1
|
Mølmen KS, Almquist NW, Skattebo Ø. Effects of Exercise Training on Mitochondrial and Capillary Growth in Human Skeletal Muscle: A Systematic Review and Meta-Regression. Sports Med 2025; 55:115-144. [PMID: 39390310 PMCID: PMC11787188 DOI: 10.1007/s40279-024-02120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Skeletal muscle mitochondria and capillaries are crucial for aerobic fitness, and suppressed levels are associated with chronic and age-related diseases. Currently, evidence-based exercise training recommendations to enhance these characteristics are limited. It is essential to explore how factors, such as fitness level, age, sex, and disease affect mitochondrial and capillary adaptations to different exercise stimuli. OBJECTIVES The main aim of this study was to compare the effects of low- or moderate intensity continuous endurance training (ET), high-intensity interval or continuous training (HIT), and sprint interval training (SIT) on changes in skeletal muscle mitochondrial content and capillarization. Secondarily, the effects on maximal oxygen consumption (VO2max), muscle fiber cross-sectional area, and fiber type proportion were investigated. METHODS A systematic literature search was conducted in PubMed, Web of Science, and SPORTDiscus databases, with no data restrictions, up to 2 February 2022. Exercise training intervention studies of ET, HIT, and SIT were included if they had baseline and follow-up measures of at least one marker of mitochondrial content or capillarization. In total, data from 5973 participants in 353 and 131 research articles were included for the mitochondrial and capillary quantitative synthesis of this review, respectively. Additionally, measures of VO2max, muscle fiber cross-sectional area, and fiber type proportion were extracted from these studies. RESULTS After adjusting for relevant covariates, such as training frequency, number of intervention weeks, and initial fitness level, percentage increases in mitochondrial content in response to exercise training increased to a similar extent with ET (23 ± 5%), HIT (27 ± 5%), and SIT (27 ± 7%) (P > 0.138), and were not influenced by age, sex, menopause, disease, or the amount of muscle mass engaged. Higher training frequencies (6 > 4 > 2 sessions/week) were associated with larger increases in mitochondrial content. Per total hour of exercise, SIT was ~ 2.3 times more efficient in increasing mitochondrial content than HIT and ~ 3.9 times more efficient than ET, while HIT was ~ 1.7 times more efficient than ET. Capillaries per fiber increased similarly with ET (15 ± 3%), HIT (13 ± 4%) and SIT (10 ± 11%) (P = 0.556) after adjustments for number of intervention weeks and initial fitness level. Capillaries per mm2 only increased after ET (13 ± 3%) and HIT (7 ± 4%), with increases being larger after ET compared with HIT and SIT (P < 0.05). This difference coincided with increases in fiber cross-sectional area after ET (6.5 ± 3.5%), HIT (8.9 ± 4.9%), and SIT (11.9 ± 15.1%). Gains in capillarization occurred primarily in the early stages of training (< 4 weeks) and were only observed in untrained to moderately trained participants. The proportion of type I muscle fibers remained unaltered by exercise training (P > 0.116), but ET and SIT exhibited opposing effects (P = 0.041). VO2max increased similarly with ET, HIT, and SIT, although HIT showed a tendency for greater improvement compared with both ET and SIT (P = 0.082), while SIT displayed the largest increase per hour of exercise. Higher training frequencies (6 > 4 > 2 sessions/week) were associated with larger increases in VO2max. Women displayed greater percentage gains in VO2max compared with men (P = 0.008). Generally, lower initial fitness levels were associated with greater percentage improvements in mitochondrial content, capillarization, and VO2max. SIT was particularly effective in improving mitochondrial content and VO2max in the early stages of training, while ET and HIT showed slower but steady improvements over a greater number of training weeks. CONCLUSIONS The magnitude of change in mitochondrial content, capillarization, and VO2max to exercise training is largely determined by the initial fitness level, with greater changes observed in individuals with lower initial fitness. The ability to adapt to exercise training is maintained throughout life, irrespective of sex and presence of disease. While training load (volume × intensity) is a suitable predictor of changes in mitochondrial content and VO2max, this relationship is less clear for capillary adaptations.
Collapse
Affiliation(s)
- Knut Sindre Mølmen
- Section for Health and Exercise Physiology, Inland Norway University of Applied Sciences, P.O. Box. 422, 2604, Lillehammer, Norway.
| | - Nicki Winfield Almquist
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
2
|
Meyler SJR, Swinton PA, Bottoms L, Dalleck LC, Hunter B, Sarzynski MA, Wellsted D, Williams CJ, Muniz-Pumares D. Changes in Cardiorespiratory Fitness Following Exercise Training Prescribed Relative to Traditional Intensity Anchors and Physiological Thresholds: A Systematic Review with Meta-analysis of Individual Participant Data. Sports Med 2024:10.1007/s40279-024-02125-x. [PMID: 39538060 DOI: 10.1007/s40279-024-02125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND It is unknown whether there are differences in maximal oxygen uptake ( V O2max) response when prescribing intensity relative to traditional (TRAD) anchors or to physiological thresholds (THR). OBJECTIVES The present meta-analysis sought to compare: (a) mean change in V O2max, (b) proportion of individuals increasing V O2max beyond a minimum important difference (MID) and (c) response variability in V O2max between TRAD and THR. METHODS Electronic databases were searched, yielding data for 1544 individuals from 42 studies. Two datasets were created, comprising studies with a control group ('controlled' studies), and without a control group ('non-controlled' studies). A Bayesian approach with multi-level distributional models was used to separately analyse V O2max change scores from the two datasets and inferences were made using Bayes factors (BF). The MID was predefined as one metabolic equivalent (MET; 3.5 mL kg-1 min-1). RESULTS In controlled studies, mean V O2max change was greater in the THR group compared with TRAD (4.1 versus 1.8 mL kg-1 min-1, BF > 100), with 64% of individuals in the THR group experiencing an increase in V O2max > MID, compared with 16% of individuals taking part in TRAD. Evidence indicated no difference in standard deviation of change between THR and TRAD (1.5 versus 1.7 mL kg-1 min-1, BF = 0.55), and greater variation in exercise groups relative to non-exercising controls (1.9 versus 1.3 mL kg-1 min-1, BF = 12.4). In non-controlled studies, mean V O2max change was greater in the THR group versus the TRAD group (4.4 versus 3.4 mL kg-1 min-1, BF = 35.1), with no difference in standard deviation of change (3.0 versus 3.2 mL kg-1 min-1, BF = 0.41). CONCLUSION Prescribing exercise intensity using THR approaches elicited superior mean changes in V O2max and increased the likelihood of increasing V O2max beyond the MID compared with TRAD. Researchers designing future exercise training studies should thus consider the use of THR approaches to prescribe exercise intensity where possible. Analysis comparing interventions with controls suggested the existence of intervention response heterogeneity; however, evidence was not obtained for a difference in response variability between THR and TRAD. Future primary research should be conducted with adequate power to investigate the scope of inter-individual differences in V O2max trainability, and if meaningful, the causative factors.
Collapse
Affiliation(s)
- Samuel J R Meyler
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, Scotland, UK
| | - Lindsay Bottoms
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Lance C Dalleck
- Recreation, Exercise and Sport Science Department, Western Colorado University, Gunnison, CO, USA
| | - Ben Hunter
- School of Human Sciences, London Metropolitan University, London, UK
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - David Wellsted
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK
| | - Camilla J Williams
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Muniz-Pumares
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, England, UK.
| |
Collapse
|
3
|
Maleki AH, Azar JT, Razi M, Tofighi A. The Effect of Different Exercise Modalities on Sertoli-germ Cells Metabolic Interactions in High-fat Diet-induced Obesity Rat Models: Implication on Glucose and Lactate Transport, Igf1, and Igf1R-dependent Pathways. Reprod Sci 2024; 31:2246-2260. [PMID: 38632221 DOI: 10.1007/s43032-024-01533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The study aimed to uncover a unique aspect of obesity-related metabolic disorders in the testicles induced by a high-fat diet (HFD) and explored the potential mitigating effects of exercise modalities on male fertility. Thirty mature male Wistar rats were randomly assigned to control, HFD-sole, moderate-intensity exercise with HFD (HFD+MICT), high-intensity continuous exercise with HFD (HFD+HICT), and high-intensity interval exercise with HFD (HFD+HIIT) groups (n=6/group). Intracytoplasmic carbohydrate (ICC) storage, expression levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R, and testicular lactate and lactate dehydrogenase (LDH) levels were assessed. ICC storage significantly decreased in HFD-sole rats, along with decreased mRNA and protein levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R. The HFD-sole group exhibited a notable reduction in testicular lactate and LDH levels (p<0.05). Conversely, exercise, particularly HIIT, upregulated ICC storage, expression levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R, and enhanced testicular lactate and LDH levels. These results confirm that exercise, especially HIIT, has the potential to mitigate the adverse effects of HFD-induced obesity on testicular metabolism and male fertility. The upregulation of metabolite transporters, LDH, lactate levels, Igf1, and Igf1R expression may contribute to maintaining metabolic interactions and improving the glucose/lactate conversion process. These findings underscore the potential benefits of exercise in preventing and managing obesity-related male fertility issues.
Collapse
Affiliation(s)
- Aref Habibi Maleki
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| | - Javad Tolouei Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Mazdak Razi
- Department of Basic Sciences, Division of Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, P.O.BOX: 1177, Urmia, Iran
| | - Asghar Tofighi
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
Ito G, Feeley M, Sawai T, Nakata H, Otsuki S, Nakahara H, Miyamoto T. High-intensity interval training improves respiratory and cardiovascular adjustments before and after initiation of exercise. Front Physiol 2024; 15:1227316. [PMID: 38529482 PMCID: PMC10961378 DOI: 10.3389/fphys.2024.1227316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose: High-intensity interval training (HIIT) may induce training-specific physiological adaptations such as improved respiratory and cardiovascular adjustments before and after the onset of high-intensity exercise, leading to improved exercise performance during high-intensity exercise. The present study investigated the effects of HIIT on time-dependent cardiorespiratory adjustment during maximal exercise and before and after initiation of high-intensity exercise, as well as on maximal exercise performance. Methods: 21 healthy male college students were randomly assigned to HIIT group (n = 11) or control group (n = 10). HIIT group performed training on a cycle ergometer once a week for 8 weeks. The training consisted of three bouts of exercise at 95% maximal work rate (WRmax) until exhaustion. Before and after the HIIT program, dynamic cardiorespiratory function was investigated by ramp and step exercise tests, and HIIT-induced cardiac morphological changes were assessed using echocardiography. Results: HIIT significantly improved not only maximal oxygen uptake and minute ventilation, but also maximal heart rate (HR), systolic blood pressure (SBP), and time to exhaustion in both exercise tests (p < 0.05). Time-dependent increases in minute ventilation (VE) and HR before and at the start of exercise were significantly enhanced after HIIT. During high-intensity exercise, there was a strong correlation between percent change (from before to after HIIT program) in time to exhaustion and percent change in HRmax (r = 0.932, p < 0.001). Furthermore, HIIT-induced cardiac morphological changes such as ventricular wall hypertrophy was observed (p < 0.001). Conclusion: We have demonstrated that HIIT at 95% WRmax induces training-specific adaptations such as improved cardiorespiratory adjustments, not only during maximal exercise but also before and after the onset of high-intensity exercise, improvement of exercise performance mainly associated with circulatory systems.
Collapse
Affiliation(s)
- Go Ito
- Graduate School of Human Environment, Osaka Sangyo University, Daito City, Osaka, Japan
| | - Marina Feeley
- Graduate School of Human Environment, Osaka Sangyo University, Daito City, Osaka, Japan
| | - Toru Sawai
- Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Daito City, Osaka, Japan
| | - Hideomi Nakata
- Graduate School of Human Environment, Osaka Sangyo University, Daito City, Osaka, Japan
- Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Daito City, Osaka, Japan
| | - Shingo Otsuki
- Graduate School of Human Environment, Osaka Sangyo University, Daito City, Osaka, Japan
- Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Daito City, Osaka, Japan
| | - Hidehiro Nakahara
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka City, Osaka, Japan
| | - Tadayoshi Miyamoto
- Graduate School of Human Environment, Osaka Sangyo University, Daito City, Osaka, Japan
- Department of Sport and Health Sciences, Faculty of Sport and Health Sciences, Osaka Sangyo University, Daito City, Osaka, Japan
| |
Collapse
|
5
|
Wang A, Zhang H, Liu J, Yan Z, Sun Y, Su W, Yu JG, Mi J, Zhao L. Targeted Lipidomics and Inflammation Response to Six Weeks of Sprint Interval Training in Male Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3329. [PMID: 36834025 PMCID: PMC9963480 DOI: 10.3390/ijerph20043329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Lipids play an important role in coordinating and regulating metabolic and inflammatory processes. Sprint interval training (SIT) is widely used to improve sports performance and health outcomes, but the current understanding of SIT-induced lipid metabolism and the corresponding systemic inflammatory status modification remains controversial and limited, especially in male adolescents. To answer these questions, twelve untrained male adolescents were recruited and underwent 6 weeks of SIT. The pre- and post-training testing included analyses of peak oxygen consumption (VO2peak), biometric data (weight and body composition), serum biochemical parameters (fasting blood glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triacylglycerol, testosterone, and cortisol), inflammatory markers, and targeted lipidomics. After the 6-week SIT, the serum C-reactive protein (CRP), interleukin (IL)-1β, IL-2, IL-4, IL-10, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β significantly decreased (p < 0.05), whereas IL-6 and IL-10/TNF-α significantly increased (p < 0.05). In addition, the targeted lipidomics revealed changes in 296 lipids, of which 33 changed significantly (p < 0.05, fold change > 1.2 or <1/1.2). The correlation analysis revealed that the changes in the inflammatory markers were closely correlated with the changes in some of the lipids, such as LPC, HexCer, and FFA. In conclusion, the 6-week SIT induced significant changes in the inflammatory markers and circulating lipid composition, offering health benefits to the population.
Collapse
Affiliation(s)
- Aozhe Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Haifeng Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianming Liu
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Zhiyi Yan
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yaqi Sun
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Wantang Su
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Faculty of Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Jing Mi
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
6
|
Jumping vs. running: Effects of exercise modality on aerobic capacity and neuromuscular performance after a six-week high-intensity interval training. PLoS One 2023; 18:e0281737. [PMID: 36763697 PMCID: PMC9917273 DOI: 10.1371/journal.pone.0281737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE High-intensity interval training (HIIT) has proven to be effective in improving endurance capacity and muscle endurance. However, its potential to improve other aspects of physical performance such as strength and power has not been well explored, and most research studies used only running and cycling as exercise modalities. Here, we compared the effects of jumping versus running as exercise modalities during a 6-week HIIT. METHODS 46 participants (24±3 years, 171±9 cm, 68±13 kg, 22 women) were randomly allocated to one of three groups: countermovement jump training, running training, or control. The two training groups underwent a 6-week HIIT with 3 training sessions per week. Both training protocols had identical training frequency, number of series and work/rest durations (on average 7 series of 25s, with a rest of 25s between series). Before and after the training period, aerobic capacity and neuromuscular performance were assessed. RESULTS Analyses of variance revealed a significant group*time interaction effect for maximal aerobic capacity (p = 0.004), and post hoc analyses showed a significant increase in the running group (p < .001, +7.6%). Analyses of the maximal voluntary contraction revealed only a significant increase in the jumping group (plantar flexion +12.8%, knee extension +8.2%). No interaction effects were found for maximal power or jump height. CONCLUSION Despite identical programming, the choice of exercise mode profoundly affected the training adaptations: the running group significantly increased aerobic capacity, and the jump group significantly increased leg strength. These results underline the importance of exercise modality in physical performance adaptations.
Collapse
|
7
|
Wang J, Guan H, Hostrup M, Rowlands DS, González-Alonso J, Jensen J. The Road to the Beijing Winter Olympics and Beyond: Opinions and Perspectives on Physiology and Innovation in Winter Sport. JOURNAL OF SCIENCE IN SPORT AND EXERCISE 2021; 3:321-331. [PMID: 36304069 PMCID: PMC8475427 DOI: 10.1007/s42978-021-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022]
Abstract
Beijing will host the 2022 Winter Olympics, and China strengthens research on various aspects to allow their athletes to compete successfully in winter sport. Simultaneously, Government-directed initiatives aim to increase public participation in recreational winter sport. These parallel developments allow research to advance knowledge and understanding of the physiological determinants of performance and health related to winter sport. Winter sport athletes often conduct a substantial amount of training with high volumes of low-to-moderate exercise intensity and lower volumes of high-intensity work. Moreover, much of the training occur at low ambient temperatures and winter sport athletes have high risk of developing asthma or asthma-related conditions, such as exercise-induced bronchoconstriction. The high training volumes require optimal nutrition with increased energy and dietary protein requirement to stimulate muscle protein synthesis response in the post-exercise period. Whether higher protein intake is required in the cold should be investigated. Cross-country skiing is performed mostly in Northern hemisphere with a strong cultural heritage and sporting tradition. It is expected that innovative initiatives on recruitment and training during the next few years will target to enhance performance of Chinese athletes in classical endurance-based winter sport. The innovation potential coupled with resourcing and population may be substantial with the potential for China to become a significant winter sport nation. This paper discusses the physiological aspects of endurance training and performance in winter sport highlighting areas where innovation may advance in athletic performance in cold environments. In addition, to ensure sustainable development of snow sport, a quality ski patrol and rescue system is recommended for the safety of increasing mass participation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Hongwei Guan
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY 14850 USA
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - David S. Rowlands
- School of Sport, Exercise, and Nutrition, College of Health, Massey University, Auckland, New Zealand
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Jørgen Jensen
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- Department of Physical Performance, Norwegian School of Sport Sciences, Ullevål Stadion, P.O.Box 4012, 0806 Oslo, Norway
| |
Collapse
|
8
|
Kolnes KJ, Petersen MH, Lien-Iversen T, Højlund K, Jensen J. Effect of Exercise Training on Fat Loss-Energetic Perspectives and the Role of Improved Adipose Tissue Function and Body Fat Distribution. Front Physiol 2021; 12:737709. [PMID: 34630157 PMCID: PMC8497689 DOI: 10.3389/fphys.2021.737709] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
In obesity, excessive abdominal fat, especially the accumulation of visceral adipose tissue (VAT), increases the risk of metabolic disorders, such as type 2 diabetes mellitus (T2DM), cardiovascular disease, and non-alcoholic fatty liver disease. Excessive abdominal fat is associated with adipose tissue dysfunction, leading to systemic low-grade inflammation, fat overflow, ectopic lipid deposition, and reduced insulin sensitivity. Physical activity is recommended for primary prevention and treatment of obesity, T2DM, and related disorders. Achieving a stable reduction in body weight with exercise training alone has not shown promising effects on a population level. Because fat has a high energy content, a large amount of exercise training is required to achieve weight loss. However, even when there is no weight loss, exercise training is an effective method of improving body composition (increased muscle mass and reduced fat) as well as increasing insulin sensitivity and cardiorespiratory fitness. Compared with traditional low-to-moderate-intensity continuous endurance training, high-intensity interval training (HIIT) and sprint interval training (SIT) are more time-efficient as exercise regimens and produce comparable results in reducing total fat mass, as well as improving cardiorespiratory fitness and insulin sensitivity. During high-intensity exercise, carbohydrates are the main source of energy, whereas, with low-intensity exercise, fat becomes the predominant energy source. These observations imply that HIIT and SIT can reduce fat mass during bouts of exercise despite being associated with lower levels of fat oxidation. In this review, we explore the effects of different types of exercise training on energy expenditure and substrate oxidation during physical activity, and discuss the potential effects of exercise training on adipose tissue function and body fat distribution.
Collapse
Affiliation(s)
| | | | - Teodor Lien-Iversen
- Department of Internal Medicine, Randers Regional Hospital, Randers, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
9
|
Effects of Different Types of Exercise Training on Fine Motor Skills and Testosterone Concentration in Adolescents: A Cluster Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168243. [PMID: 34443992 PMCID: PMC8392117 DOI: 10.3390/ijerph18168243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
We sought to compare the effect of two types of exercise training on fine motor skills and to establish their association with the salivary testosterone. Research participants, 135 adolescents (68 adolescent females; mean age = 12.76, SD = 0.85) were assigned into three groups: coordinative exercise (CE), cardiovascular exercise (CVE), and the control group (CON). Fine motor skills were assessed with a drawing trail test and salivary testosterone concentration was measured before and after 10 weeks of intervention. There were no significant changes in fine motor skills and testosterone concentration after either CE or CVE training. However, a significant positive correlation between post-test fine motor skills and post-test testosterone concentration was found after the CVE training. One type of exercise training cannot be singled out as more effective for fine motor skills and testosterone activity. Nevertheless, our results showed a relationship between fine motor skills and testosterone concentration after the CVE training. Thus, the type of exercise training is important in the exercise-induced testosterone effect on fine motor skills.
Collapse
|