1
|
Gutema FD, Okoth B, Agira J, Amondi CS, Busienei PJ, Simiyu S, Mberu B, Sewell D, Baker KK. Spatial-Temporal Patterns in the Enteric Pathogen Contamination of Soil in the Public Environments of Low- and Middle-Income Neighborhoods in Nairobi, Kenya. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1351. [PMID: 39457324 PMCID: PMC11506941 DOI: 10.3390/ijerph21101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Public spaces in countries with limited societal development can be contaminated with feces containing pathogenic microbes from animals and people. Data on contamination levels, spatial distribution, and the diversity of enteric pathogens in the public settings of low- and middle-income neighborhoods are crucial for devising strategies that minimize the enteric infection burden. The objective of this study was to compare spatial-temporal differences in the detection rate and diversity of enteric pathogens in the public spaces of low- and middle-income neighborhoods of Nairobi, Kenya. TaqMan array card (TAC) molecular assays were employed to analyze soil samples for 19 enteropathogens, along with a selective bacterial culture for pathogenic Enterobacteriaceae. An observational assessment was conducted during every site visit to document the hygienic infrastructure and sanitation conditions at the sites. We detected at least one pathogen in 79% (127/160) and ≥2 pathogens in 67.5% (108/160) of the soil samples tested. The four most frequently detected pathogens were EAEC (67.5%), ETEC (59%), EPEC (57.5%), and STEC (31%). The detection rate (91% vs. 66%) and mean number of enteric pathogens (5 vs. 4.7) were higher in low-income Kibera than in middle-income Jericho. The more extensive spatial distribution of pathogens in Kibera resulted in increases in the detection of different enteric pathogens from within-site (area < 50 m2) and across-site (across-neighborhood) movements compared to Jericho. The pathogen detection rates fluctuated seasonally in Jericho but remained at sustained high levels in Kibera. While better neighborhood conditions were linked with lower pathogen detection rates, pathogenic E. coli remained prevalent in the public environment across both neighborhoods. Future studies should focus on identifying how the sources of pathogen contamination are modified by improved environmental sanitation and hygiene and the role of these contaminated public environments in enteric infections in children.
Collapse
Affiliation(s)
- Fanta D. Gutema
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology, Immunology and Veterinary Public Health, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Bonphace Okoth
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - John Agira
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Christine S. Amondi
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Phylis J. Busienei
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Sheillah Simiyu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Blessing Mberu
- African Population and Health Research Center, Nairobi 10787-00100, Kenya; (B.O.); (J.A.); (C.S.A.); (P.J.B.); (S.S.); (B.M.)
| | - Daniel Sewell
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Kelly K. Baker
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
2
|
Thurner F, Alatraktchi FA. Need for standardization in sub-lethal antibiotics research. Front Microbiol 2023; 14:1299321. [PMID: 38188578 PMCID: PMC10768063 DOI: 10.3389/fmicb.2023.1299321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
While monitoring and managing resistant and persistent microbes is of utmost importance and should not be glossed over, one must also focus on mitigating the microbe's ability to cause harm. Exploring the concept of lowering or even suppressing the microbe's virulence with sub-Minimum Inhibitory Concentration (MIC) antibiotics holds promise and warrants further investigation. At present, such antibiotic concentrations have mostly been studied to cover the side-effects of gradient exposure, overlooking the possibility of utilizing them to influence not only bacterial virulence, but also colonization, fitness and collateral sensitivities. This review focuses on conflicting findings of studies demonstrating both increased and decreased virulence in microbes under sub-MIC antibiotic exposure. It identifies lack of standardization in this field of research as one of the main culprits for discordant results across numerous studies on virulence. It critically discusses important terminology related to bacterial traits and existing methods to determine MIC and sub-MIC ranges. Lastly, possible directions toward standardized sub-MIC profiling and thereby tailored treatment options in the future are explored.
Collapse
|
3
|
Andrianjakarivony FH, Bettarel Y, Cecchi P, Bouchard S, Chase E, Desnues C. Decoding the DNA and RNA viromes of a tropical urban lagoon. Environ Microbiol 2023; 25:2368-2387. [PMID: 37431274 DOI: 10.1111/1462-2920.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Human and livestock sewage is one of the major causes of excess nutrients, leading to the eutrophication of aquatic ecosystems and potentially to the emergence or spread of pathogenic viruses. This study aimed to investigate the composition and diversity of aquatic viromes in a highly anthropized lagoon, to identify the presence of pathogenic taxa and to explore their use as possible viral indicators of faecal contamination. For this, water and sediment samples were collected in the Ebrié Lagoon (Ivory Coast) at seven stations with contrasting levels of eutrophication. The DNA viromes of the planktonic and the benthic compartments were highly divergent, but were not influenced by the level of eutrophication. Conversely, the RNA viromes in the water column were comparable to those found in sediment, but showed significant differences between the stations. We detected the presence of viral DNA and RNA sequences we had assigned as indicators of faecal contamination (smacovirus, pecovirus and pepper mild mottle virus) as well as human pathogens (human cyclovirus, coxsackie B virus and picobirnavirus), which were all enriched in the most eutrophicated sites. These findings suggest that the examination of viromes represents a promising tool for assessing the state of human-induced contamination of aquatic ecosystems.
Collapse
Affiliation(s)
- Felana Harilanto Andrianjakarivony
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Yvan Bettarel
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Cecchi
- Marine Biodiversity, Exploitation & Conservation (MARBEC), University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Sonia Bouchard
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Emily Chase
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Christelle Desnues
- Microbes, Evolution, Phylogeny, and Infection (MEФI), IHU - Méditerranée Infection, Marseille, France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
4
|
Ousmane S, Kollo IA, Jambou R, Boubacar R, Arzika AM, Maliki R, Amza A, Liu Z, Lebas E, Colby E, Zhong L, Chen C, Hinterwirth A, Doan T, Lietman TM, O’Brien KS. Wastewater-Based Surveillance of Antimicrobial Resistance in Niger: An Exploratory Study. Am J Trop Med Hyg 2023; 109:725-729. [PMID: 37640288 PMCID: PMC10551091 DOI: 10.4269/ajtmh.23-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Wastewater-based surveillance is increasingly recognized as an important approach to monitoring population-level antimicrobial resistance (AMR). In this exploratory study, we examined the use of metagenomics to evaluate AMR using untreated wastewater samples routinely collected by the Niger national polio surveillance program. Forty-eight stored samples from two seasons each year over 4 years (2016-2019) in three regions were selected for inclusion in this study and processed using unbiased DNA deep sequencing. Normalized number of reads of genetic determinants for different antibiotic classes were compared over time, by season, and by location. Correlations in resistance were examined among classes. Changes in reads per million per year were demonstrated for several classes, including decreases over time in resistance determinants for phenicols (-3.3, 95% CI: -8.7 to -0.1, P = 0.029) and increases over time for aminocoumarins (3.8, 95% CI: 0.0 to 11.4, P = 0.043), fluoroquinolones (6.8, 95% CI: 0.0 to 20.5, P = 0.048), and beta-lactams (0.85, 95% CI: 0.1 to 1.7, P = 0.006). Sulfonamide resistance was higher in the post-rainy season compared with the dry season (5.2-fold change, 95% CI: 3.4 to 7.9, P < 0.001). No differences were detected when comparing other classes by season or by site for any antibiotic class. Positive correlations were identified in genetic determinants of resistance among several antibiotic classes. These results demonstrate the potential utility of leveraging existing wastewater sample collection in this setting for AMR surveillance.
Collapse
Affiliation(s)
- Sani Ousmane
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | | | - Ronan Jambou
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Rakia Boubacar
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Ahmed M. Arzika
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Ramatou Maliki
- Centre de Recherche et Interventions en Santé Publique, Birni N’Gaoure, Niger
| | - Abdou Amza
- Programme Nationale de Santé Oculaire, Niamey, Niger
| | - Zijun Liu
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Elodie Lebas
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Emily Colby
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Lina Zhong
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Cindi Chen
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Armin Hinterwirth
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
| | - Thomas M. Lietman
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| | - Kieran S. O’Brien
- Francis I. Proctor Foundation, University of California, San Francisco, California
- Department of Ophthalmology, University of California, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
- Institute for Global Health Sciences, University of California, San Francisco, California
| |
Collapse
|
5
|
Pedrotti ML, de Figueiredo Lacerda AL, Petit S, Ghiglione JF, Gorsky G. Vibrio spp and other potential pathogenic bacteria associated to microfibers in the North-Western Mediterranean Sea. PLoS One 2022; 17:e0275284. [PMID: 36449472 PMCID: PMC9710791 DOI: 10.1371/journal.pone.0275284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Microfibers, whether synthetic or natural, have increased dramatically in the environment, becoming the most common type of particles in the ocean, and exposing aquatic organisms to multiple negative impacts. Using an approach combining morphology (scanning electron microscopy-SEM) and molecular taxonomy (High-Throughput DNA Sequencing- HTS), we investigated the bacterial composition from floating microfibers (MFs) collected in the northwestern Mediterranean Sea. The average number of bacteria in 100 μm2 on the surface of a fiber is 8 ± 5.9 cells; by extrapolating it to a whole fiber, this represents 2663 ± 1981 bacteria/fiber. Attached bacterial communities were dominated by Alteromonadales, Rhodobacterales, and Vibrionales, including the potentially human/animal pathogen Vibrio parahaemolyticus. This study reveals a high rate of bacterial colonization on MFs, and shows that these particles can host numerous bacterial species, including putative pathogens. Even if we cannot confirm its pathogenicity based only on the taxonomy, this is the first description of such pathogenic Vibrio living attached to MFs in the Mediterranean Sea. The identification of MFs colonizers is valuable in assessing health risks, as their presence can be a threat to bathing and seafood consumption. Considering that MFs can serve as vector for potentially pathogenic microorganisms and other pollutants throughout the ocean, this type of pollution can have both ecological and economic consequences.
Collapse
Affiliation(s)
- Maria Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
- * E-mail:
| | - Ana Luzia de Figueiredo Lacerda
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| | - Stephanie Petit
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| | - Jean François Ghiglione
- Laboratoire d’Océanographie Microbienne, UMR 7621, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Gabriel Gorsky
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| |
Collapse
|
6
|
Bioremediation Capabilities of Hymeniacidon perlevis (Porifera, Demospongiae) in a Land-Based Experimental Fish Farm. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expansion of aquaculture practices in coastal areas can alter the balance of microbial communities in nearby marine ecosystems with negative impacts on both farmed and natural species, as well as on human health through their consumption. Among marine filter-feeder invertebrates, poriferans are known as effective microbial bioremediators, even though they are currently still underutilized in association with fish mariculture plants. In this study, we investigate the microbial bioremediation capability of the demosponge Hymeniacidon perlevis in an experimental land-based fish farm where this species occurred consistently in the drainage conduit of the wastewater. Microbiological analyses of cultivable vibrios, total culturable bacteria (37 °C), fecal and total coliforms, and fecal enterococci were carried out on the fish farm wastewater in two sampling periods: autumn and spring. The results showed that H. perlevis is able to filter and remove all the considered bacterial groups from the wastewater, including human potential pathogens, in both sampling periods. This finding sustains the hypothesis of H. perlevis use as a bioremediator in land-based aquaculture plants as well.
Collapse
|
7
|
Taviani E, Pedro O. Impact of the aquatic pathobiome in low-income and middle-income countries (LMICs) quest for safe water and sanitation practices. Curr Opin Biotechnol 2021; 73:220-224. [PMID: 34492621 DOI: 10.1016/j.copbio.2021.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 11/03/2022]
Abstract
Microbial contamination of surface waters is of particular relevance in low-income and middle-income countries (LMICs) since they often represent the only available source of water for drinking and domestic use. In the recent years, a growing urbanization, profound demographic shifts and drastic climate events have greatly affected LMICs capacity to reach access to safe drinking water and sanitation practices, and to protect citizens' health from risks associated to the exposure and use of contaminated water. Detailed phylogenetic and microbiological information on the exact composition of pathogenic organisms in urban and peri-urban water is scarce, especially in rapidly changing settings of sub-Saharan Africa. In this review we aim to highlight how large-scale water pathobiome studies can support the LMICs challenge to global access to safe water and sanitation practices.
Collapse
Affiliation(s)
- Elisa Taviani
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique.
| | - Olivia Pedro
- Center for Biotechnology, University Eduardo Mondlane, Maputo, Mozambique
| |
Collapse
|
8
|
Leboulanger C, Kolanou Biluka L, Nzigou AR, Djuidje Kenmogne V, Happi JLM, Ngohang FE, Eleng AS, Ondo Zue Abaga N, Bouvy M. Urban inputs of fecal bacteria to the coastal zone of Libreville, Gabon, Central Western Africa. MARINE POLLUTION BULLETIN 2021; 168:112478. [PMID: 33993043 DOI: 10.1016/j.marpolbul.2021.112478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Libreville, the largest city in Gabon, adversely impacts the Komo Estuary and the Akanda National Park aquatic ecosystems through discharge of domestic and industrial waste. Fecal Indicator Bacteria (FIB: Escherichia coli and fecal streptococci) were enumerated using culture-based methods in water from 40 sites between 2017 and 2019 including coastal outlets, mangrove channels, open bays and littoral rivers. Contamination levels were high in discharge waters from small urban rivers in Libreville agglomeration, frequently exceeding international safety guidelines, whereas FIB concentrations decreased downstream from the city in main mangrove channels. Littoral forest rivers were significantly impacted by fecal contamination despite the absence of settlements in the watersheds. Protected areas are not effective in avoiding FIB contamination, indicating inefficient waste management. Dedicated management policies should be implemented to reduce both the sanitary concern and global pollution, poorly assessed in a context of demographic increase in tropical littoral zones.
Collapse
Affiliation(s)
| | - Lévie Kolanou Biluka
- Université des Sciences et Techniques de Masuku, Franceville, Gabon; Ecole Normale Supérieure, Libreville, Gabon
| | | | - Véronique Djuidje Kenmogne
- Université des Sciences et Techniques de Masuku, Franceville, Gabon; Ecole Normale Supérieure, Libreville, Gabon
| | | | | | | | | | - Marc Bouvy
- MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
9
|
Giacobbo A, Rodrigues MAS, Zoppas Ferreira J, Bernardes AM, de Pinho MN. A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145721. [PMID: 33610994 PMCID: PMC7870439 DOI: 10.1016/j.scitotenv.2021.145721] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 04/14/2023]
Abstract
The COVID-19 outbreak circulating the world is far from being controlled, and possible contamination routes are still being studied. There are no confirmed cases yet, but little is known about the infection possibility via contact with sewage or contaminated water as well as with aerosols generated during the pumping and treatment of these aqueous matrices. Therefore, this article presents a literature review on the detection of SARS-CoV-2 in human excreta and its pathways through the sewer system and wastewater treatment plants until it reaches the water bodies, highlighting their occurrence and infectivity in sewage and natural water. Research lines are still indicated, which we believe are important for improving the detection, quantification, and mainly the infectivity analyzes of SARS-CoV-2 and other enveloped viruses in sewage and natural water. In fact, up till now, no case of transmission via contact with sewage or contaminated water has been reported and the few studies conducted with these aqueous matrices have not detected infectious viruses. On the other hand, studies are showing that SARS-CoV-2 can remain viable, i.e., infectious, for up to 4.3 and 6 days in sewage and water, respectively, and that other species of coronavirus may remain viable in these aqueous matrices for more than one year, depending on the sample conditions. These are strong pieces of evidence that the contamination mediated by contact with sewage or contaminated water cannot be ruled out, even because other more resistant and infectious mutations of SARS-CoV-2 may appear.
Collapse
Affiliation(s)
- Alexandre Giacobbo
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil; Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| | - Marco Antônio Siqueira Rodrigues
- Post-Graduation Program in Materials Technology and Industrial Processes, Pure Sciences and Technology Institute, Feevale University, Rodovia RS-239, n. 2755, Vila Nova, Novo Hamburgo, RS 93525-075, Brazil.
| | - Jane Zoppas Ferreira
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Andréa Moura Bernardes
- Post-Graduation Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, n. 9500, Agronomia, Porto Alegre, RS 91509-900, Brazil.
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal; Chemical Engineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, n. 1, Lisbon 1049-001, Portugal.
| |
Collapse
|
10
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
11
|
Vibrio Colonization Is Highly Dynamic in Early Microplastic-Associated Biofilms as Well as on Field-Collected Microplastics. Microorganisms 2020; 9:microorganisms9010076. [PMID: 33396691 PMCID: PMC7823642 DOI: 10.3390/microorganisms9010076] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microplastics are ubiquitous in aquatic ecosystems and provide a habitat for biofilm-forming bacteria. The genus Vibrio, which includes potential pathogens, was detected irregularly on microplastics. Since then, the potential of microplastics to enrich (and serve as a vector for) Vibrio has been widely discussed. We investigated Vibrio abundance and operational taxonomic unit (OTU) composition on polyethylene and polystyrene within the first 10 h of colonization during an in situ incubation experiment, along with those found on particles collected from the Baltic Sea. We used 16S rRNA gene amplicon sequencing and co-occurrence networks to elaborate the role of Vibrio within biofilms. Colonization of plastics with Vibrio was detectable after one hour of incubation; however, Vibrio numbers and composition were very dynamic, with a more stable population at the site with highest nutrients and lowest salinity. Likewise, Vibrio abundances on field-collected particles were variable but correlated with proximity to major cities. Vibrio was poorly connected within biofilm networks. Taken together, this indicates that Vibrio is an early colonizer of plastics, but that the process is undirected and independent of the specific surface. Still, higher nutrients could enhance a faster establishment of Vibrio populations. These parameters should be considered when planning studies investigating Vibrio on microplastics.
Collapse
|
12
|
Bastaraud A, Cecchi P, Handschumacher P, Altmann M, Jambou R. Urbanization and Waterborne Pathogen Emergence in Low-Income Countries: Where and How to Conduct Surveys? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020480. [PMID: 31940838 PMCID: PMC7013806 DOI: 10.3390/ijerph17020480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban runoff and open sewage channels are major sources of microbes. These microbes join natural microbial communities in aquatic ecosystems already impacted by various chemicals, including antibiotics. These composite microbial communities must adapt to survive in such hostile conditions, sometimes promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability of exchanges between planktonic microorganisms within the water column may be significantly improved if their contact was facilitated by particular meeting places. This could be specifically the case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved, analyses of the microbial communities in their whole have to be performed. This means that new-omic technologies must be routinely implemented in low- and middle-income countries to detect the appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic context.’ We summarize the related current knowledge in this short review paper to anticipate new strategies for monitoring and surveying microbial communities.
Collapse
Affiliation(s)
- Alexandra Bastaraud
- Laboratoire d’Hygiène des Aliments et de l’Environnement, Institut Pasteur de Madagascar, BP 1274, Antananarivo 101, Madagascar;
| | - Philippe Cecchi
- MARBEC (IRD, IFREMER, UM2 and CNRS), University Montpellier, 34095 Montpellier, France;
- Centre de Recherche Océanologique (CRO), Abidjan BPV 18, Ivory Coast
| | - Pascal Handschumacher
- IRD UMR 912 SESSTIM, INSERM-IRD-Université de Marseille II, 13000 Marseille, France;
| | - Mathias Altmann
- ISPED Université Victor Segalen Bordeaux II, 146 rue Leo Saignat, 33076 Bordeaux cedex, France;
| | - Ronan Jambou
- Département de Parasitologie et des insectes vecteurs, Institut Pasteur Paris, 75015 Paris, France
- Correspondence: ; Tel.: +33-622-10-72-96
| |
Collapse
|