1
|
Daley C, Doris M, Verner MA, Zalzal J, Chesnaux R, Minet L, Kang M, MacLean HL, Hatzopoulou M, Owens-Beek N, Caron-Beaudoin É. Residential proximity to conventional and unconventional wells and exposure to indoor air volatile organic compounds in the Exposures in the Peace River Valley (EXPERIVA) study. Int J Hyg Environ Health 2025; 263:114462. [PMID: 39293310 DOI: 10.1016/j.ijheh.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND In a previous study located in Northeastern British Columbia (Canada), we observed associations between density and proximity of oil and gas wells and indoor air concentrations of certain volatile organic compounds (VOCs). Whether conventional or unconventional well types and phases of unconventional development contribute to these associations remains unknown. OBJECTIVE To investigate the associations between proximity-based metrics for conventional and unconventional wells and measured indoor air VOC concentrations in the Exposures in the Peace River Valley (EXPERIVA) study samples. METHODS Eighty-four pregnant individuals participated in EXPERIVA. Passive indoor air samplers were analyzed for 47 VOCs. Oil and gas well legacy data were sourced from the British Columbia Energy Regulator. For each participant's home, 5 km, 10 km and no buffer distances were delineated, then density and Inverse Distance Square Weighted (ID2W) metrics were calculated to estimate exposure to conventional and unconventional wells during pregnancy and the VOC measurement period. Multiple linear regression models were used to test for associations between the well exposure metrics and indoor air VOCs. For exposure metrics with >30% participants having a value of 0, we dichotomized exposure (0 vs. >0) and performed ANOVAs to assess differences in mean VOCs concentrations. RESULTS Analyses indicated that: 1) conventional well density and ID2W metrics were positively associated with indoor air acetone and decanal; 2) unconventional well density and ID2W metrics were positively associated with indoor air chloroform and decamethylcyclopentasiloxane, and negatively associated with decanal; 3) drilling specific ID2W metrics for unconventional wells were positively associated with indoor air chloroform. CONCLUSION Our analysis revealed that the association between the exposure metrics and indoor air acetone could be attributed to conventional wells and the association between exposure metrics and indoor air chloroform and decamethylcyclopentasiloxane could be attributed to unconventional wells.
Collapse
Affiliation(s)
- Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Miranda Doris
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Marc-André Verner
- Centre de Recherche en Santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Jad Zalzal
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Romain Chesnaux
- Applied Sciences, University of Quebec at Chicoutimi, Quebec, Canada
| | - Laura Minet
- Civil Engineering, University of Victoria, British Columbia, Canada
| | - Mary Kang
- Civil Engineering, McGill University, Quebec, Canada
| | - Heather L MacLean
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Élyse Caron-Beaudoin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Caron-Beaudoin É, Akpo H, Doyle-Waters MM, Ronald LA, Friesen M, Takaro T, Leven K, Meyer U, McGregor MJ. The human health effects of unconventional oil and gas (UOG) chemical exposures: a scoping review of the toxicological literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0076. [PMID: 38985132 DOI: 10.1515/reveh-2024-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
Many chemicals associated with unconventional oil and natural gas (UOG) are known toxicants, leading to health concerns about the effects of UOG. Our objective was to conduct a scoping review of the toxicological literature to assess the effects of UOG chemical exposures in models relevant to human health. We searched databases for primary research studies published in English or French between January 2000 and June 2023 on UOG-related toxicology studies. Two reviewers independently screened abstracts and full texts to determine inclusion. Seventeen studies met our study inclusion criteria. Nine studies used solely in vitro models, while six conducted their investigation solely in animal models. Two studies incorporated both types of models. Most studies used real water samples impacted by UOG or lab-made mixtures of UOG chemicals to expose their models. Most in vitro models used human cells in monocultures, while all animal studies were conducted in rodents. All studies detected significant deleterious effects associated with exposure to UOG chemicals or samples, including endocrine disruption, carcinogenicity, behavioral changes and metabolic alterations. Given the plausibility of causal relationships between UOG chemicals and adverse health outcomes highlighted in this review, future risk assessment studies should focus on measuring exposure to UOG chemicals in human populations.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Physical and Environmental Sciences, 33530 University of Toronto Scarborough , Ontario, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Ontario, Canada
| | - Hélène Akpo
- Department of Occupational and Environmental Health, Université de Montréal, Quebec, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
| | - Lisa A Ronald
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | - Tim Takaro
- Faculty of Health Sciences, Simon Fraser University, British Columbia, Canada
| | | | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, British Columbia, Canada
- Department of Family Practice, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| |
Collapse
|
3
|
Aker AM, Friesen M, Ronald LA, Doyle-Waters MM, Takaro TK, Thickson W, Levin K, Meyer U, Caron-Beaudoin E, McGregor MJ. The human health effects of unconventional oil and gas development (UOGD): A scoping review of epidemiologic studies. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024; 115:446-467. [PMID: 38457120 PMCID: PMC11133301 DOI: 10.17269/s41997-024-00860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Unconventional oil and gas development (UOGD, sometimes termed "fracking" or "hydraulic fracturing") is an industrial process to extract methane gas and/or oil deposits. Many chemicals used in UOGD have known adverse human health effects. Canada is a major producer of UOGD-derived gas with wells frequently located in and around rural and Indigenous communities. Our objective was to conduct a scoping review to identify the extent of research evidence assessing UOGD exposure-related health impacts, with an additional focus on Canadian studies. METHODS We included English- or French-language peer-reviewed epidemiologic studies (January 2000-December 2022) which measured exposure to UOGD chemicals directly or by proxy, and where health outcomes were plausibly caused by UOGD-related chemical exposure. Results synthesis was descriptive with results ordered by outcome and hierarchy of methodological approach. SYNTHESIS We identified 52 studies from nine jurisdictions. Only two were set in Canada. A majority (n = 27) used retrospective cohort and case-control designs. Almost half (n = 24) focused on birth outcomes, with a majority (n = 22) reporting one or more significant adverse associations of UOGD exposure with: low birthweight; small for gestational age; preterm birth; and one or more birth defects. Other studies identified adverse impacts including asthma (n = 7), respiratory (n = 13), cardiovascular (n = 6), childhood acute lymphocytic leukemia (n = 2), and all-cause mortality (n = 4). CONCLUSION There is a growing body of research, across different jurisdictions, reporting associations of UOGD with adverse health outcomes. Despite the rapid growth of UOGD, which is often located in remote, rural, and Indigenous communities, Canadian research on its effects on human health is remarkably sparse. There is a pressing need for additional evidence.
Collapse
Affiliation(s)
- Amira M Aker
- Université Laval, CHU de Quebec - Université Laval, Québec, QC, Canada
| | - Michael Friesen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa A Ronald
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mary M Doyle-Waters
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Willow Thickson
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Karen Levin
- Emerald Environmental Consulting, Kent, OH, USA
| | - Ulrike Meyer
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Elyse Caron-Beaudoin
- Department of Health and Society and Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Margaret J McGregor
- Centre for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Caron-Beaudoin É, Subramanian A, Daley C, Lakshmanan S, Whitworth KW. Estimation of exposure to particulate matter in pregnant individuals living in an area of unconventional oil and gas operations: Findings from the EXPERIVA study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:383-396. [PMID: 37154018 DOI: 10.1080/15287394.2023.2208594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Northeastern British Columbia (Canada) is an area of oil and gas exploitation, which may result in release of fine (PM2.5) and inhalable (PM10) particulate matter. The aims of this study were to: 1) apply extrapolation methods to estimate exposure to PM2.5 and PM10 concentrations among EXPERIVA (Exposures in the Peace River Valley study) participants using air quality data archives; and 2) conduct exploratory analyses to investigate correlation between PM exposure and metrics of oil and gas wells density, proximity, and activity. Gestational exposure to PM2.5 and PM10 of the EXPERIVA participants (n = 85) was estimated by averaging the concentrations measured at the closest or three closest air monitoring stations during the pregnancy period. Drilling metrics were calculated based upon the density and proximity of conventional and unconventional oil and gas wells to each participant's residence. Phase-specific metrics were determined for unconventional wells. The correlations (ρ) between exposure to PM2.5 and PM10 and metrics of well density/proximity were determined using Spearman's rank correlation test. Estimated PM ambient air concentrations ranged between 4.73 to 12.13 µg/m3 for PM2.5 and 7.14 to 26.61 µg/m3 for PM10. Conventional wells metrics were more strongly correlated with PM10 estimations (ρ between 0.28 and 0.79). Unconventional wells metrics for all phases were positively correlated with PM2.5 estimations (ρ between 0.23 and 0.55). These results provide evidence of a correlation between density and proximity of oil and gas wells and estimated PM exposure in the EXPERIVA participants.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amrita Subramanian
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Siddharthan Lakshmanan
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Hoang TT, Rosales O, Burgess E, Lupo PJ, Scheurer ME, Oluyomi AO. Clustering of Pediatric Brain Tumors in Texas, 2000-2017. TOXICS 2023; 11:351. [PMID: 37112578 PMCID: PMC10146099 DOI: 10.3390/toxics11040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Risk factors for pediatric brain tumors are largely unknown. Identifying spatial clusters of these rare tumors on the basis of residential address may provide insights into childhood socio-environmental factors that increase susceptibility. From 2000-2017, the Texas Cancer Registry recorded 4305 primary brain tumors diagnosed among children (≤19 years old). We performed a spatial analysis in SaTScan to identify neighborhoods (census tracts) where the observed number of pediatric brain tumors was higher than expected. Within each census tract, the number of pediatric brain tumors was summed on the basis of residential address at diagnosis. The population estimate from the 2007-2011 American Community Survey of 0- to 19-year-olds was used as the at-risk population. p-values were calculated using Monte Carlo hypothesis testing. The age-standardized rate was 54.3 per 1,000,000. SaTScan identified twenty clusters, of which two were statistically significant (p < 0.05). Some of the clusters identified in Texas spatially implicated potential sources of environmental risk factors (e.g., proximity to petroleum production processes) to explore in future research. This work provides hypothesis-generating data for further investigations of spatially relevant risk factors of pediatric brain tumors in Texas.
Collapse
Affiliation(s)
- Thanh T. Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (T.T.H.); (P.J.L.); (M.E.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Omar Rosales
- Department of Medicine, Epidemiology and Population Sciences Section, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (O.R.); (E.B.)
| | - Elyse Burgess
- Department of Medicine, Epidemiology and Population Sciences Section, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (O.R.); (E.B.)
| | - Philip J. Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (T.T.H.); (P.J.L.); (M.E.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael E. Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (T.T.H.); (P.J.L.); (M.E.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Abiodun O. Oluyomi
- Department of Medicine, Epidemiology and Population Sciences Section, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; (O.R.); (E.B.)
| |
Collapse
|
6
|
Claustre L, Bouchard M, Gasparyan L, Bosson-Rieutort D, Owens-Beek N, Caron-Beaudoin É, Verner MA. Assessing gestational exposure to trace elements in an area of unconventional oil and gas activity: comparison with reference populations and evaluation of variability. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:94-101. [PMID: 36564511 DOI: 10.1038/s41370-022-00508-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Located in Northeastern British Columbia, the Montney formation is an important area of unconventional oil and gas exploitation, which can release contaminants like trace elements. Gestational exposure to these contaminants may lead to deleterious developmental effects. OBJECTIVES Our study aimed to (1) assess gestational exposure to trace elements in women living in this region through repeated urinary measurements; (2) compare urinary concentrations to those from North American reference populations; (3) compare urinary concentrations between Indigenous and non-Indigenous participants; and (4) evaluate inter- and intra-individual variability in urinary levels. METHODS Eighty-five pregnant women participating in the Exposures in the Peace River Valley (EXPERIVA) study provided daily spot urine samples over 7 consecutive days. Samples were analyzed for 20 trace elements using inductively-coupled mass spectrometry (ICP-MS). Descriptive statistics were calculated, and inter- and intra-individual variability in urinary levels was evaluated through intraclass correlation coefficient (ICC) calculation for each trace element. RESULTS When compared with those from North American reference populations, median urinary levels were higher in our population for barium (~2 times), cobalt (~3 times) and strontium (~2 times). The 95th percentile of reference populations was exceeded at least 1 time by a substantial percentage of participants during the sampling week for barium (58%), cobalt (73%), copper (29%), manganese (28%), selenium (38%), strontium (60%) and vanadium (100%). We observed higher urinary manganese concentrations in self-identified Indigenous participants (median: 0.19 µg/g creatinine) compared to non-Indigenous participants (median: 0.15 µg/g of creatinine). ICCs varied from 0.288 to 0.722, indicating poor to moderate reliability depending on the trace element. SIGNIFICANCE Our results suggest that pregnant women living in this region may be more exposed to certain trace elements (barium, cobalt, copper, manganese, selenium, strontium, and vanadium), and that one urine spot sample could be insufficient to adequately characterize participants' exposure to certain trace elements. IMPACT STATEMENT Unconventional oil and gas (UOG) is an important industry in the Peace River Valley region (Northeastern British Columbia, Canada). Information on the impacts of this industry is limited, but recent literature emphasizes the risk of environmental contamination. The results presented in this paper highlight that pregnant women living near UOG wells in Northeastern British Columbia may be more exposed to some trace elements known to be related to this industry compared to reference populations. Furthermore, our results based on repeated urinary measurements show that one urine sample may be insufficient to adequately reflect long-term exposure to certain trace elements.
Collapse
Affiliation(s)
- Lucie Claustre
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Michèle Bouchard
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Lilit Gasparyan
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Delphine Bosson-Rieutort
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada
- Deartment of Health Policy, Management and Evaluation, School of Public Health, Université de Montréal, Montreal, QC, Canada
| | | | - Élyse Caron-Beaudoin
- Department of Health and Society, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Center for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC, Canada.
- Centre de recherche en santé publique, Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC, Canada.
| |
Collapse
|
7
|
Okoye OC, Awunor N. Is exposure to hydrocarbons associated with chronic kidney disease in young Nigerians? A case-control study. FRONTIERS IN NEPHROLOGY 2022; 2:1010080. [PMID: 37675025 PMCID: PMC10479625 DOI: 10.3389/fneph.2022.1010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2023]
Abstract
Introduction Although environmental exposure to hydrocarbons has been linked to non-communicable diseases, its association with chronic kidney disease (CKD) is still an emerging area. Epidemiological studies associating CKD with prolonged exposure to hydrocarbons have mostly focused on occupational exposure, with fewer studies on environmental exposure from residing in contaminated areas. The aim of this study was to determine any association between long-term exposure to petrochemical products and the risk of CKD by comparing the residence and occupational history of young patients with CKD and non-CKD controls. Materials and methods A case-control study of 74 cases and 74 age- and sex-matched non-CKD controls was carried out. Cases were patients with CKD who were aged 18-44 years and diagnosed with suspected chronic glomerulonephritis (CGN). Patients were recruited from an outpatient nephrology clinic and medical wards. Patients with CKD from traditional causes were excluded. Data were collected using a pre-tested structured questionnaire adapted from the WHO STEPwise approach to the non-communicable disease risk factor surveillance (STEPS) instrument. To assess exposure, a detailed work history and all residential addresses where the patients have lived for at least 5 years were recorded. 'Exposed' status was regarded as long-term residence in a known oil-polluted area and jobs involving crude oil exploration, processing, transportation and sales, and cleanup of crude oil hazards. Absence of a history of chronic exposure or any form of exposure was regarded as 'less exposed'. Results There were 52 (70.3%) cases categorized as exposed, compared with 21 (28.4%) controls (p < 0.001). There were 34 (45.9%) cases born near petrochemical refineries and plants, compared with 11 (14.9%) controls (p ≤ 0.001). There were 34 (45.9%) cases residing near petrochemical refineries and plants, compared with 8 (10.9%) controls (p ≤ 0.001). When asked 'Do you think you have been significantly exposed to crude oil?', 15 (20.3%) cases and 2 (2.7%) controls answered 'yes' (p ≤ 0.001). Conclusion Our findings suggest an association between exposure to petrochemicals and CKD in young Nigerians diagnosed with suspected CGN. Exposure is significantly associated with a higher mean age, waist circumference, and blood sugar levels; however, other traditional risk factors for CKD were not considerably more prevalent in this unique patient population. These findings should prompt more emphasis on occupational history, residential history, and other relevant environmental exposures in the assessment of patients at risk for CKD.
Collapse
Affiliation(s)
- Ogochukwu Chinedum Okoye
- Department of Medicine, Delta State University, Abraka, Nigeria
- Department of Internal Medicine, Delta State University Teaching Hospital, Oghara, Nigeria
| | - Nyemike Awunor
- Department of Community Medicine, Delta State University, Abraka, Nigeria
- Department of Community Medicine, Delta State University Teaching Hospital, Oghara, Nigeria
| |
Collapse
|
8
|
Proximity and density of unconventional natural gas wells and mental illness and substance use among pregnant individuals: An exploratory study in Canada. Int J Hyg Environ Health 2022; 242:113962. [DOI: 10.1016/j.ijheh.2022.113962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
|
9
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
10
|
Kuijpers E, van Wel L, Loh M, Galea KS, Makris KC, Stierum R, Fransman W, Pronk A. A Scoping Review of Technologies and Their Applicability for Exposome-Based Risk Assessment in the Oil and Gas Industry. Ann Work Expo Health 2021; 65:1011-1028. [PMID: 34219141 DOI: 10.1093/annweh/wxab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/18/2021] [Accepted: 05/12/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Oil and gas workers have been shown to be at increased risk of chronic diseases including cancer, asthma, chronic obstructive pulmonary disease, and hearing loss, among others. Technological advances may be used to assess the external (e.g. personal sensors, smartphone apps and online platforms, exposure models) and internal exposome (e.g. physiologically based kinetic modeling (PBK), biomonitoring, omics), offering numerous possibilities for chronic disease prevention strategies and risk management measures. The objective of this study was to review the literature on these technologies, by focusing on: (i) evaluating their applicability for exposome research in the oil and gas industry, and (ii) identifying key challenges that may hamper the successful application of such technologies in the oil and gas industry. METHOD A scoping review was conducted by identifying peer-reviewed literature with searches in MEDLINE/PubMed and SciVerse Scopus. Two assessors trained on the search strategy screened retrieved articles on title and abstract. The inclusion criteria used for this review were: application of the aforementioned technologies at a workplace in the oil and gas industry or, application of these technologies for an exposure relevant to the oil and gas industry but in another occupational sector, English language and publication period 2005-end of 2019. RESULTS In total, 72 articles were included in this scoping review with most articles focused on omics and bioinformatics (N = 22), followed by biomonitoring and biomarkers (N = 20), external exposure modeling (N = 11), PBK modeling (N = 10), and personal sensors (N = 9). Several studies were identified in the oil and gas industry on the application of PBK models and biomarkers, mainly focusing on workers exposed to benzene. The application of personal sensors, new types of exposure models, and omics technology are still in their infancy with respect to the oil and gas industry. Nevertheless, applications of these technologies in other occupational sectors showed the potential for application in this sector. DISCUSSION AND CONCLUSION New exposome technologies offer great promise for personal monitoring of workers in the oil and gas industry, but more applied research is needed in collaboration with the industry. Current challenges hindering a successful application of such technologies include (i) the technological readiness of sensors, (ii) the availability of data, (iii) the absence of standardized and validated methods, and (iv) the need for new study designs to study the development of disease during working life.
Collapse
Affiliation(s)
| | | | - Miranda Loh
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Karen S Galea
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | | | | | | |
Collapse
|
11
|
Erickson CL, Barron IG, Zapata I. The effects of hydraulic fracturing activities on birth outcomes are evident in a non-individualized county-wide aggregate data sample from Colorado. J Public Health Res 2021; 11. [PMID: 34619860 PMCID: PMC8859723 DOI: 10.4081/jphr.2021.2551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background: There is growing concern about the recent increase in oil and gas development using hydraulic fracturing. Studies linking adverse birth outcomes and maternal proximity to hydraulic fracturing wells exist but tend to use individualized maternal and infant data contained in protected health care records. In this study, we extended the findings of these past studies to evaluate if analogous effects detected with individualized data could be detected from non-individualized county-wide aggregated data. Design and methods: This study used a retrospective cohort of 252,502 birth records from 1999 to 2019 gathered from a subset sample of 5 counties in the state of Colorado where hydraulic fracturing activities were conducted. We used Generalized Linear Models to evaluate the effect of county-wide well density and production data over unidentified birth weight, and prematurity data. Covariates used in the model were county-wide statistics sourced from the US Census. Results: Our modeling approach showed an interesting effect where hydraulic fracturing exposure metrics have a mixed effect directional response. This effect was detected on birth weight when well density, production and their interaction are accounted for. The interaction effect provides an additional interpretation to discrepancies reported previously in the literature. Our approach only detected a positive association to prematurity with increased production. Conclusions: Our findings demonstrate two main points: First, the effect of hydraulic fracturing is detectable by using countywide unidentified data. Second, the effect of hydraulic fracturing can be complicated by the number of operations and the intensity of the activities in the area. Significance for public health The proliferation of hydraulic fracturing for oil and natural gas production has led to an increase in interest in the public health impact of this industry. Research in this field can be complicated due to data accessibility and concerns of privacy violations. In this study we focus on the assessment of maternal health outcomes while considering data privacy. The main goal of our study was to evaluate the potential of using non-individualized, county-wide data to detect the effects of hydraulic fracturing activities on birth outcomes. This goal was achieved by using county-wide exposure metrics of hydraulic fracturing well density and production and by adjusting to known demographic covariates sourced from Census data. Our study provides and alternate approach to evaluate health effects of hydraulic fracturing activities and provides additional evidence highlighting the complicated effects associations that should be considered in further studies.
Collapse
Affiliation(s)
| | - Ileana G Barron
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL .
| | - Isain Zapata
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO.
| |
Collapse
|
12
|
Mosavi A, Hekmatifar M, Toghraie D, Sabetvand R, Alizadeh A, Sadeghi Z, Karimipour A. Atomic interactions between rock substrate and water-sand mixture with and without graphene nanosheets via molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Caron-Beaudoin É, Whitworth KW, Bosson-Rieutort D, Wendling G, Liu S, Verner MA. Density and proximity to hydraulic fracturing wells and birth outcomes in Northeastern British Columbia, Canada. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:53-61. [PMID: 32651474 DOI: 10.1038/s41370-020-0245-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/29/2020] [Accepted: 06/29/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Hydraulic fracturing, a method used in Northeastern British Columbia (Canada) to extract natural gas, can release contaminants with potential deleterious health effects on fetal development. To date, the association between hydraulic fracturing activity and birth outcomes has not been evaluated in this region. OBJECTIVE To evaluate the association between the hydraulic fracturing well density/proximity and birth outcomes (birthweight, head circumference, preterm birth and small for gestational age (SGA)). METHODS We used birth records from the Fort St John hospital between December 30, 2006 and December 29, 2016 (n = 6333 births). To estimate gestational exposure, we used inverse distance weighting (IDW) to calculate the density/proximity of hydraulic fracturing wells to pregnant women's postal code centroid. For each birth, we calculated three IDWs using 2.5, 5, and 10 km buffer zones around women's postal code centroid. We used linear and logistic regressions to evaluate associations between quartiles of postal code well density/proximity and birth outcomes, controlling for relevant covariates. RESULTS No associations were found between postal code well density/proximity and head circumference or SGA. A negative association was found between postal code well density/proximity and birthweight for infants born to women in the 2nd quartile of the 10 km buffer (β [95% confidence interval (CI)]: -47.28 g [-84.30; -10.25]), and in the 2nd (β [95% CI]: -40.87 g [-78.01; -3.73]) and 3rd (β [95% CI]: -42.01 g [-79.15; -4.87]) quartiles of the 5 km buffer. Increased odds of preterm birth were observed among women in the 2nd quartile of the 2.5 km buffer (odds ratio (OR) [95% CI]: 1.60 [1.30; 2.43]). CONCLUSIONS This is the first epidemiological study in Northeastern British Columbia evaluating associations between hydraulic fracturing and health outcomes. Our results show inconsistent patterns of association between hydraulic fracturing, preterm birth and reduced birthweight, and effect estimates did not match expected dose-response relationships.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada.
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada.
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver Coastal Health Research Institute, 828 West 10th Avenue, Research Pavilion, Vancouver, BC, Canada.
- Department of Health and Society and Department of Environmental and Physical Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Kristina W Whitworth
- Department of Medicine, Epidemiology and Population Sciences Section, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Delphine Bosson-Rieutort
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada
- Department of Health Policy, Management & Evaluation (DGEPS), School of Public Health, Université de Montréal, 7101 Avenue du Parc, H3N 1×9, Montreal, QC, Canada
- National Institute for Excellence in Health and Social Services (INESS), Information Management Team, 202 Avenue Union, Montreal, QC, Canada
| | - Gilles Wendling
- GW Solutions, Inc., 201-5180 Dublin Way, Nanaimo, BC, Canada
| | - Suyang Liu
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, 2375 Chemin de la Cote-Sainte-Catherine, Montreal, QC, Canada
- Centre de recherche en santé publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, 7101, Parc Ave., Montreal, QC, Canada
| |
Collapse
|
14
|
Review on the Evaluation of the Impacts of Wastewater Disposal in Hydraulic Fracturing Industry in the United States. TECHNOLOGIES 2020. [DOI: 10.3390/technologies8040067] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper scrutinized hydraulic fracturing applications mainly in the United States with regard to both groundwater and surface water contamination with the purpose of bringing forth objective analysis of research findings. Results from previous studies are often unconvincing due to the incomplete database of chemical additives; after and before well-founded water samples to define the change in parameters; and specific sources of water pollution in a particular region. Nonetheless, there is a superior chance of both surface and groundwater contamination induced by improper and less monitored wastewater disposal and management practices. This report has documented systematic evidence for total dissolved solids, salinity, and methane contamination regarding drinking water correlated with hydraulic fracturing. Methane concentrations were found on an average rate of 19.2 mg/L, which is 17 times higher than the acceptance rate and the maximum value was recorded as 64.2 mg/L near the active hydraulic fracturing drilling and extraction zones than that of the nonactive sites (1.1 mg/L). The concentration of total dissolved solids (350 g/L) was characterized as a voluminous amount of saline wastewater, which was quite unexpectedly high. The paper concludes with plausible solutions that should be implemented to avoid further contamination.
Collapse
|
15
|
Blinn HN, Utz RM, Greiner LH, Brown DR. Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA. PLoS One 2020; 15:e0237325. [PMID: 32810134 PMCID: PMC7446921 DOI: 10.1371/journal.pone.0237325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/25/2020] [Indexed: 01/27/2023] Open
Abstract
Recent research has shown relationships between health outcomes and residence proximity to unconventional oil and natural gas development (UOGD). The challenge of connecting health outcomes to environmental stressors requires ongoing research with new methodological approaches. We investigated UOGD density and well emissions and their association with symptom reporting by residents of southwest Pennsylvania. A retrospective analysis was conducted on 104 unique, de-identified health assessments completed from 2012-2017 by residents living in proximity to UOGD. A novel approach to comparing estimates of exposure was taken. Generalized linear modeling was used to ascertain the relationship between symptom counts and estimated UOGD exposure, while Threshold Indicator Taxa Analysis (TITAN) was used to identify associations between individual symptoms and estimated UOGD exposure. We used three estimates of exposure: cumulative well density (CWD), inverse distance weighting (IDW) of wells, and annual emission concentrations (AEC) from wells within 5 km of respondents' homes. Taking well emissions reported to the Pennsylvania Department of Environmental Protection, an air dispersion and screening model was used to estimate an emissions concentration at residences. When controlling for age, sex, and smoker status, each exposure estimate predicted total number of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information criterion values revealed that CWD was the better predictor of adverse health symptoms in our sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular) constituted 50% of reported symptoms across exposures, suggesting these groupings of symptoms may be more likely reported by respondents when UOGD intensity increases. Our results do not confirm that UOGD was the direct cause of the reported symptoms but raise concern about the growing number of wells around residential areas. Our approach presents a novel method of quantifying exposures and relating them to reported health symptoms.
Collapse
Affiliation(s)
- Hannah N. Blinn
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - Ryan M. Utz
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
| | - Lydia H. Greiner
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - David R. Brown
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| |
Collapse
|
16
|
Liu J, Wu T, Liu Q, Wu S, Chen JC. Air pollution exposure and adverse sleep health across the life course: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114263. [PMID: 32443219 PMCID: PMC7877449 DOI: 10.1016/j.envpol.2020.114263] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 05/07/2023]
Abstract
An increasing number of epidemiological studies have examined air pollution as a possible contributor to adverse sleep health, but results are mixed. The aims of this systematic review are to investigate and summarize the associations between exposures to air pollutants and various sleep measures across the lifespan. PubMed, CINAHL, Cochrane, Scopus, Web of Science, and PsycInfo were searched through October 2019 to identify original data-based research examining direct epidemiological associations between ambient and indoor air pollution exposures and various sleep health measures, including sleep quality, sleep duration, sleep disturbances, and daytime sleepiness. Twenty-two articles from 2010 to 2019 were selected for inclusion in this review, including a wide range of study populations (from early childhood to elderly) and locations (10 Asian, 4 North American, 3 European, 5 other). Due to variation in both exposure and outcome assessments, conducting a meta-analysis was not plausible. Twenty-one studies reported a generally positive association between exposure and poor sleep quality. While most studies focused on ambient air pollutants, five assessed the specific effect of indoor exposure. In children and adolescents, increased exposure to both ambient and indoor pollutants is associated with increased respiratory sleep problems and a variety of additional adverse sleep outcomes. In adults, air pollution exposure was most notably related to sleep disordered breathing. Existing literature generally shows a negative relationship between exposures to air pollution and sleep health in populations across different age groups, countries, and measures. While many associations between air pollution and sleep outcomes have been investigated, the mixed study methods and use of subjective air pollution and sleep measures result in a wide range of specific associations. Plausible toxicological mechanisms remain inconclusive. Future studies utilizing objective sleep measures and controlling for all air pollution exposures and individual encounters may help ameliorate variability in the results reported by current published literature.
Collapse
Affiliation(s)
- Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA, USA.
| | - Tina Wu
- University of Pennsylvania School of Nursing, Philadelphia, PA, USA
| | - Qisijing Liu
- Peking University School of Public Health, Beijing, China
| | - Shaowei Wu
- Peking University School of Public Health, Beijing, China
| | - Jiu-Chiuan Chen
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Wollin KM, Damm G, Foth H, Freyberger A, Gebel T, Mangerich A, Gundert-Remy U, Partosch F, Röhl C, Schupp T, Hengstler JG. Critical evaluation of human health risks due to hydraulic fracturing in natural gas and petroleum production. Arch Toxicol 2020; 94:967-1016. [PMID: 32385535 PMCID: PMC7225182 DOI: 10.1007/s00204-020-02758-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/26/2020] [Indexed: 02/02/2023]
Abstract
The use of hydraulic fracturing (HF) to extract oil and natural gas has increased, along with intensive discussions on the associated risks to human health. Three technical processes should be differentiated when evaluating human health risks, namely (1) drilling of the borehole, (2) hydraulic stimulation, and (3) gas or oil production. During the drilling phase, emissions such as NOx, NMVOCs (non-methane volatile organic compounds) as precursors for tropospheric ozone formation, and SOx have been shown to be higher compared to the subsequent phases. In relation to hydraulic stimulation, the toxicity of frac fluids is of relevance. More than 1100 compounds have been identified as components. A trend is to use fewer, less hazardous and more biodegradable substances; however, the use of hydrocarbons, such as kerosene and diesel, is still allowed in the USA. Methane in drinking water is of low toxicological relevance but may indicate inadequate integrity of the gas well. There is a great concern regarding the contamination of ground- and surface water during the production phase. Water that flows to the surface from oil and gas wells, so-called 'produced water', represents a mixture of flow-back, the injected frac fluid returning to the surface, and the reservoir water present in natural oil and gas deposits. Among numerous hazardous compounds, produced water may contain bromide, arsenic, strontium, mercury, barium, radioactive isotopes and organic compounds, particularly benzene, toluene, ethylbenzene and xylenes (BTEX). The sewage outflow, even from specialized treatment plants, may still contain critical concentrations of barium, strontium and arsenic. Evidence suggests that the quality of groundwater and surface water may be compromised by disposal of produced water. Particularly critical is the use of produced water for watering of agricultural areas, where persistent compounds may accumulate. Air contamination can occur as a result of several HF-associated activities. In addition to BTEX, 20 HF-associated air contaminants are group 1A or 1B carcinogens according to the IARC. In the U.S., oil and gas production (including conventional production) represents the second largest source of anthropogenic methane emissions. High-quality epidemiological studies are required, especially in light of recent observations of an association between childhood leukemia and multiple myeloma in the neighborhood of oil and gas production sites. In conclusion, (1) strong evidence supports the conclusion that frac fluids can lead to local environmental contamination; (2) while changes in the chemical composition of soil, water and air are likely to occur, the increased levels are still often below threshold values for safety; (3) point source pollution due to poor maintenance of wells and pipelines can be monitored and remedied; (4) risk assessment should be based on both hazard and exposure evaluation; (5) while the concentrations of frac fluid chemicals are low, some are known carcinogens; therefore, thorough, well-designed studies are needed to assess the risk to human health with high certainty; (6) HF can represent a health risk via long-lasting contamination of soil and water, when strict safety measures are not rigorously applied.
Collapse
Affiliation(s)
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| | - A Freyberger
- Research and Development, Translational Sciences-Toxicology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Constance, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - F Partosch
- Institute for Occupational, Social and Environmental Medicine, University Medical Center, Göttingen, Germany
| | - C Röhl
- Department of Environmental Health Protection, Schleswig-Holstein State Agency for Social Services, Kiel, Germany
| | - T Schupp
- Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), University of Dortmund, Dortmund, Germany.
| |
Collapse
|
18
|
Deziel NC, Brokovich E, Grotto I, Clark CJ, Barnett-Itzhaki Z, Broday D, Agay-Shay K. Unconventional oil and gas development and health outcomes: A scoping review of the epidemiological research. ENVIRONMENTAL RESEARCH 2020; 182:109124. [PMID: 32069745 DOI: 10.1016/j.envres.2020.109124] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Hydraulic fracturing together with directional and horizontal well drilling (unconventional oil and gas (UOG) development) has increased substantially over the last decade. UOG development is a complex process presenting many potential environmental health hazards, raising serious public concern. AIM To conduct a scoping review to assess what is known about the human health outcomes associated with exposure to UOG development. METHODS We performed a literature search in MEDLINE and SCOPUS for epidemiological studies of exposure to UOG development and verified human health outcomes published through August 15, 2019. For each eligible study we extracted data on the study design, study population, health outcomes, exposure assessment approach, statistical methodology, and potential confounders. We reviewed the articles based on categories of health outcomes. RESULTS We identified 806 published articles, most of which were published during the last three years. After screening, 40 peer-reviewed articles were selected for full text evaluation and of these, 29 articles met our inclusion criteria. Studies evaluated pregnancy outcomes, cancer incidence, hospitalizations, asthma exacerbations, sexually transmitted diseases, and injuries or mortality from traffic accidents. Our review found that 25 of the 29 studies reported at least one statistically significant association between the UOG exposure metric and an adverse health outcome. The most commonly studied endpoint was adverse birth outcomes, particularly preterm deliveries and low birth weight. Few studies evaluated the mediating pathways that may underpin these associations, highlighting a clear need for research on the potential exposure pathways and mechanisms underlying observed relationships. CONCLUSIONS This review highlights the heterogeneity among studies with respect to study design, outcome of interest, and exposure assessment methodology. Though replication in other populations is important, current research points to a growing body of evidence of health problems in communities living near UOG sites.
Collapse
Affiliation(s)
- Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States.
| | - Eran Brokovich
- Natural Resources Administration, Ministry of Energy, Jerusalem, Israel.
| | - Itamar Grotto
- Ministry of Health, Jerusalem, Israel; School of Public Health, Faculty of Health Science, Ben-Gurion University of the Negev, Beer, Sheva, Israel.
| | - Cassandra J Clark
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States
| | - Zohar Barnett-Itzhaki
- Public Health Services, Ministry of Health, Jerusalem, Israel; Research Center for Health Informatics, School of Engineering, Ruppin Academic Center, Israel.
| | - David Broday
- Department of Environmental, Water, and Agricultural Engineering, Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Keren Agay-Shay
- Department of Population Health, Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
19
|
McElroy JA, Kassotis CD, Nagel SC. In Our Backyard: Perceptions About Fracking, Science, and Health by Community Members. New Solut 2020; 30:42-51. [PMID: 32028857 DOI: 10.1177/1048291120905097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unconventional oil and gas (UOG) extraction (fracking) has increased in the United States, as well as interest in the associated risks and benefits. This study’s purpose was to qualitatively examine residents’ perceptions about UOG development in their community. Fifteen interviewees involving residents of Garfield County, Colorado, a drilling-dense region, were transcribed and analyzed. The study found six themes: (1) health concerns, both human and animal, (2) power struggles between government and industry/between industry and residents, and (3) perception and some acceptance of increased risk. Less common themes were (4) reliance on science to accurately determine risk, (5) frustration with potential threat and loss of power, and (6) traffic and safety concerns. Community perceptions of UOG development are complex, and understanding the position of community members can support the need for additional public health research and impact assessments regarding community exposures from UOG drilling operation exposures.
Collapse
|
20
|
Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173055. [PMID: 31443587 PMCID: PMC6747456 DOI: 10.3390/ijerph16173055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of unconventional resource development (URD) and adverse health effects have been limited by distance-based exposure surrogates. Our study compared exposure classifications between air pollutant concentrations and “well activity” (WA) metrics, which are distance-based exposure proxies used in Marcellus-area studies to reflect variation in time and space of residential URD activity. We compiled Pennsylvania air monitoring data for benzene, carbon monoxide, nitrogen dioxide, ozone, fine particulates and sulfur dioxide, and combined this with data on nearly 9000 Pennsylvania wells. We replicated WA calculations using geo-coordinates of monitors to represent residences and compared exposure categories from air measurements and WA at the site of each monitor. There was little agreement between the two methods for the pollutants included in the analysis, with most weighted kappa coefficients between −0.1 and 0.1. The exposure categories agreed for about 25% of the observations and assigned inverse categories 16%–29% of the time, depending on the pollutant. Our results indicate that WA measures did not adequately distinguish categories of air pollutant exposures and employing them in epidemiology studies can result in misclassification of exposure. This underscores the need for more robust exposure assessment in future analyses and cautious interpretation of these existing studies.
Collapse
|