between irrigations in the less frequently irrigated treatments led to an increase (p < 0.05) in the CWSI and a reduction (p < 0.05) in the GRVI, RE/R, and to a lesser extent in the NDVI. A statistically significant and good correlation was observed between the GRVI and RE/R with soil matric potential and stomatal conductance at specific dates. The GRVI and RE/R were in accordance with the soil and plant water status when plants experienced a mild level of water stress. In most of the cases, the GRVI and RE/R displayed long-term effects of the water stress on plants, thus hampering their use for determinations of the actual soil and plant water status. The NDVI was a better predictor of lint yield than the GRVI and RE/R. However, both GRVI and RE/R correlated well (p < 0.01) with micronaire in both years of study and were better predictors of micronaire than the NDVI. This research presents the GRVI and RE/R as good predictors of fibre quality with potential to be used from satellite platforms. This would provide cotton producers the possibility of designing specific harvesting plans in the case that large fibre quality variability was expected to avoid discount prices. Further research is needed to evaluate the capability of these indices obtained from satellite platforms and to study whether these results obtained for cotton can be extrapolated to other crops.
Collapse
|
23
|
Briglia N, Nuzzo V, Petrozza A, Summerer S, Cellini F, Montanaro G. Preliminary high-throughput phenotyping analysis in grapevines under drought. BIO WEB OF CONFERENCES 2019. [DOI: 10.1051/bioconf/20191302003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study reports correlative information between leaf water potential (ψ), total leaf area of draughted grapevines (Vitis vinifera L.) and non-destructive image analysis techniques. Four groups of 20 potted vines each were subjected to various irrigation treatments restoring 100% (control), 75%, 50% and 25% of daily water consumption within a 22-day period of drought imposition. Leaf gas exchanges (Li-Cor 6400), ψ (Scholander chamber), fluorescence (PAM − 2500), RGB and NIR (Scanalyzer 3D system, LemnaTec GmbH phenotyping platform) data were collected before and at the end of drought imposition. Values of ψ in severely stressed vines (25%) reached −1.2 MPa pre-dawn, in turn stomatal conductance and photosynthesis reached values as low as approx. 0.02 mol H2O m−2 s−1 and 1.0 μmol CO2 m−2 s−1, respectively. The high-throughput analysis preliminarily revealed a correlation between ψ (stem) and NIR Color Class (R2=0.80), and that plant leaf area might be accurately estimated through imagine analysis (R2=0.90).
Collapse
|
24
|
Scalisi A, O’Connell MG, Stefanelli D, Lo Bianco R. Fruit and Leaf Sensing for Continuous Detection of Nectarine Water Status. FRONTIERS IN PLANT SCIENCE 2019; 10:805. [PMID: 31333685 PMCID: PMC6616271 DOI: 10.3389/fpls.2019.00805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 05/14/2023]
Abstract
Continuous assessment of plant water status indicators provides the most precise information for irrigation management and automation, as plants represent an interface between soil and atmosphere. This study investigated the relationship of plant water status to continuous fruit diameter (FD) and inverse leaf turgor pressure rates (p p) in nectarine trees [Prunus persica (L.) Batsch] throughout fruit development. The influence of deficit irrigation treatments on stem (Ψ stem) and leaf water potential, leaf relative water content, leaf stomatal conductance, and fruit growth was studied across the stages of double-sigmoidal fruit development in 'September Bright' nectarines. Fruit relative growth rate (RGR) and leaf relative pressure change rate (RPCR) were derived from FD and p p to represent rates of water in- and outflows in the organs, respectively. Continuous RGR and RPCR dynamics were independently and jointly related to plant water status and environmental variables. The independent use of RGR and RPCR yielded significant associations with midday Ψ stem, the most representative index of tree water status in anisohydric species. However, a combination of nocturnal fruit and leaf parameters unveiled an even more significant relationship with Ψ stem, suggesting a changing behavior of fruit and leaf water flows in response to pronounced water deficit. In conclusion, we highlight the suitability of a dual-organ sensing approach for improved prediction of tree water status.
Collapse
Affiliation(s)
- Alessio Scalisi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
- *Correspondence: Alessio Scalisi,
| | - Mark Glenn O’Connell
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
| | - Dario Stefanelli
- Department of Jobs, Precincts and Regions, Agriculture Victoria, Tatura, VIC, Australia
| | - Riccardo Lo Bianco
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| |
Collapse
|
25
|
On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model. REMOTE SENSING 2018. [DOI: 10.3390/rs10020195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Plant Water Status Indicators for Irrigation Scheduling Associated with Iso- and Anisohydric Behavior: Vine and Plum Trees. HORTICULTURAE 2017. [DOI: 10.3390/horticulturae3030047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops. HORTICULTURAE 2017. [DOI: 10.3390/horticulturae3020038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|