1
|
Shahzad H, Ali S, Farooq MA, Summer M, Hassan A, Sulayman R, Kanwal L, Awan UA. UV-spectrophotometric and spectroscopic observed Vachellia nilotica and Nigella sativa formulations regularized the histopathological and biochemical parameters during wound contraction. Microsc Res Tech 2025; 88:4-16. [PMID: 39152992 DOI: 10.1002/jemt.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/15/2024] [Accepted: 07/25/2024] [Indexed: 08/19/2024]
Abstract
Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines, Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12th day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.
Collapse
Affiliation(s)
- Hafsa Shahzad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ali Hassan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Rida Sulayman
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Lubna Kanwal
- Department of Zoology, University of Okara, Okara, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| |
Collapse
|
2
|
Hoveidamanesh S, Irilouzadian R, Bagheri T, Saboury M, Fahimi Tafreshi S, Ghadimi T, Soleimanpour S, Sanaienia M, Farokh Forghani S. A Review on Traditional Medicine Used for Burn Treatment. J Burn Care Res 2024; 45:1598-1606. [PMID: 39102254 DOI: 10.1093/jbcr/irae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 08/06/2024]
Abstract
Considering the high consumption of and preference for traditional treatments among people and the lack of enough studies on the effectiveness of these treatments, we aimed to review articles on the use of traditional and complementary medicine, focusing on how they affect healing, debridement, and hypertrophic scars. In this study, we conducted the literature search in international databases PubMed, Google Scholar, Ovid, Scopus, Web of Science, and Cochrane Library, as well as Persian databases Scientific Information Database (SID), Magiran, Iranmedex, and IranDoc. Retrieved hits were reviewed by three authors for screening based on inclusion and exclusion criteria, and the screening process is expressed as Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework flow chart. Twenty-two studies were included. The evaluated outcomes were wound healing in 19, pain control in 5, itching in 4, and scar appearance in 2 studies. All of the studies showed equal or improved effects compared to common treatments. Aloe vera, Centella asiatica, and Arnebia euchroma were the most common plants. We revealed that traditional medicine is beneficial in burn wound treatment. The diversity in ingredients that are used in traditional medicine brings up the need for further controlled prospective studies to evaluate the precise superiority of these treatments compared to standard care.
Collapse
Affiliation(s)
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tooran Bagheri
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdy Saboury
- Department of Craniomaxillofacial Plastic Surgery, St. Fatima Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Fahimi Tafreshi
- Department of Traditional Pharmacy and Persian Medicine, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Soleimanpour
- Educational Development Center (EDC), Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sanaienia
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Sallehuddin N, Hao LQ, Wen APY, Fadilah NIM, Maarof M, Fauzi MB. Thymoquinone-Incorporated CollaGee Biomatrix: A Promising Approach for Full-Thickness Wound Healing. Pharmaceutics 2024; 16:1440. [PMID: 39598563 PMCID: PMC11597209 DOI: 10.3390/pharmaceutics16111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Wound infection is the leading cause of delayed wound healing. Despite ongoing research, the ideal treatment for full-thickness skin wounds is yet to be achieved. Skin tissue engineering provides an alternative treatment, with the potential for skin regeneration. Background/Objectives: Previously, we characterized a collagen-gelatin-elastin (CollaGee) acellular skin substitute and evaluated its cytocompatibility. The assessments revealed good physicochemical properties and cytocompatibility with human dermal fibroblasts (HDF). This study aimed to incorporate thymoquinone (TQ) as the antibacterial agent into CollaGee biomatrices and evaluate their cytocompatibility in vitro. Methods: Briefly, dose-response and antibacterial studies were conducted to confirm the antimicrobial activity and identify the suitable concentration for incorporation; 0.05 and 0.1 mg/mL concentrations were selected. Then, the cytocompatibility was evaluated quantitatively and qualitatively. Results: Cytocompatibility analysis revealed no toxicity towards HDFs, with 81.5 + 0.7% cell attachment and 99.27 + 1.6% cell viability. Specifically, the 0.05 mg/mL TQ concentration presented better viability, but the differences were not significant. Immunocytochemistry staining revealed the presence of collagen I, vinculin, and alpha smooth muscle actin within the three-dimensional biomatrices. Conclusions: These results suggest that TQ-incorporated CollaGee biomatrices are a promising candidate for enhancing the main key player, HDF, to efficiently regenerate the dermal layer in full-thickness skin wound healing. Further investigations are needed for future efficiency studies in animal models.
Collapse
Affiliation(s)
- Nusaibah Sallehuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn. Bhd., Hive 5, Taman Teknologi, MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh B. Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Cebrian RAV, Dalmagro M, Pinc MM, Donadel G, Engel LA, Bariccatti RA, de Almeida RM, de Aguiar KMFR, Lourenço ELB, Hoscheid J. Development and Characterization of Film-Forming Solution Loaded with Syzygium cumini (L.) Skeels for Topical Application in Post-Surgical Therapies. Pharmaceutics 2024; 16:1294. [PMID: 39458623 PMCID: PMC11510759 DOI: 10.3390/pharmaceutics16101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Considering the antioxidant and antimicrobial properties attributed to compounds in Syzygium cumini extract, this research aimed to advance postoperative therapeutic innovations. Specifically, the study assessed the physicochemical properties of a film-forming solution (FFS) incorporated with S. cumini, evaluating its therapeutic potential for postoperative applications. METHODS The S. cumini extract was meticulously characterized to determine its chemical composition, with particular emphasis on the concentration of phenolic compounds. Antioxidant and antimicrobial assays were conducted to assess the extract's efficacy in these domains. Following this, an FFS containing S. cumini was formulated and evaluated comprehensively for skin adhesion, mechanical and barrier properties, and thermal behavior. RESULTS The antioxidant and antimicrobial activities of the S. cumini extract demonstrated promising results, indicating its potential utility as an adjunct in postoperative care. The developed FFS exhibited favorable physicochemical properties for topical application, including adequate skin adhesion and appropriate pH levels. Moreover, chemical and thermal analyses confirmed the formulation's stability and the retention of the extract's beneficial properties. CONCLUSIONS Overall, the findings suggest that the S. cumini-loaded FFS holds significant potential as a valuable therapeutic tool for post-surgical management.
Collapse
Affiliation(s)
- Rosinéia Aparecida Vilela Cebrian
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Larissa Aparecida Engel
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | | | | | | | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University (UNIPAR), Umuarama 87502-210, Brazil; (R.A.V.C.); (M.D.); (M.M.P.); (G.D.); (L.A.E.); (E.L.B.L.)
| |
Collapse
|
5
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
6
|
Modarresi Chahardehi A, Ojaghi HR, Motedayyen H, Arefnezhad R. Nano-based formulations of thymoquinone are new approaches for psoriasis treatment: a literature review. Front Immunol 2024; 15:1416842. [PMID: 39188726 PMCID: PMC11345144 DOI: 10.3389/fimmu.2024.1416842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Psoriasis, a persistent immune-mediated inflammatory skin condition, affects approximately 2-3% of the global population. Current treatments for psoriasis are fraught with limitations, including adverse effects, high costs, and diminishing efficacy over time. Thymoquinone (TQ), derived from Nigella sativa seeds, exhibits promising anti-inflammatory, antioxidant, and immunomodulatory properties that could prove beneficial in managing psoriasis. However, TQ's hydrophobic nature and poor bioavailability have hindered its usefulness as a therapeutic agent. Recent research has strategically addressed these challenges by developing nano-thymoquinone (nano-TQ) formulations to enhance delivery and efficacy in treating psoriasis. Preclinical studies employing mouse models have demonstrated that nano-TQ effectively mitigates inflammation, erythema, scaling, epidermal thickness, and cytokine levels in psoriatic lesions. Various nano-TQ formulations, including nanoemulsions, lipid vesicles, nanostructured lipid carriers, and ethosomes, have been explored to improve solubility, facilitate skin penetration, ensure sustained release, and achieve site-specific targeting. Although clinical trials are currently scarce, the outcomes from in vitro and animal models are promising. The potential co-delivery of nano-TQ with other anti-psoriatic agents also presents avenues for further investigation.
Collapse
Affiliation(s)
| | - Hamid Reza Ojaghi
- Department of Dermatology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Fili R, Behmanesh F, Nazmi S, Nikpour M, Memariani Z. Randomized controlled trial of the effectiveness of olive and black seed oil combination on pain intensity and episiotomy wound healing in primiparous women: A study protocol. PLoS One 2024; 19:e0302161. [PMID: 38748938 PMCID: PMC11095949 DOI: 10.1371/journal.pone.0302161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Episiotomy is associated with side effects, such as pain and wound infection. Additionally, discomfort after episiotomy affects the quality of life of both the mother and the baby. Medicinal herbs are one alternative method for the treatment of episiotomy wounds. This study will investigate the effectiveness of the combination of olive and black seed oil on pain intensity and the healing of episiotomy wounds in primiparous women. METHODS This randomized clinical trial will be conducted on primiparous women who have had a normal delivery with an episiotomy. There are 3 groups in this study: one group will receive a combination of olive oil and black seed oil, another group will receive olive oil alone, and the use of oils will start 24 hours after delivery. Ten drops will be applied topically 3 times a day for 10 days. The third group (control) will receive only routine care. Data will be collected through a demographic characteristics questionnaire, REEDA (Redness, Edema, Ecchymosis, Discharge, and Approximation) Scale, and Visual Analog Scale. To determine and compare the effects of pharmaceutical interventions on pain intensity and episiotomy wound healing in the groups, an analysis of variance (ANOVA) test with repeated measurements will be used with SPSS version 22. DISCUSSION The results of this study will show the effects of a combination of olive and black seed oil, as well as olive oil alone, on pain intensity and episiotomy wound healing in primiparous women. The positive effects observed in this trial with these oils could be valuable for women who have undergone an episiotomy.
Collapse
Affiliation(s)
- Romina Fili
- Babol University of Medical Sciences, Babol, I.R. Iran
| | - Fereshteh Behmanesh
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Sana Nazmi
- Babol University of Medical Sciences, Babol, I.R. Iran
| | - Maryam Nikpour
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Zahra Memariani
- Pharmaceutical Sciences Research Center, Babol University of Medical Sciences, Babol, I.R. Iran
| |
Collapse
|
8
|
Dahmash EZ, Attiany LM, Ali D, Assaf SM, Alkrad J, Alyami H. Development and Characterization of Transdermal Patches Using Novel Thymoquinone-L-Arginine-Based Polyamide Nanocapsules for Potential Use in the Management of Psoriasis. AAPS PharmSciTech 2024; 25:69. [PMID: 38538972 DOI: 10.1208/s12249-024-02781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 04/24/2024] Open
Abstract
Thymoquinone (TQ) is a phytochemical compound present in Nigella sativa and has potential benefits for treating dermatological conditions such as psoriasis. However, its clinical use is limited due to its restricted bioavailability, caused mainly by its low solubility and permeability. To overcome this, a new transdermal drug delivery system is required. Nanoparticles are known to enhance material solubility and permeability, and hence, this study aimed to synthesize TQ-loaded L-arginine-based polyamide (TQ/Arg PA) nanocapsules incorporated into transdermal patches for prolonged delivery of TQ. To achieve this, Eudragit E polymer, plasticizers, and aloe vera as penetration enhancer were used to develop the transdermal patch. Furthermore, novel TQ/Arg-PA was synthesized via interfacial polymerization, and the resultant nanocapsules (NCs) were incorporated into the matrix transdermal patch. The Arg-PA NCs' structure was confirmed via NMR and FTIR, and optimal TQ/Arg-PA NCs containing formulation showed high entrapment efficiency of TQ (99.60%). Molecular and thermal profiling of TQ/Arg-PA and the transdermal patch revealed the effective development of spherical NCs with an average particle size of 129.23 ± 18.22 nm. Using Franz diffusion cells and synthetic membrane (STRAT M®), the in vitro permeation profile of the prepared patches demonstrated an extended release of TQ over 24 h, with enhanced permeation by 42.64% when aloe vera was employed. In conclusion, the produced formulation has a potential substitute for corticosteroids and other drugs commonly used to treat psoriasis due to its effectiveness, safety, and lack of the side effects typically associated with other drugs.
Collapse
Affiliation(s)
- Eman Zmaily Dahmash
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University, London, KT1 2EE, UK.
| | - Lama Murad Attiany
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, 11622, Jordan
| | - Dalia Ali
- Department of Physiotherapy, Faculty of Allied Medical Sciences, Isra University, Amman, 11622, Jordan
| | - Shereen M Assaf
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan, University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Jamal Alkrad
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, 11622, Jordan
| | - Hamad Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Saudi Arabia
| |
Collapse
|
9
|
Rumaling MK, Fong SY, Rao PV, Gisil J, Sani MHM, Wan Saudi WS. Pharmacological properties of Hoya (Apocynaceae): a systematic review. Nat Prod Res 2024:1-17. [PMID: 38389506 DOI: 10.1080/14786419.2024.2319655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
In tropical forests, Hoya, a plant with significant indigenous medicinal applications, has been underexplored in pharmacological studies. This systematic review meticulously investigates the diverse pharmacological effects exhibited by various Hoya species on human health. A comprehensive literature search, encompassing Scopus, ScienceDirect, and SpringerLink databases, employed specific keyword combinations ('Hoya' and 'pharmacological properties' OR 'pharmacology property'). The included studies exclusively focused on Hoya's impact on human health. The findings underscore Hoya's potential as a medicinal plant, demonstrating promising attributes such as anticancer, antibacterial, antioxidant, anti-inflammatory, anti-diabetic, antinociceptive, and parasympatholytic effects. Despite these promising indications, the review underscores the necessity for further in vivo investigations to fully unlock Hoya's therapeutic potential. A comprehensive understanding of its mechanisms of action, efficacy, and safety in living systems is imperative for realising its holistic therapeutic benefits.
Collapse
Affiliation(s)
| | - Siat Yee Fong
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Johnny Gisil
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Mohd Hijaz Mohd Sani
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Wan Salman Wan Saudi
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
10
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
11
|
Khatoon M, Kushwaha P, Usmani S, Madan K. Dermaceutical Utilization of Nigella sativa Seeds: Applications and Opportunities. Drug Res (Stuttg) 2024; 74:5-17. [PMID: 38016656 DOI: 10.1055/a-2196-1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Skin diseases have recently become a major concern among people of all ages due to their highly visible symptoms and persistent and difficult treatment, which significantly impact their quality of life. Nigella sativa seeds, also known as "black seeds" or "kalonji," are one of the most commonly used herbal medicines due to their wide range of biological and pharmacological activities. It contains a wide range of bioactive constituents found in both fixed and essential oils. It has been used for hundreds of years as an alternative ethnomedicine to treat a wide range of skin conditions. N. sativa's dermatological applications in skin diseases are attributed to its potent antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties, making it an intriguing skincare candidate. Several studies unravelled positive results associated with N. sativa on skin diseases. As N. sativa is the most studied medicinal plant, several preclinical and clinical studies have been conducted to establish its use in the treatment of various skin diseases. Thymoquinone has anti-inflammatory, antioxidant, and antibacterial properties, which mainly contributed to the treatment of skin diseases. In this context, the present review explores all the available studies on the association of N. sativa and its effect on treating skin diseases in light of recent studies and patents supporting its therapeutic applications.
Collapse
Affiliation(s)
| | | | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Kumud Madan
- Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Mohamed OM, ElBaz GA, Hegazy EM, Helmy YS. Effect of Nigella sativa Versus Wheat Germ Oil on the Healing of Traumatic Ulcers in Albino Rats. Cureus 2024; 16:e52432. [PMID: 38371095 PMCID: PMC10869994 DOI: 10.7759/cureus.52432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Nigella sativa (NS) oil has been used as an ointment for relief from abscesses, nasal ulcers, orchitis, eczema, and swollen joints. The nutritional and biological values of wheat germ oil (WGO) are imperative points for testing its wound healing properties in traumatic ulcer. The aim of the study was to evaluate and compare the ability of NS versus WGO in promoting the healing of induced traumatic ulcer in albino rats clinically and histologically. MATERIALS AND METHODS This study was carried out after the approval of the Research Ethics Committee (REC) of the Faculty of Dentistry, Suez Canal University, in Ismailia, Egypt, on 60 albino rats with induced labial ulcer according to calculated sample size. All animals were anaesthetized with an intraperitoneal injection of 10% ketamine. The ulcer was produced on the labial mucosa corresponding to the midline between the lower two incisors of each rat. After induction of the ulcer, rats were randomly divided into four groups according to the treatment medicament: Group A (negative control group): 15 rats which remained without treatment; Group B (positive control): 15 rats which received daily a topical application of 1 ml of cetylpyridinium chloride (CPC) and lidocaine gel; Group C (NS group): 15 rats which received a daily topical application of 1 mm of NS oil painted by a brush covering the whole area of the ulcer; and Group D (WGO group): 15 rats which received 1 mm of WGO. The ulcers were measured using a digital caliper and were recorded using a digital camera at days 0, 3, 7, and 9, the largest (D) and smallest (d) diameters of the lesion were recorded, and the ulcer area was calculated using the following formula: A=π×D/2×d/2. Tissue samples were taken for histological examination, and the labial mucosa was dissected out and embedded in paraffin wax blocks. The blocks were cut with microtome to obtain sections of 4-5 μm thickness to be stained with hematoxylin and eosin stain and Masson's trichrome stain. All sections were examined under a light microscope, and the presence of inflammatory cells and collagen tissue remodeling were evaluated. RESULTS Within the control group, there are statistically non-significant changes in the mean of the surface area of ulcer when comparing changes in 10 rats who survived till the seventh day and inflammatory cell count when comparing changes in five rats who were sacrificed at the seventhday. There was a significant decrease in surface area and inflammatory cell count in five rats who survived till the ninth day. Within the WGO group only, all survived rats had healed ulcer at the ninth day. There is a significant decrease in inflammatory cell count in five rats who survived till the ninth day. CONCLUSION WGO was significantly more effective in the treatment of animal-induced ulcer compared to NS oil or CPC and lidocaine oral gel.
Collapse
Affiliation(s)
- Omar M Mohamed
- Pediatric and Preventive Dentistry and Dental Public Health Department, Faculty of Dentistry, Suez Canal University, Ismailia, EGY
| | - Ghada A ElBaz
- Pediatric and Preventive Dentistry and Dental Public Health Department, Faculty of Dentistry, Suez Canal University, Ismailia, EGY
| | - Enas M Hegazy
- Oral Biology Department, Faculty of Dentistry, Suez Canal University, Ismailia, EGY
| | - Yousra S Helmy
- Pediatric and Preventive Dentistry and Dental Public Health Department, Faculty of Dentistry, Suez Canal University, Ismailia, EGY
| |
Collapse
|
13
|
Kmail A, Said O, Saad B. How Thymoquinone from Nigella sativa Accelerates Wound Healing through Multiple Mechanisms and Targets. Curr Issues Mol Biol 2023; 45:9039-9059. [PMID: 37998744 PMCID: PMC10670084 DOI: 10.3390/cimb45110567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Wound healing is a multifaceted process necessitating the collaboration of numerous elements to mend damaged tissue. Plant and animal-derived natural compounds have been utilized for wound treatment over the centuries, with many scientific investigations examining these compounds. Those with antioxidant, anti-inflammatory, and antibacterial properties are particularly noteworthy, as they target various wound-healing stages to expedite recovery. Thymoquinone, derived from Nigella sativa (N. sativa)-a medicinal herb with a long history of use in traditional medicine systems such as Unani, Ayurveda, Chinese, and Greco-Arabic and Islamic medicine-has demonstrated a range of therapeutic properties. Thymoquinone exhibits antimicrobial, anti-inflammatory, and antineoplastic activities, positioning it as a potential remedy for skin pathologies. This review examines recent research on how thymoquinone accelerates wound healing and the mechanisms behind its effectiveness. We carried out a comprehensive review of literature and electronic databases, including Google Scholar, PubMed, Science Direct, and MedlinePlus. Our aim was to gather relevant papers published between 2015 and August 2023. The main criteria for inclusion were that the articles had to be peer reviewed, original, written in English, and discuss the wound-healing parameters of thymoquinone in wound repair. Our review focused on the effects of thymoquinone on the cellular and molecular mechanisms involved in wound healing. We also examined the role of cytokines, signal transduction cascades, and clinical trials. We found sufficient evidence to support the effectiveness of thymoquinone in promoting wound healing. However, there is no consensus on the most effective concentrations of these substances. It is therefore essential to determine the optimal treatment doses and the best route of administration. Further research is also needed to investigate potential side effects and the performance of thymoquinone in clinical trials.
Collapse
Affiliation(s)
- Abdalsalam Kmail
- Faculty of Sciences, Arab American University, Jenin P.O. Box 240, Palestine
| | - Omar Said
- Beleaf Pharma, Kfar Kana 16930, Israel;
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academic College, Baqa Algharbiya 30100, Israel
- Department of Biochemistry, Faculty of Medicine, Arab American University, Jenin P.O. Box 240, Palestine
| |
Collapse
|
14
|
Sen S, Kasikci M. Low-dose rosmarinic acid and thymoquinone accelerate wound healing in retinal pigment epithelial cells. Int Ophthalmol 2023; 43:3811-3821. [PMID: 37407754 DOI: 10.1007/s10792-023-02799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE Thymoquinone (TQ) and rosmarinic acid (RA) are two biologically active compounds found in plants and that possess remarkable anti-oxidant and anti-inflammatory properties. The present study aimed to investigate the potential protective effects of RA and TQ, which have known anti-inflammatory and anti-oxidant effects, on retinal damage by establishing a wound healing model for retinal pigment epithelial cells (ARPE-19). METHOD To this end, IC50 doses of RA and TQ in ARPE-19 cells were calculated by MTT assay. Both agents were administered at IC50, IC50/2 and IC50/4 doses for wound healing assay, and wound closure percentages were analyzed. Since the best wound healing was found at IC50/4 dose (low dose) for both agents, other biochemical and molecular analyses were planned to be performed using these doses. Following low dose RA and TQ treatments, the cells were lysed and TGF-β1 and MMP-9 levels were analyzed by ELISA technique from the cell lysates obtained. In addition, the mRNA expression levels of TLR3, IFN-γ and VEGF were calculated by RT-PCR technique. RESULTS Low dose of RA and TQ dramatically increased wound healing. RA may have achieved this by increasing levels of MMP-9 and TLR-3. In contrast, the mRNA expression level of VEGF remained unchanged. TQ accelerated wound healing by increasing both the protein levels of TGF-β1 and MMP-9. Furthermore, low dose of TQ decreased both TLR3 and IFN-γ mRNA expression levels. CONCLUSION Low doses of RA and TQ were clearly demonstrated to have protective properties against possible damage to retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Serkan Sen
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey
| | - Murat Kasikci
- Department of Medical Laboratory Techniques, Ataturk Vocational School of Health Services, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
- Department of Ophthalmology, Mugla Education and Research Hospital, Mugla, Turkey.
| |
Collapse
|
15
|
Chitosan nanocomposite film incorporating Nigella sativa oil, Azadirachta indica leaves’ extract, and silver nanoparticles. E-POLYMERS 2023. [DOI: 10.1515/epoly-2022-8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Nanocomposite films have been prepared from chitosan, cinnamaldehyde, Nigella sativa or blackseed oil, and silver nanoparticles (NPs) biosynthesized in Azadirachta indica or neem leaves’ extract. The methodology involved simple blending of components through “green chemistry” route. The films obtained were soft and foldable. The morphology by scanning electron microscopy confirmed the inclusion of NPs in the films. Microbial penetration study demonstrated that the films offered good resistance to secondary bacterial infection. The antibacterial study against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) indicated moderate antibacterial behavior of the films. The swelling behavior in water, phosphate buffer saline, and simulated wound fluid was found to be appropriate for use as wound dressings. The films were biodegradable in soil and showed good thermal stability up to 200°C.
Collapse
|
16
|
Mssillou I, Bakour M, Slighoua M, Laaroussi H, Saghrouchni H, Ez-Zahra Amrati F, Lyoussi B, Derwich E. Investigation on wound healing effect of Mediterranean medicinal plants and some related phenolic compounds: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115663. [PMID: 36038091 DOI: 10.1016/j.jep.2022.115663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/07/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The human skin constitutes a biological barrier against external stress and wounds can reduce the role of its physiological structure. In medical sciences, wounds are considered a major problem that requires urgent intervention. For centuries, medicinal plants have been used in the Mediterranean countries for many purposes and against wounds. AIM OF THIS REVIEW Provides an outlook on the Mediterranean medicinal plants used in wound healing. Furthermore, the wound healing effect of polyphenolic compounds and their chemical structures are also summarized. Moreover, we discussed the wound healing process, the structure of the skin, and the current therapies in wound healing. MATERIALS AND METHODS The search was performed in several databases such as ScienceDirect, PubMed, Google Scholar, Scopus, and Web of Science. The following Keywords were used individually and/or in combination: the Mediterranean, wound healing, medicinal plants, phenolic compounds, composition, flavonoid, tannin. RESULTS The wound healing process is distinguished by four phases, which are respectively, hemostasis, inflammation, proliferation, and remodeling. The Mediterranean medicinal plants are widely used in the treatment of wounds. The finding showed that eighty-nine species belonging to forty families were evaluated for their wound-healing effect in this area. The Asteraceae family was the most reported family with 12 species followed by Lamiaceae (11 species). Tunisia, Egypt, Morocco, and Algeria were the countries where these plants are frequently used in wound healing. In addition to medicinal plants, results showed that nineteen phenolic compounds from different classes are used in wound treatment. Tyrosol, hydroxytyrosol, curcumin, luteolin, chrysin, rutin, kaempferol, quercetin, icariin, morin, epigallocatechin gallate, taxifolin, silymarin, hesperidin, naringin, isoliquiritin, puerarin, genistein, and daidzein were the main compounds that showed wound-healing effect. CONCLUSION In conclusion, medicinal plants and polyphenolic compounds provide therapeutic evidence in wound healing and for the development of new drugs in this field.
Collapse
Affiliation(s)
- Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, 01330 Balcalı/Sarıçam, Adana, Turkey
| | - Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; Unity of GC/MS and GC, City of Innovation, Sidi Mohamed Ben Abdellah University, Fez, 30000, Morocco
| |
Collapse
|
17
|
Biological Potential of the Main Component, Thymoquinone, of Nigella sativa in Pulp Therapy-In Vitro Study. Life (Basel) 2022; 12:life12091434. [PMID: 36143470 PMCID: PMC9501378 DOI: 10.3390/life12091434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022] Open
Abstract
This work is designed to assess the antimicrobial efficacy, chelating efficacy, and dissolving capability of the bioactive agent of the Nigella sativa plant (thymoquinone). Four freeze-dried microorganisms were studied. Each species was treated with either 6% sodium Hypochlorite, thymoquinone, or sterile water. The zone of inhibition was measured. Thirty extracted human premolar teeth were utilized to evaluate the smear layer removal. Root canals were mechanically instrumented and then irrigated with either 6% sodium Hypochlorite, 17% ethylenediaminetetraacetic acid, or thymoquinone for 1 min and scanned under the scanning electron microscopic to evaluate the cleanliness of the root canal and the remainder of the smear layer. To evaluate the tissue dissolving effect, Bovine Pulp Tissue was utilized. Randomly treated samples included: 6% sodium Hypochlorite, thymoquinone, or isotonic saline for 30 min. The remaining pulp tissue was weighed. Thymoquinone reported the highest inhibition of microbial multiplication compared to other irrigants (p < 0.001). Thymoquinone solution had an excellent antibacterial effect on endodontic pathogen and did not affect the inorganic and organic tissue inside the root canal. Meanwhile, it reported weak chelating and dissolving effects. Tissue dissolution was statistically significant with sodium Hypochlorite solution compared to other groups (p < 0.001).
Collapse
|
18
|
Zerumbone-Loaded Nanostructured Lipid Carrier Gel Enhances Wound Healing in Diabetic Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1129297. [PMID: 36124067 PMCID: PMC9482501 DOI: 10.1155/2022/1129297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
This study investigated the healing effects of topical application of zerumbone, a well-known anti-inflammatory compounds loaded on nanostructured lipid carrier gel (Carbopol 940) (ZER-NLCG) on excisional wounds in streptozotocin-induced diabetic rats. Diabetic rats with inflicted superficial skin wound were topically treated with ZER-NLCG, empty NLCG, and silver sulfadiazine cream (SSDC) once daily for 21 days. Wound tissue samples were analyzed for proinflammatory cytokines, namely, interleukin-6 (IL-6), interleukin-1 β (IL-1β), and tumor necrosis factor-α (TNF-α), hydroxyproline contents, catalase, superoxide dismutase activities, and lipid peroxidation level, and were subjected to histopathological analysis, respectively. Among the treated groups, ZER-NLCG was the most effective at decreasing proinflammatory cytokine level and inflammatory cell infiltration while increasing antioxidant enzyme activities, hydroxyproline content, and granulation of wound tissues of diabetic rats. ZER-NLCG is a potent formulation for the enhancement of wound healing in diabetic rats through its anti-inflammatory, antioxidant, and tissue repair activities.
Collapse
|
19
|
Co-delivery of gentiopicroside and thymoquinone using electrospun m-PEG/PVP nanofibers: In-vitro and In vivo studies for antibacterial wound dressing in diabetic rats. Int J Pharm 2022; 625:122106. [PMID: 36029993 DOI: 10.1016/j.ijpharm.2022.122106] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
Nanofibers (NFs) provide several delivery advantages like their great flexibility and similarity with extracellular matrix (ECM) which qualify them to be the unique model of a wound dressing. NFs could create mats of polymeric matrix loaded with an active agent enhancing its solubility and stability. In our study, Gentiopicroside (GPS) and Thymoquinone (TQ) loaded in NFs polymeric mats composed of coblended polyvinyl pyrrolidine (PVP) and methyl ether Polyethylene glycol (m-PEG) were fabricated via electrospinning technique. A morphological study using Scanning Electron Microscopy (SEM) was performed for all formulae as well as in vitro release study using High-performance Liquid chromatography (HPLC) for sample analysis. The optimized formula (F3) was chosen for further assays using Fourier-Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). Study of the antibacterial effect, and in vivo healing action for diabetic infected wounds to quantify Tumor necrosis factor-alpha and Cyclooxygenase-2 were also investigated. F3 achieved the highest % cumulative release (99.79 ± 6.47 for GPS and 96.89 ± 6.87 for TQ) at 60 min, and a smaller diameter (200 nm) showing significant anti-bacterial effects with well-organized skin architecture demonstrating great healing signs. Our results revealed that m-PEG/PVP NFs mats loaded with GPS and TQ could be considered an optimal wound care dressing.
Collapse
|
20
|
Black Seed (Nigella sativa): A Favourable Alternative Therapy for Inflammatory and Immune System Disorders. Inflammopharmacology 2022; 30:1623-1643. [PMID: 35972596 DOI: 10.1007/s10787-022-01035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
In the recent years, various food additives, medicinal plants, and their bioactive components have been utilized in anti-inflammatory and immunomodulatory therapy. Nigella sativa is a key dietary supplement and food additive which has a strong traditional background. It is also one of the most broadly studied seeds in the global pharmaceutical and nutraceutical sector. N. sativa seeds are potential sources of natural metabolite such as phenolic compounds and alkaloids. The anti-inflammatory and immunomodulatory abilities of these seeds, most peculiarly with reference to some inflammatory and immune mediators, are reviewed. N. sativa and its bioactive compounds modulate inflammatory and immunomodulatory mediators including tumor necrosis factor-alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-kB) cyclooxygenase (COX), lipoxygenase (LOX), transforming growth factor beta (TGF-β), interleukins, and immunoglobulin levels. This paper comprehensively describes the biomarkers and signaling pathways underlying the anti-inflammatory and immunomodulatory potential of N. sativa. This review also explains the scientific basis and the pharmacological properties of core bioactive ingredients of N. sativa responsible for these biological activities which indicates that their bioactive components could be possibly regarded as favorable therapy for disorders linked to inflammation and immune-dysregulation.
Collapse
|
21
|
Sallehuddin N, Md Fadilah NI, Hwei NM, Wen APY, Yusop SM, Rajab NF, Hiraoka Y, Tabata Y, Fauzi MB. Characterization and Cytocompatibility of Collagen-Gelatin-Elastin (CollaGee) Acellular Skin Substitute towards Human Dermal Fibroblasts: In Vitro Assessment. Biomedicines 2022; 10:biomedicines10061327. [PMID: 35740348 PMCID: PMC9220336 DOI: 10.3390/biomedicines10061327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 01/08/2023] Open
Abstract
Full-thickness skin wounds have become a serious burden to patients, medical care, and the socio-economic environment. The development of a safe and effective acellular skin substitute that can rapidly restore intact physiological skin is required. Natural bioactive materials including collagen, gelatin, and elastin possess significant advantages over synthetic biomaterials regarding biodegradability and biocompatibility. However, low mechanical strength, a faster biodegradation rate, and thermally unstable biomaterials lead to slow-healing and a high rate of post-implantation failure. To overcome these concerns, naturally occurring genipin (GNP) flavonoids were added to improve the mechanical strength, degradation rate, and thermal properties. Therefore, this study aimed to fabricate and characterize collagen−gelatin−elastin (CollaGee) biomaterials cross-linked with GNP as an acellular skin substitute potentially used in full-thickness wound healing. CollaGee at different ratios was divided into non-cross-linked and cross-linked with 0.1% GNP (w/v). The physicochemical, mechanical, and biocompatibility properties of CollaGee were further investigated. The results demonstrated that GNP-cross-linked CollaGee has better physicochemical (>50% porosity, pore size range of 100−200 µm, swelling ratio of >1000%) and mechanical properties (resilience and cross-linking degree of >60%, modulus of >1.0 GPa) compared to non-cross-linked CollaGee groups. Furthermore, both cross-linked and non-cross-linked CollaGee demonstrated pivotal cellular compatibility with no toxicity and sustained cell viability until day 7 towards human dermal fibroblasts. These findings suggest that GNP-cross-linked CollaGee could be a promising ready-to-use product for the rapid treatment of full-thickness skin loss.
Collapse
Affiliation(s)
- Nusaibah Sallehuddin
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.S.); (N.I.M.F.); (N.M.H.)
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.S.); (N.I.M.F.); (N.M.H.)
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.S.); (N.I.M.F.); (N.M.H.)
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43000, Malaysia;
| | - Nor Fadilah Rajab
- Biomedical Science Program, Center for Healthy Aging and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abd Aziz, Kuala Lumpur 50300, Malaysia;
| | - Yosuke Hiraoka
- R&D Centre, Biomaterial Group, Nitta Gelatin Inc., 2-22, Futama Yao City, Osaka 581-0024, Japan;
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Science (LiMe), Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.S.); (N.I.M.F.); (N.M.H.)
- Correspondence: ; Tel.: +60-196-551-020
| |
Collapse
|
22
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
23
|
Sultan MH, Javed S, Madkhali OA, Alam MI, Almoshari Y, Bakkari MA, Sivadasan D, Salawi A, Jabeen A, Ahsan W. Development and Optimization of Methylcellulose-Based Nanoemulgel Loaded with Nigella sativa Oil for Oral Health Management: Quadratic Model Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061796. [PMID: 35335159 PMCID: PMC8954538 DOI: 10.3390/molecules27061796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/09/2023]
Abstract
The present study aimed to develop a local dental nanoemulgel formulation of Nigella sativa oil (NSO) for the treatment of periodontal diseases. NSO purchased from a local market was characterized using a GC–MS technique. A nanoemulsion containing NSO was prepared and incorporated into a methylcellulose gel base to develop the nanoemulgel formulation. The developed formulation was optimized using a Box–Behnken statistical design (quadratic model) with 17 runs. The effects of independent factors, such as water, oil, and polymer concentrations, were studied on two dependent responses, pH and viscosity. The optimized formulation was further evaluated for droplet size, drug release, stability, and antimicrobial efficacy. The developed formulation had a pH of 7.37, viscosity of 2343 cp, and droplet size of 342 ± 36.6 nm. Sustained release of the drug from the gel for up to 8 h was observed, which followed Higuchi release kinetics with non-Fickian diffusion. The developed nanoemulgel formulation showed improved antimicrobial activity compared to the plain NSO. Given the increasing emergence of periodontal diseases and antimicrobial resistance, an effective formulation based on a natural antibacterial agent is warranted as a dental therapeutic agent.
Collapse
Affiliation(s)
- Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
- Correspondence:
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Osama Ali Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Mohammad Intakhab Alam
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Mohammad Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Ameena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (S.J.); (O.A.M.); (M.I.A.); (Y.A.); (M.A.B.); (D.S.); (A.S.); (A.J.)
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
24
|
Guesmi F, Saidi I, Abessi R, Saidani M, Hfaiedh N, Landoulsi A. Therapeutic potential of second degree's skin burns by topical dressing of Teucrium ramosissimum that promotes re-epithelialization. Dermatol Ther 2022; 35:e15428. [PMID: 35261131 DOI: 10.1111/dth.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 11/28/2022]
Abstract
The aim of the report is to assess the protective effect of powder aerial part of T. ramosissimum (TS) on the in vivo wound-healing of second-degree burn injuries. Teucrium phytocompounds were characterized by FTIR, HPLC and GC/MS spectra. Burn wound models were employed to evaluate the in vivo wound-healing activity. Thirty six wistar rats with burn wounds were divided into six groups and treated daily with TS, the mixture of Teucrium and honey (TS-HY), thymol and Dermosalic® (0.05%) (DS) creams. Skin epithelialization was monitored on the 4th, 13th and 21st days. Proteins and the level of malondialdehyde (MDA) in the burned skin were assessed. Microscopic and macroscopic investigations of skin wound tissues showed significant wound closure rate via complete epidermal reepithelization and regeneration, higher protein content, collagen synthesis and deposition, hair follicles growth post wounding that were promoted in TS-, thymol-, TS-HY- and DS-treated wound tissues compared to the untreated burned wound tissues that was caracterised by the absence of the epithelialization, vascularization and the formation of the epidermis layer. Additionally, the skin healing potential of TS and TS-HY was validated by markedly decreased of lipid peroxidation. Overall, TS was found to possess complete wound closure and improves the healing process.
Collapse
Affiliation(s)
- Fatma Guesmi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage
| | - Issam Saidi
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Faculty of Sciences of Gafsa, University of Gafsa
| | - Rawdha Abessi
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Faculty of Sciences of Gafsa, University of Gafsa
| | - Mabrouka Saidani
- Service of Microbiology, Regional Hospital Houssine Bouzaiene of Gafsa, Gafsa, Tunisia
| | - Najla Hfaiedh
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Faculty of Sciences of Gafsa, University of Gafsa
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage
| |
Collapse
|
25
|
Masri S, Zawani M, Zulkiflee I, Salleh A, Fadilah NIM, Maarof M, Wen APY, Duman F, Tabata Y, Aziz IA, Bt Hj Idrus R, Fauzi MB. Cellular Interaction of Human Skin Cells towards Natural Bioink via 3D-Bioprinting Technologies for Chronic Wound: A Comprehensive Review. Int J Mol Sci 2022; 23:476. [PMID: 35008902 PMCID: PMC8745539 DOI: 10.3390/ijms23010476] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022] Open
Abstract
Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. Thus, the essential key factor for success in 3D-bioprinting is selecting and developing suitable bioinks to maintain the mechanisms of cellular activity. This crucial stage is vital to mimic the native extracellular matrix (ECM) for the sustainability of cell viability before tissue regeneration. This comprehensive review outlined the application of the 3D-bioprinting technique to develop skin tissue regeneration. The cell viability of human skin cells, dermal fibroblasts (DFs), and keratinocytes (KCs) during in vitro testing has been further discussed prior to in vivo application. It is essential to ensure the printed tissue/organ constantly allows cellular activities, including cell proliferation rate and migration capacity. Therefore, 3D-bioprinting plays a vital role in developing a complex skin tissue structure for tissue replacement approach in future precision medicine.
Collapse
Affiliation(s)
- Syafira Masri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mazlan Zawani
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Atiqah Salleh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fatih Duman
- Department of Biology, Faculty of Science, University of Erciyes, 38039 Kayseri, Turkey
| | - Yasuhiko Tabata
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biomaterials, Institute of Frontier Medical Science, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Izhar Abd Aziz
- 3D Gens Sdn Bhd, 18, Jalan Kerawang U8/108, Bukit Jelutong, Shah Alam 40150, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
26
|
Woon CK, Hui WK, Abas R, Haron MH, Das S, Lin TS. Natural Product-based Nanomedicine: Recent Advances and Issues for the Treatment of Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1498-1518. [PMID: 34923947 PMCID: PMC9881085 DOI: 10.2174/1570159x20666211217163540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) affects the elderly and is characterized by progressive neurodegeneration caused by different pathologies. The most significant challenges in treating AD include the inability of medications to reach the brain because of its poor solubility, low bioavailability, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for incorporating active materials from natural products into formulations that can be delivered effectively to the intended action site without compromising the material's bioactivity. The review highlights the applications of medicinal plants, their derived components, and various nanomedicinebased approaches for the treatment of AD. The combination of medicinal plants and nanotechnology may lead to new theragnostic solutions for the treatment of AD in the future.
Collapse
Affiliation(s)
- Choy Ker Woon
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Wong Kah Hui
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia
| | - Muhammad Huzaimi Haron
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi MARA, 47000 Selangor, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Sultanate of Oman
| | - Teoh Seong Lin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Novel Synthesis of Titanium Oxide Nanoparticles: Biological Activity and Acute Toxicity Study. Bioinorg Chem Appl 2021; 2021:8171786. [PMID: 34422029 PMCID: PMC8376471 DOI: 10.1155/2021/8171786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Titanium oxide nanoparticles (TiO2 NPs) have been attracting numerous research studies due to their activity; however, there is a growing concern about the corresponding toxicity. Here in the present study, titanium oxide nanoparticles were newly synthesized using propolis extract followed by antimicrobial activity, cytotoxicity assay using human cancer cell lines, and acute toxicity study. The physicochemical characterization of the newly synthesized TiO2 NPs had average size = 57.5 nm, PdI = 0.308, and zeta potential = −32.4 mV. Antimicrobial activity assessment proved the superior activity against Gram-positive compared to Gram-negative bacteria and yeast (lowest MIC values 8, 32, and 32, respectively). The newly synthesized TiO2 NPs showed a potent activity against the following human cancer cell lines: liver (HepG-2) (IC50 8.5 µg/mL), colon (Caco-2), and breast (MDA-MB 231) (IC50 11.0 and 18.7 µg/mL). In vivo acute toxicity study was conducted using low (10 mg/kg) and high (1000 mg/kg) doses of the synthesized TiO2 NPs in albino male rats. Biochemistry and histopathology of the liver, kidney, and brain proved the safety of the synthesized TiO2 NPs at low dose while at high dose, there was TiO2 NPs deposit in different vital organs except the cerebral tissue.
Collapse
|
28
|
Yazarlu O, Iranshahi M, Kashani HRK, Reshadat S, Habtemariam S, Iranshahy M, Hasanpour M. Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacol Res 2021; 174:105841. [PMID: 34419563 DOI: 10.1016/j.phrs.2021.105841] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Wound is defined as any injury to the body such as damage to the epidermis of the skin and disturbance to its normal anatomy and function. Since ancient times, the importance of wound healing has been recognized, and many efforts have been made to develop novel wound dressings made of the best material for rapid and effective wound healing. Medicinal plants play a great role in the wound healing process. In recent decades, many studies have focused on the development of novel wound dressings that incorporate medicinal plant extracts or their purified active compounds, which are potential alternatives to conventional wound dressings. Several studies have also investigated the mechanism of action of various herbal medicines in wound healing process. This paper attempts to highlight and review the mechanistic perspective of wound healing mediated by plant-based natural products. The findings showed that herbal medicines act through multiple mechanisms and are involved in various stages of wound healing. Some herbal medicines increase the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) which play important role in stimulation of re-epithelialization, angiogenesis, formation of granulation tissue, and collagen fiber deposition. Some other wound dressing containing herbal medicines act as inhibitor of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) protein expression thereby inducing antioxidant and anti-inflammatory properties in various phases of the wound healing process. Besides the growing public interest in traditional and alternative medicine, the use of herbal medicine and natural products for wound healing has many advantages over conventional medicines, including greater effectiveness due to diverse mechanisms of action, antibacterial activity, and safety in long-term wound dressing usage.
Collapse
Affiliation(s)
- Omid Yazarlu
- Mashhad University of Medical Sciences, Department of General Surgery, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sara Reshadat
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Mohd Zaid MH, Hanafi MF, Haris MS. review of black seed extract as an agent in the wound healing process. JOURNAL OF PHARMACY 2021. [DOI: 10.31436/jop.v1i2.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Introduction: Nigella Sativa or Black Cumin is an annual flowering plant that can be used for wound treatment. In the treatment for wound healing, this plant contains many beneficial components that can help with the treatment but this plant utilisation in the medical field is still limited. This review will provide an overview of the advantages when this plant is used in the wound healing treatment.
Method: The review was based on the ROSES protocol, and the databases used were ScienceDirect, PubMed, and Google Scholar. After the search, only 11 papers had been chosen to be included in the results and they were divided into four main themes that were used for the analysis of the results.
Results: The themes were gross analysis, microscopic analysis, biochemical analysis and antimicrobial analysis.
Conclusion: In conclusion, the black seed extract contains several valuable properties, such as antimicrobial and antioxidant properties, which help improve the wound healing process. Further study needs to be done to discover more potential of Nigella Sativa in treating the wound.
Collapse
|
30
|
Aras C, Tümay Özer E, Göktalay G, Saat G, Karaca E. Evaluation of Nigella sativa oil loaded electrospun polyurethane nanofibrous mat as wound dressing. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1718-1735. [PMID: 34053403 DOI: 10.1080/09205063.2021.1937463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Electrospun nanofibers have a natural wound healing effect due to their similarity to the extracellular matrix (ECM). Nigella sativa oil, which has therapeutic properties, is used for a wide variety of applications in traditional medicine. The aim of this study was to investigate the release characteristic and wound healing performance of Nigella sativa oil (NSO) loaded polyurethane (PU) electrospun nanofibrous mats in wound dressing applications. In addition, the antibacterial activity and cytotoxicity of the electrospun mats were studied. Analyses using a scanning electron microscope (SEM) showed that PU/NSO nanofibrous mat with an average fiber diameter of 416 ± 66 nm were successfully fabricated. NSO was released at a maximum ratio of 30% from the electrospun mat, and the Korsmeyer-Peppas model was identified as best for determining the release mechanism. Significant antibacterial activity was observed against Staphylococcus aureus (90.26%) and Escherichia coli (95.75%). The developed PU/NSO nanofibrous mat increased the cell viability more than 100% in human umbilical vein endothelial cell line (HUVEC) cell line. The NSO loaded PU nanofibrous mat significantly promoted the wound healing process on a rat wound model, and its wound closure reached approximately 85% compared to the control groups on the 9th day (p < 0.01). The results indicated PU/NSO nanofibrous mat is a suitable candidate for a wound dressing.
Collapse
Affiliation(s)
- Cansu Aras
- Department Textile of Engineering, Faculty of Engineering, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Elif Tümay Özer
- Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Gökhan Göktalay
- Department of Pharmacology, Faculty of Medicine, Bursa Uludag University, Gorukle, Bursa, Turkey
| | - Gülbahar Saat
- Inovenso Technology Limited, IOSB, Basaksehir, Istanbul, Turkey
| | - Esra Karaca
- Department Textile of Engineering, Faculty of Engineering, Bursa Uludag University, Gorukle, Bursa, Turkey
| |
Collapse
|
31
|
Hwang JR, Cartron AM, Khachemoune A. A review of Nigella sativa plant-based therapy in dermatology. Int J Dermatol 2021; 60:e493-e499. [PMID: 33899217 DOI: 10.1111/ijd.15615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/11/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
Nigella sativa (N. sativa) is a widely used medicinal herb with a rich cultural and religious history in Unani, Ayurveda, Chinese, and Arabic medicine. N. sativa contains many natural bioactive agents including alkaloids, saponins, alpha-hederin, and thymoquinone that contribute to its broad range of benefits as a diuretic, bronchodilator, antihypertensive, antidiabetic, and analgesic. In addition, N. sativa possesses antimicrobial, anti-inflammatory, and antineoplastic effects, making it an interesting potential therapy for the treatment of dermatological conditions. This article reviews the current literature surrounding the pharmacological effects of N. sativa for the treatment of acne vulgaris, melanoma, vitiligo, atopic dermatitis, plaque psoriasis, and wound healing.
Collapse
Affiliation(s)
| | | | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA.,SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
32
|
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 2021; 138:111492. [PMID: 33743334 DOI: 10.1016/j.biopha.2021.111492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone (TQ, 2-methyl-5-isopropyl-1, 4-benzoquinone), a monoterpene molecule present in Nigella sativa L., has an anti-inflammatory, anti-oxidant, and anti-apoptotic properties in several disorders such as asthma, hypertension, diabetes, inflammation, bronchitis, headache, eczema, fever, dizziness and influenza. TQ exerts its anti-inflammatory and anti-oxidant effects via several molecular pathways, including the release of cytokines, and activation of cyclooxygenase-2 (COX2), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), nuclear factor kappa-light-chain-enhancer of activated B (NF-Κβ). In this review, recent reports on the anti-inflammatory efficacy of TQ in heart disorders, respiratory diseases, neuroinflammation, diabetes and arthritis are summarized. We suggest that further investigation is necessary to better characterize the efficacy of TQ as a therapeutic agent.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
33
|
Mekhemar M, Hassan Y, Dörfer C. Nigella sativa and Thymoquinone: A Natural Blessing for Periodontal Therapy. Antioxidants (Basel) 2020; 9:E1260. [PMID: 33322636 PMCID: PMC7764221 DOI: 10.3390/antiox9121260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ), the chief active constituent of Nigella sativa (NS), shows very valuable biomedical properties such as antioxidant, antimicrobial, anticancer, anti-inflammatory, antihypertensive, hypoglycemic, antiparasitic and anti-asthmatic effects. Several studies have examined the pharmacological actions of TQ in the treatment of oral diseases but its potential role in periodontal therapy and regeneration is not yet fully defined. The present investigation has been designed to review the scientific studies about the effects of TQ as an adjunct to periodontal treatment to promote healing and periodontal regeneration. Along with clinical experiments, in vitro studies exhibit the beneficial effects of TQ during periodontal therapy. Nevertheless, additional comprehensive clinical and preclinical studies at cellular and molecular levels are essential to examine the particular action mechanisms of Nigella sativa and its elements, particularly TQ, during periodontal treatment or regeneration.
Collapse
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (Y.H.); (C.D.)
| | | | | |
Collapse
|