1
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
2
|
Shan H, Guo Y, Li J, Liu Z, Chen S, Dashnyam B, McClements DJ, Cao C, Xu X, Yuan B. Impact of Whey Protein Corona Formation around TiO 2 Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4958-4976. [PMID: 38381611 DOI: 10.1021/acs.jafc.3c07078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Previously, we found that whey proteins form biomolecular coronas around titanium dioxide (TiO2) nanoparticles. Here, the gastrointestinal fate of whey protein-coated TiO2 nanoparticles and their interactions with gut microbiota were investigated. The antioxidant activity of protein-coated nanoparticles was enhanced after simulated digestion. The structure of the whey proteins was changed after they adsorbed to the surfaces of the TiO2 nanoparticles, which reduced their hydrolysis under simulated gastrointestinal conditions. The presence of protein coronas also regulated the impact of the TiO2 nanoparticles on colonic fermentation, including promoting the production of short-chain fatty acids. Bare TiO2 nanoparticles significantly increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria, but the presence of protein coronas alleviated this effect. In particular, the proportion of beneficial bacteria, such as Bacteroides and Bifidobacterium, was enhanced for the coated nanoparticles. Our results suggest that the formation of a whey protein corona around TiO2 nanoparticles may have beneficial effects on their behavior within the colon. This study provides valuable new insights into the potential impact of protein coronas on the gastrointestinal fate of inorganic nanoparticles.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jin Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zimo Liu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Badamkhand Dashnyam
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| |
Collapse
|
3
|
Jiang B, Zhao Y, Cao Y, Sun C, Lu W, Fang Y. Advances in the Interaction between Food-Derived Nanoparticles and the Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3291-3301. [PMID: 38346354 DOI: 10.1021/acs.jafc.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The maintenance of the intestinal barrier is crucial for the overall balance of the gut and the organism. Dysfunction of the intestinal barrier is closely associated with intestinal diseases. In recent years, due to the increased presence of nanoparticles (NPs) in the human diet, there has been a growing concern regarding the safety and potential impact of these NPs on gastrointestinal health. The interactions between food-derived NPs and the intestinal barrier are numerous. This review provides an introduction to the structure and function of the intestinal barrier along with a comprehensive summary of the interactions between food NPs and the intestinal barrier. Additionally, we highlight the potential connection between the food NPs-induced dysfunction of the intestinal barrier and inflammatory bowel disease. Finally, we discuss the enhancement of food NPs on the repair of the intestinal barrier damage and the nutrients absorption. This review holds significant importance in furthering our understanding of the regulatory mechanisms of food-derived NPs on the intestinal barrier.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yiping Cao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Cuixia Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
4
|
Carlé C, Boucher D, Morelli L, Larue C, Ovtchinnikova E, Battut L, Boumessid K, Airaud M, Quaranta-Nicaise M, Ravanat JL, Dietrich G, Menard S, Eberl G, Barnich N, Mas E, Carriere M, Al Nabhani Z, Barreau F. Perinatal foodborne titanium dioxide exposure-mediated dysbiosis predisposes mice to develop colitis through life. Part Fibre Toxicol 2023; 20:45. [PMID: 37996842 PMCID: PMC10666382 DOI: 10.1186/s12989-023-00555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Perinatal exposure to titanium dioxide (TiO2), as a foodborne particle, may influence the intestinal barrier function and the susceptibility to develop inflammatory bowel disease (IBD) later in life. Here, we investigate the impact of perinatal foodborne TiO2 exposure on the intestinal mucosal function and the susceptibility to develop IBD-associated colitis. Pregnant and lactating mother mice were exposed to TiO2 until pups weaning and the gut microbiota and intestinal barrier function of their offspring was assessed at day 30 post-birth (weaning) and at adult age (50 days). Epigenetic marks was studied by DNA methylation profile measuring the level of 5-methyl-2'-deoxycytosine (5-Me-dC) in DNA from colic epithelial cells. The susceptibility to develop IBD has been monitored using dextran-sulfate sodium (DSS)-induced colitis model. Germ-free mice were used to define whether microbial transfer influence the mucosal homeostasis and subsequent exacerbation of DSS-induced colitis. RESULTS In pregnant and lactating mice, foodborne TiO2 was able to translocate across the host barriers including gut, placenta and mammary gland to reach embryos and pups, respectively. This passage modified the chemical element composition of foetus, and spleen and liver of mothers and their offspring. We showed that perinatal exposure to TiO2 early in life alters the gut microbiota composition, increases the intestinal epithelial permeability and enhances the colonic cytokines and myosin light chain kinase expression. Moreover, perinatal exposure to TiO2 also modifies the abilities of intestinal stem cells to survive, grow and generate a functional epithelium. Maternal TiO2 exposure increases the susceptibility of offspring mice to develop severe DSS-induced colitis later in life. Finally, transfer of TiO2-induced microbiota dysbiosis to pregnant germ-free mice affects the homeostasis of the intestinal mucosal barrier early in life and confers an increased susceptibility to develop colitis in adult offspring. CONCLUSIONS Our findings indicate that foodborne TiO2 consumption during the perinatal period has negative long-lasting consequences on the development of the intestinal mucosal barrier toward higher colitis susceptibility. This demonstrates to which extent environmental factors influence the microbial-host interplay and impact the long-term mucosal homeostasis.
Collapse
Affiliation(s)
- Caroline Carlé
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Delphine Boucher
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Luisa Morelli
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Ekaterina Ovtchinnikova
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Louise Battut
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Kawthar Boumessid
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Melvin Airaud
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Muriel Quaranta-Nicaise
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Jean-Luc Ravanat
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Gilles Dietrich
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Sandrine Menard
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
| | - Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, 75724, Paris, France
- INSERM U1224, Paris, France
| | - Nicolas Barnich
- M2iSH, Université Clermont Auvergne, UMR1071 INSERM, USC INRAE 1382, Clermont-Ferrand, France
| | - Emmanuel Mas
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France
- Gastroenterology, Hepatology, Nutrition, Diabetology and Hereditary Metabolic Diseases Unit, Hôpital des Enfants, CHU de Toulouse, 31300, Toulouse, France
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG-SyMMES, CIBEST, Grenoble, France
| | - Ziad Al Nabhani
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008, Bern, Switzerland.
| | - Frédérick Barreau
- Institut de Recherche en Santé Digestive (IRSD), INSERM UMR-1220, Purpan Hospital, CS60039, University of Toulouse, INSERM, INRAE, ENVT, UPS, 31024, Toulouse Cedex 03, France.
| |
Collapse
|
5
|
Ahmed J, Vasagam KPK, Ramalingam K. Nanoencapsulated Aquafeeds and Current Uses in Fisheries/Shrimps: A Review. Appl Biochem Biotechnol 2023; 195:7110-7131. [PMID: 36884191 DOI: 10.1007/s12010-023-04418-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Feeds for aquaculture animals are designed to provide them with the greatest amount of nourishment they need to carry out their regular physiological activities, such as maintaining a potent natural immune system and boosting growth and reproduction. However, the problems that severely hamper this sector's ability to contribute to achieving global food security include disease prevalence, chemical pollution, environmental deterioration, and inadequate feed usage. The regulated release of active aquafeed components; limited water solubility, bioaccessibility, and bioavailability, as well as their potent odour and flavour, limit their utilisation. They are unstable under high temperatures, acidic pH, oxygen, or light. Recent advancements in nano-feed for aquaculture (fish/shrimp) have attract enormous attention due to its excellent nutritional value, defeating susceptibility and perishability. Encapsulation is a multifunctional smart system that could bring benefits of personalized medicine; minimize costs and resources in the preclinical and clinical study in pharmacology. It guarantees the coating of the active ingredient as well as its controlled release and targeted distribution to a particular area of the digestive tract. For instance, using nanotechnology to provide more effective fish/shrimps feed for aquaculture species. The review enables a perspective points on safety and awareness in aquafeeds that have been made by the advancements of nanosystem. Therefore, potential of nano-delivery system in aquafeed industry for aquaculture act as concluding remark on future directions.
Collapse
Affiliation(s)
- Jahangir Ahmed
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - K P Kumaraguru Vasagam
- Department of Nutrition, Genetics, and Biotechnology, ICAR - Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India
| | - Karthikeyan Ramalingam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Chen J, Guo Y, Zhang X, Liu J, Gong P, Su Z, Fan L, Li G. Emerging Nanoparticles in Food: Sources, Application, and Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3564-3582. [PMID: 36791411 DOI: 10.1021/acs.jafc.2c06740] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticles (NPs) are small-sized, with high surface activity and antibacterial and antioxidant properties. As a result, some NPs are used as functional ingredients in food additives, food packaging materials, nutrient delivery, nanopesticides, animal feeds, and fertilizers to improve the bioavailability, quality, and performance complement or upgrade. However, the widespread use of NPs in the industry increases the exposure risk of NPs to humans due to their migration from the environment to food. Nevertheless, some NPs, such as carbon dots, NPs found in various thermally processed foods, are also naturally produced from the food during food processing. Given their excellent ability to penetrate biopermeable barriers, the potential safety hazards of NPs on human health have attracted increased attention. Herein, three emerging NPs are introduced including carbon-based NPs (e.g., CNTs), nanoselenium NPs (SeNPs), and rare earth oxide NPs (e.g., CeO2 NPs). In addition, their applications in the food industry, absorption pathways into the human body, and potential risk mechanisms are discussed. Challenges and prospects for the use of NPs in food are also proposed.
Collapse
Affiliation(s)
- Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Xianlong Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Lihua Fan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021 People's Republic of China
| |
Collapse
|
7
|
Jafary F, Motamedi S, Karimi I. Veterinary nanomedicine: Pros and cons. Vet Med Sci 2022; 9:494-506. [PMID: 36580403 PMCID: PMC9856992 DOI: 10.1002/vms3.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In recent years, nanotechnology has improved life with continuous growth in different fields. Nanoparticles can be employed in industry, imaging, engineering, and various biomedical filed because of their special physicochemical properties like rapid, effective, highly specific solutions, higher stability, biodegradability, biocompatibility, and cost. In this line, veterinary medicine has been influenced by nanotechnology in prevention, diagnosis, and treatment of diseases, cancer therapy, immunization, vaccine production, drug delivery, and health besides to related issues of animal production, maintenance, and welfare. The other important point is the interwoven linkage between animals and humans whether as a food source or as a companionship. Inorganic nanoparticles, polymeric, solid lipid, liposomal, nanocrystal, nanotubes, nanoemulsions, micelles, mesoporous silica nanoparticles, and dendrimers are kinds of nanoparticles that can be used widely. In this review, the impacts of nanotechnology on veterinary medicine have been summarized, criticized, and acknowledged as "veterinary nanomedicine" discipline.
Collapse
Affiliation(s)
- Fariba Jafary
- Department of BiochemistryNajafabad BranchIslamic Azad UniversityNajafabadIran
| | - Shima Motamedi
- Graduate of Doctor of Veterinary MedicineSchool of Veterinary MedicineRazi UniversityKermanshahIran
| | - Isaac Karimi
- Department of BiologyFaculty of ScienceRazi UniversityKermanshahIran
| |
Collapse
|
8
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hu P, Pan C, Su W, Vinturache A, Hu Y, Dong X, Ding G. Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6-19 years from NHANES, 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153548. [PMID: 35114227 DOI: 10.1016/j.scitotenv.2022.153548] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Humans are typically exposed to mixtures of environmental endocrine-disrupting chemicals simultaneously, but most studies have considered only a single chemical or a class of similar chemicals. OBJECTIVES We examined the association of exposure to mixtures of 7 chemicals, including 2 phenols [bisphenol A (BPA) and bisphenol S (BPS)], 2 parabens [methylparaben (MeP) and propyl paraben (PrP)], and 3 phthalate metabolites [Mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono (carboxyoctyl) phthalate (MCOP)] with sex steroid hormones. METHODS A total of 1179 children aged 6-19 years who had complete data on both 7 chemicals and sex steroid hormones of estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG) were analyzed from the U.S. National Health and Nutrition Examination Survey 2013-2016. Free androgen index (FAI) calculated by TT/SHBG, and the ratio of TT to E2 (TT/E2) were also estimated. Puberty was defined if TT ≥ 50 ng/dL in boys, E2 ≥ 20 pg/mL in girls; otherwise prepuberty was defined. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were performed to estimate the associations of individual chemical or chemical mixtures with sex hormones. RESULTS The linear regression showed that 2 phenols, 2 parabens, and 3 phthalate metabolites were generally negatively associated with E2, TT, FAI, and TT/E2, while positively with SHBG. Moreover, these associations were more pronounced among pubertal than prepubertal children. The aforementioned associations were confirmed when further applying WQS and BKMR, and the 3 phthalates metabolites were identified to be the most heavily weighing chemicals. CONCLUSIONS Exposure to phenols, parabens, and phthalates, either individuals or as a mixture, was negatively associated with E2, TT, FAI and TT/E2, while positively with SHBG. Those associations were stronger among pubertal children.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
11
|
Okazaki N, Yamaki D, Takei T, Shimizu M, Kamatani N, Shindo T. Studies on safety and efficacy of particles containing a mixture of hydroxyapatite–argentum–titanium oxide (HAT) and sheets coated with HAT particles to be used in masks to improve nasal allergy: II. Cellular, in vivo, and clinical studies. Eur Arch Otorhinolaryngol 2022; 279:4425-4433. [PMID: 35249130 PMCID: PMC9363370 DOI: 10.1007/s00405-022-07289-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
Purpose We report the manufacture of particles containing a mixture of hydroxyapatite–argentum–titanium oxide (HAT), followed by attachment to nonwoven polyester fabrics to produce HAT-coated sheets (HATS) for use in masks. The purpose of the present study was to perform cellular, in vivo, and clinical studies to further examine the safety of HATS for use in masks to improve nasal allergy. Methods Reverse mutation tests for HAT were performed using five bacterial strains. A cellular toxicity test was performed using a Chinese hamster cell line incubated with the HATS extracts. Skin reactions after intradermal administration were examined in rabbits. Skin sensitization tests in guinea pigs were performed using the HATS extracts. HAT was administered to the nasal cavity and conjunctival sac of the rabbits. An oral administration study was performed in rats. Finally, a human skin patch test was performed using the HATS. Results Reverse mutation tests showed negative results. The cellular toxicity test showed that the HATS extract had moderate cytotoxicity. The intradermal skin reaction and skin sensitization tests were all negative. The administration of HAT to the nasal cavity and intraocular administration showed negative results. No toxicity was observed after oral administration of HAT powder up to a dose of 2000 mg/kg. Finally, the skin patch test result was negative. Conclusion Although HAT showed moderate cytotoxicity, in vivo results indicated that HAT is safe because it does not come in direct contact with cells in normal usage, and HATS is safe when used in masks.
Collapse
|
12
|
Wang CPJ, Byun MJ, Kim SN, Park W, Park HH, Kim TH, Lee JS, Park CG. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J Control Release 2022; 345:1-19. [DOI: 10.1016/j.jconrel.2022.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
|
13
|
Carotenuto R, Tussellino M, Ronca R, Benvenuto G, Fogliano C, Fusco S, Netti PA. Toxic effects of SiO 2NPs in early embryogenesis of Xenopuslaevis. CHEMOSPHERE 2022; 289:133233. [PMID: 34896176 DOI: 10.1016/j.chemosphere.2021.133233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of organisms to the nanoparticulate is potentially hazardous, particularly when it occurs during embryogenesis. The effects of commercial SiO2NPs in early development were studied, using Xenopus laevis as a model to investigate their possible future employment by means of the Frog Embryo Teratogenesis Assay-Xenopus test (FETAX). The SiO2NPs did not change the survival but produced several abnormalities in developing embryos, in particular, the dorsal pigmentation, the cartilages of the head and branchial arches were modified; the encephalon, spinal cord and nerves are anomalous and the intestinal brush border show signs of suffering; these embryos are also bradycardic. In addition, the expression of genes involved in the early pathways of embryo development was modified. Treated embryos showed an increase of reactive oxygen species. This study suggests that SiO2NPs are toxic but non-lethal and showed potential teratogenic effects in Xenopus. The latter may be due to their cellular accumulation and/or to the effect caused by the interaction of SiO2NPs with cytoplasmic and/or nuclear components. ROS production could contribute to the observed effects. In conclusion, the data indicates that the use of SiO2NPs requires close attention and further studies to better clarify their activity in animals, including humans.
Collapse
Affiliation(s)
- Rosa Carotenuto
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | - Raffaele Ronca
- Institute of Biostructures and Bioimaging (IBB)-CNR, Naples, Italy
| | | | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Italian Institute of Technology, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Vieira A, Gramacho A, Rolo D, Vital N, Silva MJ, Louro H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:225-257. [DOI: 10.1007/978-3-030-88071-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.
Collapse
|
16
|
|
17
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
18
|
Bizymis AP, Tzia C. Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 2021; 62:8777-8792. [PMID: 34098828 DOI: 10.1080/10408398.2021.1934652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Edible films and coatings, despite their practical applications, have only entered the food industry in the last decade. Their main functions are to protect the food products from mechanical damage and from physical, chemical and microbiological deteriorative changes. The ingredients used for their formation are polysaccharides, proteins and lipids, in individual or combined formulations. The edible films and coatings have already been applied on various food products, such as fruits, vegetables, meat products, seafood products, cheese, baked products and deep fat fried products. The techniques for their application on foods are of particular interest. Nowadays, composite edible films and coatings are also being studied, based on combinations of the properties of individual components. In addition to conventional materials, new ones, such as nanomaterials, are being investigated, aiming to enhance the resulting properties. However, before the incorporation of new materials to films and coatings, they must be thoroughly checked according to the legislation, to assure their lawful use. This review covers the recent developments on the edible films and coatings area in terms of the contribution of novel constituting materials to the improvement of their properties.
Collapse
Affiliation(s)
- Angelos-Panagiotis Bizymis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Athens, Greece
| |
Collapse
|
19
|
Kang JS, Park JW. Silver Ion Release Accelerated in the Gastrovascular Cavity of Hydra vulgaris Increases the Toxicity of Silver Sulfide Nanoparticles. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1662-1672. [PMID: 33595126 DOI: 10.1002/etc.5017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (Ag-NPs) streamed into aquatic environments are chemically transformed into various forms, and one of the predominant forms is silver sulfide NPs (Ag2 S-NPs). Because of the lower dissolution rate of silver ions (Ag+ ), the toxicity of Ag2 S-NPs could be lower than that of Ag-NPs. However, the toxicity of Ag2 S-NPs has been observed to be restored under oxidative or acidic conditions. In the present study, 4 aquatic organisms, Pseudokirchneriella subcapitata (algae), Daphnia magna (crustacean), Danio rerio (fish), and Hydra vulgaris (cnidarian), were exposed to Ag2 S-NPs transformed from Ag-NPs using Na2 S under anoxic conditions; and acute toxicity was evaluated. The acute toxicity of Ag2 S-NPs was rarely observed in algae, crustaceans, and fish, whereas it was significantly restored in cnidarians. Although the dissolution rate was low in the medium exposed to Ag2 S-NPs, high Ag+ was detected in H. vulgaris. To understand the mechanisms of Ag2 S-NP toxicity in cnidarians, transcriptional profiles of H. vulgaris exposed to Ag-NPs, Ag2 S-NPs, and AgNO3 were analyzed. As a result, most of the genes that were significantly changed in the Ag2 S-NPs group were also found to be significantly changed in the AgNO3 group, indicating that the toxicity of Ag2 S-NPs was caused by Ag+ dissolved by the acidic condition in the gastrovascular cavity of H. vulgaris. This finding is the first in an aquatic organism and suggests the need to reconsider the stability and safety of Ag2 S-NPs in the aquatic environment. Environ Toxicol Chem 2021;40:1662-1672. © 2021 SETAC.
Collapse
Affiliation(s)
- Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, Jinju, Gyeongsangnam-do, South Korea
| | - June-Woo Park
- Environmental Risk Assessment Research Division, Korea Institute of Toxicology, Munsan-eup, Jinju, Gyeongsangnam-do, South Korea
- Human and Environmental Toxicology Program, Korea University of Science and Technology, Yuseong-gu, Daejeon, South Korea
| |
Collapse
|
20
|
da Silva PB, Araújo VHS, Fonseca-Santos B, Solcia MC, Ribeiro CM, da Silva IC, Alves RC, Pironi AM, Silva ACL, Victorelli FD, Fernandes MA, Ferreira PS, da Silva GH, Pavan FR, Chorilli M. Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Curr Med Chem 2021; 28:1906-1956. [PMID: 32400324 DOI: 10.2174/0929867327666200513080719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
The indiscriminate use of antibiotics has facilitated the growing resistance of bacteria, and this has become a serious public health problem worldwide. Several microorganisms are still resistant to multiple antibiotics and are particularly dangerous in the hospital and nursing home environment, and to patients whose care requires devices, such as ventilators and intravenous catheters. A list of twelve pathogenic genera, which especially included bacteria that were not affected by different antibiotics, was released by the World Health Organization (WHO) in 2017, and the research and development of new antibiotics against these genera has been considered a priority. The nanotechnology is a tool that offers an effective platform for altering the physicalchemical properties of different materials, thereby enabling the development of several biomedical applications. Owing to their large surface area and high reactivity, metallic particles on the nanometric scale have remarkable physical, chemical, and biological properties. Nanoparticles with sizes between 1 and 100 nm have several applications, mainly as new antimicrobial agents for the control of microorganisms. In the present review, more than 200 reports of various metallic nanoparticles, especially those containing copper, gold, platinum, silver, titanium, and zinc were analyzed with regard to their anti-bacterial activity. However, of these 200 studies, only 42 reported about trials conducted against the resistant bacteria considered a priority by the WHO. All studies are in the initial stage, and none are in the clinical phase of research.
Collapse
Affiliation(s)
- Patricia Bento da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | - Bruno Fonseca-Santos
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Mariana Cristina Solcia
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Renata Carolina Alves
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Andressa Maria Pironi
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | | | | | - Mariza Aires Fernandes
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Paula Scanavez Ferreira
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Gilmar Hanck da Silva
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Fernando Rogério Pavan
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| | - Marlus Chorilli
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara-SP, Brazil
| |
Collapse
|
21
|
Employing Nanosilver, Nanocopper, and Nanoclays in Food Packaging Production: A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11050509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past decade, there has been an increasing demand for “ready-to-cook” and “ready-to-eat” foods, encouraging food producers, food suppliers, and food scientists to package foods with minimal processing and loss of nutrients during food processing. Following the increasing trend in the customer’s demands for minimally processed foodstuffs, this underscores the importance of promising interests toward industrial applications of novel and practical approaches in food. Along with substantial progress in the emergence of “nanoscience”, which has turned into the call of the century, the efficacy of conventional packaging has faded away. Accordingly, there is a wide range of new types of packaging, including electronic packaging machines, flexible packaging, sterile packaging, metal containers, aluminum foil, and flexographic printing. Hence, it has been demonstrated that these novel approaches can economically improve food safety and quality, decrease the microbial load of foodborne pathogens, and reduce food spoilage. This review study provides a comprehensive overview of the most common chemical or natural nanocomposites used in food packaging that can extend food shelf life, safety and quality. Finally, we discuss applying materials in the production of active and intelligent food packaging nanocomposite, synthesis of nanomaterial, and their effects on human health.
Collapse
|
22
|
Baranowska-Wójcik E, Gustaw K, Szwajgier D, Oleszczuk P, Pawlikowska-Pawlęga B, Pawelec J, Kapral-Piotrowska J. Four Types of TiO 2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods 2021; 10:foods10050939. [PMID: 33923019 PMCID: PMC8146636 DOI: 10.3390/foods10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| | - Jarosław Pawelec
- Institute Microscopic Laboratory, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| |
Collapse
|
23
|
Deng J, Ding QM, Jia MX, Li W, Zuberi Z, Wang JH, Ren JL, Fu D, Zeng XX, Luo JF. Biosafety risk assessment of nanoparticles: Evidence from food case studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116662. [PMID: 33582638 DOI: 10.1016/j.envpol.2021.116662] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Nanotechnology provides a wide range of benefits in the food industry in improving food tastes, textures, sensations, quality, shelf life, and food safety. Recently, potential adverse effects such as toxicity and safety concerns have been associated with the increasing use of engineered nanoparticles in food industry. Additionally, very limited information is known concerning the behavior, properties and effects of food nano-materials in the gastrointestinal tract. There is explores the current advances and provides insights of the potential risks of nanoparticles in the food industry. Specifically, characteristics of food nanoparticles and their absorption in the gastrointestinal tract, the effects of food nanoparticles against the gastrointestinal microflora, and the potential toxicity mechanisms in different organs and body systems are discussed. This review would provide references for further investigation of nano-materials toxicity effect in foods and their molecular mechanisms. It will help to develop safer foods and expand nano-materials applications in safe manner.
Collapse
Affiliation(s)
- Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Quan Ming Ding
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ming Xi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar Es Salaam Institute of Technology, P.O. Box 2958, Dar Es Salaam, Tanzania
| | - Jian Hui Wang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jia Li Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiao Xi Zeng
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Fei Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
24
|
Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042008. [PMID: 33669592 PMCID: PMC7922260 DOI: 10.3390/ijerph18042008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022]
Abstract
Background: Titanium dioxide (TiO2) is used as a food additive in pastries, sweets, and sauces. It is recognized as safe by food safety authorities, but in recent years, governments and scientists have raised concerns about its genotoxicity. This systematic review aims to assess the potential associations between food TiO2 exposure and microbiota composition and functions. Methods: A systematic literature search was performed up to December 2020 in PubMed, Web of Science, and Scopus databases. The PRISMA guidelines followed. The risk of bias was assessed from ARRIVE and SYRCLE tools. Results: A total of 18 animal studies were included (n = 10 mice, n = 5 rats, n = 2 fruit flies, n = 1 silkworm). Studies varied significantly in protocols and outcomes assessment. TiO2 exposure might cause variations in abundance in specific bacterial species and lead to gut dysfunctions such as a reduction in SCFAs levels, goblet cells and crypts, mucus production, and increased biomarkers of intestinal inflammation. Conclusions: Although the extrapolation of these results from animals to humans remains difficult, this review highlights the key role of gut microbiota in gut nanotoxicology and stimulates discussions on the safe TiO2 use in food and dietary supplements. This systematic review was registered at PROSPERO as CRD42020223968.
Collapse
|
25
|
Antecedents of Purchase Intention at Starbucks in the Context of Covid-19 Pandemic. SUSTAINABILITY 2021. [DOI: 10.3390/su13041758] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this research is to examine the determinants of coffee shop purchase intention. The research domain is Starbucks, which is the brand ranked first in the coffee shop market. This study selects healthiness, hygiene, quarantine, ease of app use, and environmental responsibility as candidates for the antecedents of purchase intention. For hypothesis testing, this research used a survey and recruited survey participants using Amazon Mechanical Turk, and carried out multiple linear regressions to test research hypotheses. The number of valid observations for the data analysis is 474. It was found that purchase intention is positively influenced by healthiness, hygiene, quarantine, and ease of app use. However, environmental responsibility was identified as a nonsignificant attribute to account for purchase intention. Practical implications are presented for coffee shop management. The outcomes contribute to the literature by scrutinizing café customers’ purchase intention with various attributes.
Collapse
|
26
|
Yang T, Paulose T, Redan BW, Mabon JC, Duncan TV. Food and Beverage Ingredients Induce the Formation of Silver Nanoparticles in Products Stored within Nanotechnology-Enabled Packaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1398-1412. [PMID: 33398990 DOI: 10.1021/acsami.0c17867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanotechnology-based packaging may improve food quality and safety, but packages manufactured with polymer nanocomposites (PNCs) could be a source of human dietary exposure to engineered nanomaterials (ENMs). Previous studies showed that PNCs release ENMs to foods predominantly in a dissolved state, but most of this work used food simulants like dilute acetic acid and water, leaving questions about how substances in real foods may influence exposure. Here, we demonstrate that food and beverage ingredients with reducing properties, like sweeteners, may alter exposure by inducing nanoparticle formation in foods contacting silver nanotechnology-enabled packaging. We incorporated 12.8 ± 1.4 nm silver nanoparticles (AgNPs) into polyethylene and stored media containing reducing ingredients in packages manufactured from this material under accelerated room-temperature and refrigerated conditions. Analysis of the leachates revealed that reducing ingredients increased the total silver transferred to foods contacting PNC packaging (by as much as 7-fold) and also induced the (re)formation of AgNPs from this dissolved silver during storage. AgNP formation was also observed when Ag+ was introduced to solutions of natural and artificial sweeteners (glucose, sucrose, aspartame), commercial beverages (soft drinks, juices, milk), and liquid foods (yogurt, starch slurry), and the amount and morphology of reformed AgNPs depended on the ingredient formulation, silver concentration, storage conditions, and light exposure. These results imply that food and beverage ingredients may influence dietary exposure to nanoparticles when PNCs are used in packaging applications, and the practice of using food simulants may in certain cases underpredict the amount of ENMs likely to be found in foods stored in these materials.
Collapse
Affiliation(s)
- Tianxi Yang
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| | - Teena Paulose
- Department of Food Science and Nutrition, Illinois Institute of Technology, Bedford Park, Illinois 60501, United States
| | - Benjamin W Redan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| | - James C Mabon
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy V Duncan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501, United States
| |
Collapse
|
27
|
Lugani Y, Sooch BS, Singh P, Kumar S. Nanobiotechnology applications in food sector and future innovations. MICROBIAL BIOTECHNOLOGY IN FOOD AND HEALTH 2021. [PMCID: PMC7499077 DOI: 10.1016/b978-0-12-819813-1.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Gonçalves JP, Pipek LZ, Donaghey TC, DeLoid GM, Demokritou P, Brain JD, Molina RM. Effects of Ingested Nanomaterials on Tissue Distribution of Co-ingested Zinc and Iron in Normal and Zinc-Deficient Mice. NANOIMPACT 2021; 21:S2452-0748(20)30073-2. [PMID: 33521386 PMCID: PMC7839970 DOI: 10.1016/j.impact.2020.100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/03/2020] [Accepted: 11/19/2020] [Indexed: 05/11/2023]
Abstract
Cellulose nanofibers (CNF) reduced serum triglyceride levels in rats when co-administered with heavy cream by gavage. Do CNF and other nanomaterials (NMs) alter the tissue distribution and retention of co-administered metal ions? We evaluated whether 5 different NMs affected tissue distribution of co-ingested 65Zn++ and 59Fe+++ in zinc-replete versus zinc-deficient mice. Male C57BL/6J mice were fed either zinc-replete or zinc-deficient diets for 3 weeks, followed by gavage with NM suspensions in water containing both 65ZnCl2 and 59FeCl3. Urine and feces were measured for 48 h post-gavage. Mice were euthanized and samples of 22 tissues were collected and analyzed for 65Zn and 59Fe in a gamma counter. Our data show that zinc deficiency alters the tissue distribution of 65Zn but not of 59Fe, indicating that zinc and iron homeostasis are regulated by distinct mechanisms. Among the tested NMs, soluble starch-coated chitosan nanoparticles, cellulose nanocrystals, and TiO2 reduced Zn and Fe tissue retention in zinc-deficient but not in zinc-replete animals.
Collapse
Affiliation(s)
- Johnatan P. Gonçalves
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo-SP, 01246903, Brazil
| | - Leonardo Z. Pipek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
- Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, São Paulo-SP, 01246903, Brazil
| | - Thomas C. Donaghey
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Glen M. DeLoid
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Philip Demokritou
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Joseph D. Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Ramon M. Molina
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
29
|
Nanoscale manufacturing as an enabling strategy for the design of smart food packaging systems. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
García-Rodríguez A, Moreno-Olivas F, Marcos R, Tako E, Marques CNH, Mahler GJ. The Role of Metal Oxide Nanoparticles, Escherichia coli, and Lactobacillus rhamnosus on Small Intestinal Enzyme Activity. ENVIRONMENTAL SCIENCE. NANO 2020; 7:3940-3964. [PMID: 33815806 PMCID: PMC8011031 DOI: 10.1039/d0en01001d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Engineered nanomaterials (ENMs) have become common in the food industry, which motivates the need to evaluate ENM effects on human health. Gastrointestinal (GI) in vitro models (e.g. Caco-2, Caco-2/HT29-MTX) have been used in nanotoxicology research. However, the human gut environment is composed of both human cells and the gut microbiota. The goal of this study is to increase the complexity of the Caco-2/HT29-MTX in vitro model by co-culturing human cells with the Gram-positive, commensal Lactobacillus rhamnosus or the Gram-negative, opportunistic Escherichia coli; with the hypothesis that the presence of bacteria would ameliorate the effects of exposure to metal oxide nanoparticles (NPs) such as iron oxide (Fe2O3), silicone dioxide (SiO2), titanium dioxide (TiO2), or zinc oxide (ZnO). To understand this relationship, Caco-2/HT29-MTX cell barriers were acutely co-exposed (4 hours) to bacteria and/or NPs (pristine or in vitro digested). The activity of the brush border membrane (BBM) enzymes intestinal alkaline phosphatase (IAP), aminopeptidase-N (APN), sucrase isomaltase (SI) and the basolateral membrane enzyme (BLM) Na+/K+ ATPase were assessed. Findings show that (i) the human digestion process alters the physicochemical properties of NPs, (ii) large agglomerates of NPs remain entrapped on the apical side of the intestinal barrier, which (iii) affects the activity of BBM enzymes. Interestingly, some NPs effects were attenuated in the presence of either bacterial strains. Confocal microscopy detected bacteria-NPs interactions, which may impede the NP-intestinal cell contact. These results highlight the importance of improving in vitro models to closely mimic the complexities of the human body.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Fabiola Moreno-Olivas
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Bioscience, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - Elad Tako
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY, 14853-7201, USA
| | - Cláudia N. H. Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J. Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
31
|
Yan J, Wang D, Li K, Chen Q, Lai W, Tian L, Lin B, Tan Y, Liu X, Xi Z. Toxic effects of the food additives titanium dioxide and silica on the murine intestinal tract: Mechanisms related to intestinal barrier dysfunction involved by gut microbiota. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103485. [PMID: 32891757 DOI: 10.1016/j.etap.2020.103485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/16/2020] [Accepted: 08/26/2020] [Indexed: 05/28/2023]
Abstract
This study aimed to compare the effects of three food-grade particles (micro-TiO2, nano-TiO2, and nano-SiO2) on the murine intestinal tract and to investigate their potential mechanisms of action. A 28-day oral exposure murine model was established. Samples of blood, intestinal tissues and colon contents were collected for detection. The results showed that all three particles could cause inflammatory damage to the intestine, with nano-TiO2 showing the strongest effects. Exposure also led to changes in gut microbiota, especially mucus-associated bacteria. Our results suggest that the toxic effects on the intestine were due to reduced intestinal mucus barrier function and an increase in metabolite lipopolysaccharides which activated the expression of inflammatory factors downstream. In mice exposed to nano-TiO2, the intestinal PKC/TLR4/NF-κB signalling pathway was activated. These findings will raise awareness of toxicities associated with the use of food-grade TiO2 and SiO2.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Degang Wang
- National Center of Biomedical Analysis, No. 27, Tai-Ping Road, Beijing, 100850, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Bencheng Lin
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Yizhe Tan
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, China. No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
32
|
Demir E. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials. J Appl Toxicol 2020; 41:118-147. [PMID: 33111384 DOI: 10.1002/jat.4061] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nanomaterials (NMs) generally display fascinating physical and chemical properties that are not always present in bulk materials; therefore, any modification to their size, shape, or coating tends to cause significant changes in their chemical/physical and biological characteristics. The dramatic increase in efforts to use NMs renders the risk assessment of their toxicity highly crucial due to the possible health perils of this relatively uncharted territory. The different sizes and shapes of the nanoparticles are known to have an impact on organisms and an important place in clinical applications. The shape of nanoparticles, namely, whether they are rods, wires, or spheres, is a particularly critical parameter to affect cell uptake and site-specific drug delivery, representing a significant factor in determining the potency and magnitude of the effect. This review, therefore, intends to offer a picture of research into the toxicity of different shapes (nanorods, nanowires, and nanospheres) of NMs to in vitro and in vivo models, presenting an in-depth analysis of health risks associated with exposure to such nanostructures and benefits achieved by using certain model organisms in genotoxicity testing. Nanotoxicity experiments use various models and tests, such as cell cultures, cores, shells, and coating materials. This review article also attempts to raise awareness about practical applications of NMs in different shapes in biology, to evaluate their potential genotoxicity, and to suggest approaches to explain underlying mechanisms of their toxicity and genotoxicity depending on nanoparticle shape.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School of Health Services, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University, Dosemealti, Antalya, Turkey
| |
Collapse
|
33
|
De Vos S, Waegeneers N, Verleysen E, Smeets K, Mast J. Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1831-1846. [PMID: 32946346 DOI: 10.1080/19440049.2020.1809719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Silver (E174) is authorised as a food additive in the EU. The unknown particle size distribution of E174 is a specific concern for the E174 risk assessment. This study characterised the fraction of silver (nano)particles in 10 commercially available pristine E174 food additives and 10 E174-containing products by transmission electron microscopy (TEM) and single-particle inductively coupled plasma-mass spectrometry (spICP-MS). TEM analysis showed that all samples contained micrometre-sized flakes and also a fraction of (nano)particles. Energy-dispersive X-ray spectroscopy (EDX) and electron diffraction confirmed that the (nano)particles and micrometre-sized flakes consisted of silver. A higher amount of (nano)particles was observed in the products than in the food additives. In addition, the surface of the micrometre-sized flakes was rougher in products. The median of the minimum external dimension, assessed as minimal Feret diameter, of the fraction of (nano)particles determined by quantitative TEM analysis was 11 ± 4 nm and 18 ± 7 nm (overall mean ± standard deviation), for food additives and products, respectively. Similar size distributions were obtained by spICP-MS and TEM, considering the limit of detection of spICP-MS. The median of the equivalent spherical diameter of the fraction of (nano)particles determined by spICP-MS was 19 ± 4 nm and 21 ± 2 nm (overall mean ± standard deviation), for food additives and products, respectively. In all samples, independent of the choice of technique, the nano-sized particles represented more than 97% (by number) of the silver particles, even though the largest mass of silver was present as flakes.
Collapse
Affiliation(s)
- Sandra De Vos
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Nadia Waegeneers
- Service Trace Elements and Nanomaterials, Sciensano , Tervuren, Belgium
| | - Eveline Verleysen
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Hasselt University , Hasselt, Belgium
| | - Jan Mast
- Service Trace Elements and Nanomaterials, Sciensano , Uccle, Belgium
| |
Collapse
|
34
|
Istiqola A, Syafiuddin A. A review of silver nanoparticles in food packaging technologies: Regulation, methods, properties, migration, and future challenges. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.202000179] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arsi Istiqola
- Industrial Management of Service, Food and Nutrition IPB University (Bogor Agricultural University) Bogor Indonesia
| | - Achmad Syafiuddin
- Department of Public Health, Faculty of Health Universitas Nahdlatul Ulama Surabaya Surabaya Indonesia
| |
Collapse
|
35
|
Cao X, Han Y, Gu M, Du H, Song M, Zhu X, Ma G, Pan C, Wang W, Zhao E, Goulette T, Yuan B, Zhang G, Xiao H. Foodborne Titanium Dioxide Nanoparticles Induce Stronger Adverse Effects in Obese Mice than Non-Obese Mice: Gut Microbiota Dysbiosis, Colonic Inflammation, and Proteome Alterations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001858. [PMID: 32519440 DOI: 10.1002/smll.202001858] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Min Gu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Xiaoai Zhu
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan, 450001, P. R. China
| | - Gaoxing Ma
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, P. R. China
| | - Che Pan
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ermin Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Timothy Goulette
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Biao Yuan
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
36
|
Clark NJ, Woznica W, Handy RD. Dietary bioaccumulation potential of silver nanomaterials compared to silver nitrate in wistar rats using an ex vivo gut sac technique. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110745. [PMID: 32460051 DOI: 10.1016/j.ecoenv.2020.110745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 05/21/2023]
Abstract
Chronic dietary bioaccumulation tests with rodents are required for new substances, including engineered nanomaterials (ENMs), in order to provide information on the potential hazards to human health. However, screening tools are needed to manage the diversity of ENMs and alternative methods are desirable with respect to animal welfare. Here, an ex vivo gut sac method was used to estimate the dietary bioaccumulation potential of silver nanomaterials. The entire gastrointestinal tract (except the caecum) was removed and filled with a gut saline containing 1 mg L-1 of Ag as either AgNO3, silver nanoparticles (Ag NPs) or silver sulphide nanoparticles (Ag2S NPs), and compared to controls with no added Ag. The gut sacs were incubated for 4 h, rinsed to remove excess media, and the total Ag determined in the mucosa and muscularis. There was no detected Ag in the control treatments. Within the Ag treatments, 1.4-22% of the exposure dose was associated with the tissues and serosal saline. Within the mucosa of the AgNO3 treatment, the highest Ag concentration was associated with the intestinal regions (3639-7087 ng g-1) compared to the stomach (639 ± 128 ng g-1). This pattern was also observed in the Ag NP and Ag2S NP treatments, but there was no significant differences between any Ag treatments for the mucosa. However, differences between treatments were observed in the muscularis concentration. For example, both the Ag NP (907 ± 284 ng g -1) and Ag2S NP (1482 ± 668 ng g-1) treatments were significantly lower compared to the AgNO3 treatment (2514 ± 267 ng g-1). The duodenum demonstrated serosal accumulation in both the AgNO3 (~10 ng mL-1) and Ag NP (~3 ng mL-1) treatments. The duodenum showed some of the highest Ag accumulation with 41, 61 and 57% of the total Ag in the mucosa compared to the muscularis for the AgNO3, Ag NP and Ag2S NP treatments, respectively. In conclusion, the ex vivo gut sac method demonstrates the uptake of Ag in all Ag treatments, with the duodenum the site of highest accumulation. Based on the serosal saline accumulation, the ranked order of accumulation is AgNO3 > Ag NPs > Ag2S NPs.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Waldemar Woznica
- Biological Services Unit, University of Plymouth, Plymouth, United Kingdom
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
37
|
Moore MN. Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease. Dose Response 2020; 18:1559325820934227. [PMID: 32684871 PMCID: PMC7343375 DOI: 10.1177/1559325820934227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5'-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael N. Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, United Kingdom
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biological & Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
38
|
Demir E. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster: toxicity, cellular uptake, oxidative stress, and DNA damage. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:456-469. [PMID: 32515692 DOI: 10.1080/15287394.2020.1777236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The biological impact of nanomaterials (NMs) is determined by several factors such as size and shape, which need to be taken into consideration in any type of analysis. While investigators often prefer to conduct in vitro studies for detection of any possible adverse effects of NMs, in vivo approaches yield more relevant data for risk assessment. For this reason, Drosophila melanogaster was selected as a suitable in vivo model to characterize the potential risks associated with exposure nanorods (NRs), nanospheres (NSs), nanowires (NWs) forms of titanium dioxide (TiO2), and their microparticulated (or bulk) form, as TiO2. Third instar larvae (72 hr old larvae) were fed with TiO2 (NRs, NSs, or NWs) and TiO2 at concentrations ranging from 0.01 to 10 mM. Viability (toxicity), internalization (cellular uptake), intracellular reactive oxygen species (ROS) production, and genotoxicity (Comet assay) were the end-points evaluated in hemocyte D. melanogaster larvae. Significant intracellular oxidative stress and genotoxicity were noted at the highest exposure concentration (10 mM) of TiO2 (NRs, NSs, or NWs), as determined by the Comet assay and ROS analysis, respectively. A concentration-effect relationship was observed in hemocytes exposed to the NMs. Data demonstrated that selected forms of TiO2.-induced genotoxicity in D. melanogaster larvae hemocytes indicating this organism is susceptible for use as a model to examine in vivo NMs-mediated effects.
Collapse
Affiliation(s)
- Eşref Demir
- Vocational School, Department of Medical Services and Techniques, Medical Laboratory Techniques Programme, Antalya Bilim University , Antalya, Turkey
| |
Collapse
|
39
|
Sanches PL, Geaquinto LRDO, Cruz R, Schuck DC, Lorencini M, Granjeiro JM, Ribeiro ARL. Toxicity Evaluation of TiO 2 Nanoparticles on the 3D Skin Model: A Systematic Review. Front Bioeng Biotechnol 2020; 8:575. [PMID: 32587852 PMCID: PMC7298140 DOI: 10.3389/fbioe.2020.00575] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/12/2020] [Indexed: 01/14/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are regularly used in sunscreens because of their photoprotective capacity. The advantage of using TiO2 on the nanometer scale is due to its transparency and better UV blocking efficiency. Due to the greater surface area/volume ratio, NPs become more (bio)-reactive giving rise to concerns about their potential toxicity. To evaluate the irritation and corrosion of cosmetics, 3D skin models have been used as an alternative method to animal experimentation. However, it is not known if this model is appropriate to study skin irritation, corrosion and phototoxicity of nanomaterials such as TiO2 NPs. This systematic review (SR) proposed the following question: Can the toxicity of TiO2 nanoparticles be evaluated in a 3D skin model? This SR was conducted according to the Preliminary Report on Systematic Review and Meta-Analysis (PRISMA). The protocol was registered in CAMARADES and the ToxRTool evaluation was performed in order to increase the quality and transparency of this search. In this SR, 7 articles were selected, and it was concluded that the 3D skin model has shown to be promising to evaluate the toxicity of TiO2 NPs. However, most studies have used biological assays that have already been described as interfering with these NPs, demonstrating that misinterpretations can be obtained. This review will focus in the possible efforts that should be done in order to avoid interference of NPs with biological assays applied in 3D in vitro culture.
Collapse
Affiliation(s)
- Priscila Laviola Sanches
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
| | - Luths Raquel de Oliveira Geaquinto
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| | - Rebecca Cruz
- Fluminense Federal University, Rio de Janeiro, Brazil
| | | | | | - José Mauro Granjeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
- Fluminense Federal University, Rio de Janeiro, Brazil
| | - Ana Rosa Lopes Ribeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Duque de Caxias, Brazil
| |
Collapse
|
40
|
Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01229-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, Ferri GM. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front Public Health 2020; 8:192. [PMID: 32509719 PMCID: PMC7253631 DOI: 10.3389/fpubh.2020.00192] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The presence of products containing nanoparticles or nanofibers is rapidly growing. Nanotechnology involves a wide spectrum of industrial fields. There is a lack of information regarding the toxicity of these nanoparticles in aqueous media. The potential acute toxicity of ZnO NPs using two marine crustacean species: the copepod Tigriopus fulvus and the amphypod Corophium insidiosum was evaluated. Acute tests were conducted on adults of T. Fulvus nauplii and C. insidiosum. Both test species were exposed for 96 h to 5 increasing concentrations of ZnO NPs and ZnSO4H2O, and the endpoint was mortality. Statistical analysis revealed that the mean LC50 values of both ZnO NPs and ZnSO4H2O (ZnO NPs: F = 59.42; P < 0.0015; ZnSO4H2O: F = 25.57; P < 0.0015) were significantly lower for Tigriopus fulvus than for Corophium insidiosum. This result confirms that the toxic effect could be mainly attributed to the Zn ions, confirming that the dissolution processes play a crucial role in the toxicity of the ZnO NPs.
Collapse
Affiliation(s)
- Luigi Vimercati
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Domenica Cavone
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Antonio Caputi
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Luigi De Maria
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Michele Tria
- Marine Environment and Pollution Prevention, Department of Prevention, ASL TA Health Company, Taranto, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giovanni Maria Ferri
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
42
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
43
|
Tada-Oikawa S, Eguchi M, Yasuda M, Izuoka K, Ikegami A, Vranic S, Boland S, Tran L, Ichihara G, Ichihara S. Functionalized Surface-Charged SiO 2 Nanoparticles Induce Pro-Inflammatory Responses, but Are Not Lethal to Caco-2 Cells. Chem Res Toxicol 2020; 33:1226-1236. [PMID: 32319286 DOI: 10.1021/acs.chemrestox.9b00478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoparticles (NPs) are widely used in food, and analysis of their potential gastrointestinal toxicity is necessary. The present study was designed to determine the effects of silica dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) NPs on cultured THP-1 monocyte-derived macrophages and human epithelial colorectal adenocarcinoma (Caco-2) cells. Exposure to ZnO NPs for 24 h increased the production of redox response species (ROS) and reduced cell viability in a dose-dependent manner in THP-1 macrophages and Caco-2 cells. Although TiO2 and SiO2 NPs induced oxidative stress, they showed no apparent cytotoxicity against both cell types. The effects of functionalized SiO2 NPs on undifferentiated and differentiated Caco-2 cells were investigated using fluorescently labeled SiO2 NPs with neutral, positive, or negative surface charge. Exposure of both types of cells to the three kinds of SiO2 NPs significantly increased their interaction in a dose-dependent manner. The largest interaction with both types of cells was noted with exposure to more negatively surface-charged SiO2 NPs. Exposure to either positively or negatively, but not neutrally, surface-charged SiO2 NPs increased NO levels in differentiated Caco-2 cells. Exposure of differentiated Caco-2 cells to positively or negatively surface-charged SiO2 NPs also upregulated interleukin-8 expression. We conclude that functionalized surface-charged SiO2 NPs can induce pro-inflammatory responses but are noncytotoxic.
Collapse
Affiliation(s)
- Saeko Tada-Oikawa
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Mana Eguchi
- School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Michiko Yasuda
- School of Life Studies, Sugiyama Jogakuen University, 17-3 Hoshigaokamotomachi, Nagoya 464-0802, Japan
| | - Kiyora Izuoka
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Shimotsuke, Shimotsuke 329-0498, Japan
| | - Sandra Vranic
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Sonja Boland
- Unit of Functional and Adaptive Biology (BFA), Laboratory of Molecular and Cellular Responses to Xenobiotics, CNRS UMR 8251, Université de Paris, F-75013 Paris, France
| | - Lang Tran
- Institute of Occupational Medicine, Research Avenue North, Riccarton, EH14 4AP Edinburgh, United Kingdom
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Shimotsuke, Shimotsuke 329-0498, Japan
| |
Collapse
|
44
|
Gouin T. Toward an Improved Understanding of the Ingestion and Trophic Transfer of Microplastic Particles: Critical Review and Implications for Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1119-1137. [PMID: 32223000 PMCID: PMC7383496 DOI: 10.1002/etc.4718] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 03/22/2020] [Indexed: 05/19/2023]
Abstract
Microplastic particles have been observed in the environment and routinely detected in the stomachs and intestines of aquatic organisms over the last 50 yr. In the present review, information on the ingestion of plastic debris of varying sizes is collated, including data for >800 species representing approximately 87 000 individual organisms, for which plastic debris and microplastic particles have been observed in approximately 17 500, or 20%. The average reported number of microplastic particles/individual across all studies is estimated to be 4, with studies typically reporting averages ranging from 0 to 10 particles/individual. A general observation is that although strong evidence exists for the biological ingestion of microplastic particles, they do not bioaccumulate and do not appear to be subject to biomagnification as a result of trophic transfer through food webs, with >99% of observations from field-based studies reporting that microplastic particles are located within the gastrointestinal tract. Overall, there is substantial heterogeneity in how samples are collected, processed, analyzed, and reported, causing significant challenges in attempting to assess temporal and spatial trends or helping to inform a mechanistic understanding. Nevertheless, several studies suggest that the characteristics of microplastic particles ingested by organisms are generally representative of plastic debris in the vicinity where individuals are collected. Monitoring of spatial and temporal trends of ingested microplastic particles could thus potentially be useful in assessing mitigation efforts aimed at reducing the emission of plastic and microplastic particles to the environment. The development and application of standardized analytical methods are urgently needed to better understand spatial and temporal trends. Environ Toxicol Chem 2020;39:1119-1137. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, Sharnbrook, BedfordshireUnited Kingdom
| |
Collapse
|
45
|
Abstract
Background Fluorescent carbon dots (CDs) are a novel class of carbon-based nanomaterials that were discovered in 2004. However, nobody knew that CDs existed in food items naturally until 2012. Properties of nanosize materials are distinct from those of their bulk materials due to the particle size and accordingly alter their bioavailability and/or biocompatibility. Therefore, the potential health risk of nanoparticles in food has drawn massive attention. Currently, almost all studies regarding the biosafety of nanoparticles in food have mainly focused on engineered nanoparticles used as food additives and have excluded the endogenous nanoparticles in food. Therefore, investigation of the properties of food-borne fluorescent CDs and their potential health risk to humans is of great significance. Scope and approach This review summarizes the existing literature on fluorescent carbon dots (CDs) in food, with particular attention to their properties, formation process, and the potential health risks posed to consumers. The knowledge gap between food-borne nanoparticles and their potential risks is identified, and future research is proposed. Key findings and conclusions The presence of fluorescent CDs in food produced during food processing has been summarized. Fluorescent CDs less than 10 nm in size mainly contain carbon, oxygen, hydrogen, and/or nitrogen. The presence of CDs in food items was first demonstrated in 2012, and their formation was attributed to heating of the starting material. The properties of CDs in food are different from the engineered nanoparticles used as food as additives and represent a novel kind of nanostructure in food. Further studies should focus on the chronic effects of CDs, although their toxicity is low, because investigations both in vivo and in vitro are limited.
Collapse
Affiliation(s)
- Haitao Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China
| | - Wentao Su
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Qinggongyuan 1, Ganjingzi District, Dalian, Liaoning 116034, China
| |
Collapse
|
46
|
Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01250-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Bionanotechnology: Silver Nanoparticles Supported on Bovine Bone Powder Used as Bactericide. MATERIALS 2020; 13:ma13020462. [PMID: 31963660 PMCID: PMC7014155 DOI: 10.3390/ma13020462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/17/2022]
Abstract
Bionanotechnology is a relatively new term that implies the use of some biological material or organisms in order to prepare nanosystems or nanoparticles. This work presents the preparation and bactericide application of a sustainable nanometric system (silver nanoparticles) using a waste biological support (bovine bone powder). This system was prepared by the method of metallic salt reduction, using NaBH4 as reducing agent and AgNO3 as metallic salt. Two silver contents were analyzed, 1% and 5% weight. The latter was found to be more efficient than the former. Transmission electronic microscopy shows an average size of 10.5 ± 3.3 nm and quasi-sphere morphology. The antimicrobial assay shows that a 5% weight content of silver had a bactericide effect for Escherichia coli at 46.8 min of exposure. The minimum inhibitory concentration (MIC) of silver nanoparticles supported on bovine bone powder for Escherichia coli was 7.5 µg/mL. The biocomposite exhibits a specific antibacterial kinetics constant (k) of 0.1128 min−1 and decimal reduction time (DRT) of 20.39 min for Escherichia coli. Thus, it was concluded that a biocomposite was prepared with a biodegradable, waste, and low-cost support, under mild conditions (room temperature and atmospheric pressure) and using water as solvent.
Collapse
|
48
|
Micronuclei Detection by Flow Cytometry as a High-Throughput Approach for the Genotoxicity Testing of Nanomaterials. NANOMATERIALS 2019; 9:nano9121677. [PMID: 31771274 PMCID: PMC6956333 DOI: 10.3390/nano9121677] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Abstract
Thousands of nanomaterials (NMs)-containing products are currently under development or incorporated in the consumer market, despite our very limited understanding of their genotoxic potential. Taking into account that the toxicity and genotoxicity of NMs strongly depend on their physicochemical characteristics, many variables must be considered in the safety evaluation of each given NM. In this scenario, the challenge is to establish high-throughput methodologies able to generate rapid and robust genotoxicity data that can be used to critically assess and/or predict the biological effects associated with those NMs being under development or already present in the market. In this study, we have evaluated the advantages of using a flow cytometry-based approach testing micronucleus (MNs) induction (FCMN assay). In the frame of the EU NANoREG project, we have tested six different NMs—namely NM100 and NM101 (TiO2NPs), NM110 (ZnONPs), NM212 (CeO2NPs), NM300K (AgNPs) and NM401 (multi-walled carbon nanotubes (MWCNTs)). The obtained results confirm the ability of AgNPs and MWCNTs to induce MN in the human bronchial epithelial BEAS-2B cell line, whereas the other tested NMs retrieved non-significant increases in the MN frequency. Based on the alignment of the results with the data reported in the literature and the performance of the FCMN assay, we strongly recommend this assay as a reference method to systematically evaluate the potential genotoxicity of NMs.
Collapse
|
49
|
A rapid synthesis and antibacterial property of selenium nanoparticles using egg white lysozyme as a stabilizing agent. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1509-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
50
|
Sengupta S, Bhattacharyya DK, Goswami R, Bhowal J. Emulsions stabilized by soy protein nanoparticles as potential functional non-dairy yogurts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5808-5818. [PMID: 31177542 DOI: 10.1002/jsfa.9851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice bran oil and soy protein nanoparticles (SPNs) may be considered as novel functional food ingredients for soy yogurt production. Formulation of soy yogurt with SPNs and rice bran oil, which has significant physiological functions, will convert them into functional food products. This study was conducted to develop rice bran oil-based soy protein nanoparticles emulsion (SPNE) and to evaluate physical properties, antioxidant activities, oxidative stability and microbiological load as well as textural attributes of SPNs incorporated yogurt (SPNY) during storage at 4 °C for 45 days. RESULTS SPNs were prepared from soy protein isolate of defatted soy flour. Solubilization, crystallization and ultrasonication was carried out six times. After the sixth cycle of repeated solubilizing, crystallization and ultrasonication, the size of nano protein was reduced to 72.42 ± 0.22 nm from 586.72 ± 0.75 nm (after first cycle). Viscosity, penetration values and water-holding capacity of SPNs added to yogurt were decreased with increase in reduction size of SPNs. SPNs added to yogurt exhibited greater antiradical scavenging ability and ferric reducing antioxidant property than control yogurt. Fortified soy yogurt had significant higher oxidative stability and proteolytic activity. CONCLUSION Fortification of non-dairy food products with SPNs, which has significant physiological functions, convert conventional soy yogurt into functional food products. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Samadrita Sengupta
- School of Community Science and Technology (SOCSAT), Indian Institute of Engineering Science and Technology (IIEST), SHIBPUR, Howrah, India
| | - Dipak K Bhattacharyya
- School of Community Science and Technology (SOCSAT), Indian Institute of Engineering Science and Technology (IIEST), SHIBPUR, Howrah, India
| | - Riddhi Goswami
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Jayati Bhowal
- School of Community Science and Technology (SOCSAT), Indian Institute of Engineering Science and Technology (IIEST), SHIBPUR, Howrah, India
| |
Collapse
|