1
|
Chaiphongpachara T, Laojun S, Sumruayphol S, Suwandittakul N, Suwannarong K, Pimsuka S. Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand. Acta Trop 2024; 259:107380. [PMID: 39244138 DOI: 10.1016/j.actatropica.2024.107380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an R-value of 0.30 (p < 0.05) in the lower connecting areas and 0.37 (p < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (p < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand.
| | - Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Suchada Sumruayphol
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Nantana Suwandittakul
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Thailand
| | - Kanokwan Suwannarong
- SUPA71 Co., Ltd, Bangkok, Thailand; Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Siripong Pimsuka
- School of Public Health, Eastern Asia University, Pathumthani, Thailand
| |
Collapse
|
2
|
Richard Q, Choisy M, Lefèvre T, Djidjou-Demasse R. On the necessity of accounting for age structure in human malaria transmission modelling. Math Biosci 2024:109319. [PMID: 39442869 DOI: 10.1016/j.mbs.2024.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Malaria is one of the most common mosquito-borne diseases widespread in tropical and subtropical regions, causing thousands of deaths every year in the world. In a previous paper, we formulated an age-structured model containing three structural variables: (i) the chronological age of human and mosquito populations, (ii) the time since they are infected, and (iii) humans waning immunity (i.e. the progressive loss of protective antibodies after recovery). In the present paper, we expand the analysis of this age-structured model and focus on the derivation of entomological and epidemiological results commonly used in the literature, following the works of Smith and McKenzie. We generalize their results to the age-structured case. In order to quantify the impact of neglecting structuring variables such as chronological age, we assigned values from the literature to our model parameters. While some parameters values are readily accessible from the literature, at least those about the human population, the parameters concerning mosquitoes are less commonly documented and the values of a number of them (e.g. mosquito survival in the presence or in absence of infection) can be discussed extensively. Our analysis, informed by parameter values from the literature, demonstrates that overlooking those structural variables of human and mosquito populations may result in inaccurate epidemiological predictions and suboptimal control strategies. We highlight the epidemiological implications of these findings and emphasize the necessity of considering age structure in future malaria control programs.
Collapse
Affiliation(s)
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Thierry Lefèvre
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Ramsès Djidjou-Demasse
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France; École Polytechnique de Thiès, Senegal
| |
Collapse
|
3
|
Anikeeva O, Hansen A, Varghese B, Borg M, Zhang Y, Xiang J, Bi P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ 2024; 387:e079343. [PMID: 39366706 DOI: 10.1136/bmj-2024-079343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Global temperatures will continue to rise due to climate change, with high temperature periods expected to increase in intensity, frequency, and duration. Infectious diseases, including vector-borne diseases such as dengue fever and malaria, waterborne diseases such as cholera, and foodborne diseases such as salmonellosis are influenced by temperature and other climatic variables, thus contributing to higher disease burden and associated healthcare costs, particularly in socioeconomically disadvantaged regions. Targeted efforts and investments are therefore needed to support low and middle income countries to prepare for and respond to the increasing infectious disease threats posed by rising temperatures. This can be facilitated by the development and refinement of robust disease and entomological surveillance and early warning systems with integration of climatic information that promote enhanced understanding of the geographic distribution of disease risk. To enhance healthcare workforce capacity and capability to respond to these public health threats, medical curricula and continuing professional education programmes for healthcare providers must include evidence based components on the impacts of climate change on infectious diseases.
Collapse
Affiliation(s)
- Olga Anikeeva
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Alana Hansen
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Blesson Varghese
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Matthew Borg
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Ying Zhang
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Peng Bi
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| |
Collapse
|
4
|
Barr JS, Martin LE, Tate AT, Hillyer JF. Warmer environmental temperature accelerates aging in mosquitoes, decreasing longevity and worsening infection outcomes. Immun Ageing 2024; 21:61. [PMID: 39261928 PMCID: PMC11389126 DOI: 10.1186/s12979-024-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Most insects are poikilotherms and ectotherms, so their body temperature is predicated by environmental temperature. With climate change, insect body temperature is rising, which affects how insects develop, survive, and respond to infection. Aging also affects insect physiology by deteriorating body condition and weakening immune proficiency via senescence. Aging is usually considered in terms of time, or chronological age, but it can also be conceptualized in terms of body function, or physiological age. We hypothesized that warmer temperature decouples chronological and physiological age in insects by accelerating senescence. To investigate this, we reared the African malaria mosquito, Anopheles gambiae, at 27 °C, 30 °C and 32 °C, and measured survival starting at 1-, 5-, 10- and 15-days of adulthood after no manipulation, injury, or a hemocoelic infection with Escherichia coli or Micrococcus luteus. Then, we measured the intensity of an E. coli infection to determine how the interaction between environmental temperature and aging shapes a mosquito's response to infection. RESULTS We demonstrate that longevity declines when a mosquito is infected with bacteria, mosquitoes have shorter lifespans when the temperature is warmer, older mosquitoes are more likely to die, and warmer temperature marginally accelerates the aging-dependent decline in survival. Furthermore, we discovered that E. coli infection intensity increases when the temperature is warmer and with aging, and that warmer temperature accelerates the aging-dependent increase in infection intensity. Finally, we uncovered that warmer temperature affects both bacterial and mosquito physiology. CONCLUSIONS Warmer environmental temperature accelerates aging in mosquitoes, negatively affecting both longevity and infection outcomes. These findings have implications for how insects will serve as pollinators, agricultural pests, and disease vectors in our warming world.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lindsay E Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ann T Tate
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Rosado E Silva R, Millett C, Dittrich S, Donato H. The Impacts of Climate Change on the Emergence and Reemergence of Mosquito-Borne Diseases in Temperate Zones: An Umbrella Review Protocol. ACTA MEDICA PORT 2024; 37:626-633. [PMID: 39114905 DOI: 10.20344/amp.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/21/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Mosquito-borne diseases represent a global public health concern and are responsible for over 700 000 deaths globally every year. Additionally, many mosquito species have undergone a dramatic global expansion due to various factors, including climate change, and forecasts indicate that mosquito populations will persist in dispersing beyond their present geographic range, namely in temperate climates. The research literature on this topic has grown in recent years, including some systematic evidence synthesis. However, to provide a comprehensive overview of this growing literature needed for policy action, a summary of this evidence, including existing systematic reviews, is required. This study aims to undertake an umbrella review that explores the impacts of climate change on the emergence and reemergence of diseases transmitted by mosquitoes in temperate zones and the publication of the protocol is a fundamental step to ensure the credibility, transparency and reproducibility of this research. METHODS AND ANALYSIS Studies published in scientific journals indexed by PubMed, EMBASE, Cochrane Library, Epistemonikos, and Web of Science Core Collection to be included in this umbrella review will meet the following criteria: the topic of study (climate change and mosquito-borne diseases), regions (temperate zones), study designs (systematic reviews and meta-analysis), language (any) and date (since inception until December 31st, 2023). Titles and abstracts from selected articles will be evaluated by two authors independently and any discrepancy will be resolved through consensus or, if not possible, through a third author. The data will be extracted, and the risk of bias will be evaluated. The quality of the methodology of the included reviews will be assessed using AMSTAR 2. A narrative synthesis will examine the included systematic reviews. The quality of evidence for all outcomes will be judged using the Grading of Recommendations Assessment, Development and Evaluation working group methodology.
Collapse
Affiliation(s)
- Raquel Rosado E Silva
- Direção-Geral da Saúde. Lisbon. Portugal; Deggendorf Institute of Technology. Deggendorf. Germany
| | - Christopher Millett
- Imperial College of London. London. United Kingdom; NOVA National School of Public Health. Public Health Research Centre. Comprehensive Health Research Center (CHRC). Universidade NOVA de Lisboa. Lisbon. Portugal
| | - Sabine Dittrich
- Deggendorf Institute of Technology. Deggendorf. Germany; University of Oxford. Oxford. United Kingdom
| | - Helena Donato
- Documentation and Scientific Information Service. Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| |
Collapse
|
6
|
Laojun S, Changbunjong T, Abdulloh A, Chaiphongpachara T. Geometric morphometrics to differentiate species and explore seasonal variation in three Mansonia species (Diptera: Culicidae) in central Thailand and their association with meteorological factors. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:325-340. [PMID: 38608184 DOI: 10.1111/mve.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Mansonia mosquito species are recognised as a significant vector of human pathogens, primarily transmitting the filarial nematode, Brugia malayi. In central Thailand, the three most prevalent Mansonia species are Mansonia annulifera, Mansonia indiana and Mansonia uniformis. This study explored the influence of seasonal changes on the phenotypic variation of these Mansonia species in central Thailand using the geometric morphometrics (GM). To ensure accurate species identification, we integrated GM techniques with DNA barcoding, examining distinctions in both phenotype and genotype among the species. The intraspecific genetic divergence ranged from 0.00% to 1.69%, whereas the interspecific genetic divergence ranged from 10.52% to 16.36%. The clear distinction between intra- and interspecific distances demonstrated the presence of a barcoding gap, confirming the successful differentiation of the three Mansonia mosquito species through DNA barcoding. Similarly, the interspecies GM assessment for classifying Mansonia species demonstrated a high degree of accuracy, with an overall performance of 98.12%. Exploring seasonal variation in the three Mansonia species revealed wing variations across different seasons, and pronounced variations appearing in the cool season. Regarding their association with meteorological factors, Ma. annulifera and Ma. uniformis showed significant positive correlations with temperature (p < 0.05), and Ma. uniformis also displayed a significant negative correlation with atmospheric pressure (p < 0.05). The insights from this study will deepen our understanding of the adaptive patterns of Mansonia mosquitoes in Thailand's central region, paving the way for enhanced disease surveillance related to these vectors.
Collapse
Affiliation(s)
- Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| | - Tanasak Changbunjong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Arina Abdulloh
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| | - Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand
| |
Collapse
|
7
|
García-Suárez O, Tolsá-García MJ, Arana-Guardia R, Rodríguez-Valencia V, Talaga S, Pontifes PA, Machain-Williams C, Suzán G, Roiz D. Seasonal mosquito (Diptera: Culicidae) dynamics and the influence of environmental variables in a land use gradient from Yucatan, Mexico. Acta Trop 2024; 257:107275. [PMID: 38851624 DOI: 10.1016/j.actatropica.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Mosquito-borne diseases constitute a significant global impact on public and animal health. Climatic variables are recognized as major drivers in the mosquitoes' life history, principally rainfall and temperature, which directly influence mosquito abundance. Likewise, urbanization changes environmental conditions, and understanding how environmental variables and urbanization influence mosquito dynamics is crucial for the integrated management of mosquito-borne diseases, especially in the context of climate change. In this study, our aim was to observe the effect of temperature, rainfall, and the percentage of impervious surface on the abundance of mosquito species over a temporal scale of one complete year of fortnightly samplings, spanning from June 2021 to June 2022 in Yucatan, Mexico. We selected nine localities along an urbanization gradient (three natural, three rural, and three urban) from Mérida City to Reserva de la Biosfera Ría Celestún. Using BG-traps, mosquitoes were collected biweekly at each locality. Additionally, we estimated the percentage of impervious surface. Daily data of the maximum, mean and minimum temperatures, diurnal temperature range and rainfall were accumulated weekly. We calculated the accumulated quantities of temperatures and rainfall and lagged from one to four weeks before sampling for each locality. Generalized linear mixed models were then performed to study the influence of environmental variables and percentage of impervious surfaces on each of the 15 most abundant species. A total of 131,525 mosquitoes belonging to 11 genera and 49 species were sampled with BG-Sentinel traps baited with BG-lure and dry ice. The most frequently significative variable is the accumulated precipitation four weeks before the sampling. We observed a positive relationship between Cx. quinquefasciatus and Cx. thriambus with the diurnal temperature range. For Ae. aegypti, we observed a positive relationship with minimum temperature. Conversely, the percentage of impervious surface serves as a proxy of anthropogenic influence and helped us to distinguishing species exhibiting habitat preference for urban and rural environments, versus those preferring natural habitats. Our results characterize the species-specific effects of environmental variables (temperature, rainfall and impervious surface) on mosquito abundance.
Collapse
Affiliation(s)
- O García-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - M J Tolsá-García
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - R Arana-Guardia
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - V Rodríguez-Valencia
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - S Talaga
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité d'Entomologie Médicale, 23 Avenue Pasteur Guiana, Cayenne 97300, French
| | - P A Pontifes
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France
| | - C Machain-Williams
- Unidad Profesional Interdisciplinaria de Ingeniería Palenque (UPIIP), Instituto Politécnico Nacional, Carretera Federal 199, Nueva Esperanza, Palenque, Chiapas 29960, Mexico
| | - G Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico
| | - D Roiz
- International Joint Laboratory IRD/UNAM ELDORADO, Mérida, Yucatán 97205, Mexico; MIVEGEC, University Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
8
|
Nie P, He C, Feng J. Range dynamics of Anopheles mosquitoes in Africa suggest a significant increase in the malaria transmission risk. Ecol Evol 2024; 14:e70059. [PMID: 39091337 PMCID: PMC11289791 DOI: 10.1002/ece3.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Despite a more than 100-year effort to combat malaria, it remains one of the most malignant infectious diseases globally, especially in Africa. Malaria is transmitted by several Anopheles mosquitoes. However, until now few studies have investigated future range dynamics of major An. mosquitoes in Africa through a unified scheme. Through a unified scheme, we developed 21 species distribution models to predict the range dynamics of 21 major An. species in Africa under future scenarios and also examined their overall range dynamic patterns mainly through suitability overlap index and range overlap index. Although future range dynamics varied substantially among the 21 An. species, we predicted large future range expansions for all 21 An. species, and increases in suitability overlap index were detected in more than 90% of the African continent for all future scenarios. Additionally, we predicted high range overlap index in West Africa, East Africa, South Sudan, Angola, and the Democratic Republic of the Congo under future scenarios. Although the relative impacts of land use, topography and climate variables on the range dynamics depended on species and spatial scale, climate played the strongest roles in the range dynamics of most species. Africa might face an increasing risk of malaria transmissions in the future, and better strategies are required to address this problem. Mitigating climate change and human disturbance of natural ecosystems might be essential to reduce the proliferation of An. species and the risk of malaria transmissions in Africa in the future. Our strategies against their impacts should be species-specific.
Collapse
Affiliation(s)
- Peixiao Nie
- College of Agriculture and Biological Science Dali University Dali China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province Dali University Dali China
| | - Chunyan He
- College of Agriculture and Biological Science Dali University Dali China
| | - Jianmeng Feng
- College of Agriculture and Biological Science Dali University Dali China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province Dali University Dali China
| |
Collapse
|
9
|
Zembere K, Jones CM, Mthawanji R, Nkolokosa C, Kamwezi R, Kalonde PK, Stanton MC. Small dams drive Anopheles abundance during the dry season in a high malaria burden area of Malawi. MEDICAL AND VETERINARY ENTOMOLOGY 2024. [PMID: 39031697 DOI: 10.1111/mve.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
Abstract
This study explores the influence of small dams on the exposure to malaria vectors during the dry season in Kasungu district, Malawi, an area recently identified as high priority for malaria interventions by the National Malaria Control Programme. Small dam impoundments provide communities with a continuous supply of water for domestic and agricultural activities across sub-Saharan Africa and are considered vital to food security and climate change resilience. However, these permanent water bodies also create ideal breeding sites for mosquitoes in typically arid landscapes. The study focuses on a specific dam impoundment and its vicinity, aiming to assess its spatial and temporal influence on indoor vector densities. From May to August 2021, CDC light traps were used to measure indoor mosquito densities for two consecutive nights per month in three communities located at increasing distances from the dam (0, ~1 and ~2 km). Simultaneously, drone imagery was captured for each community, enabling the identification of additional standing water within approximately 400 m of selected households. Larval sampling was carried out within the impoundment periphery and in additional water bodies identified in the drone imagery. Generalised linear mixed models (GLMMs) were employed to analyse the indoor Anopheles abundance data, estimating the effects of household structure (open/closed eaves), month, temperature and water proximity on malaria vector exposure. Throughout 685 trapping nights, a total of 1256 mosquitoes were captured, with 33% (412) being female Anopheles. Among these, 91% were morphologically identified as Anopheles funestus s.l., and 5% as Anopheles gambiae s.l. Catches progressively decline in each consecutive trapping month as the environment became drier. This decline was much slower in Malangano, the community next to the dam, with abundance being notably higher in June and July. Further, the majority of An. gambiae s.l. were caught in May, with none identified in July and August. Anopheles larvae were found both in the impoundment and other smaller water bodies such as irrigation wells in each survey month; however, the presence of these smaller water bodies did not have a significant impact on adult female mosquito catches in the GLMM. The study concludes that proximity to the dam impoundment was the primary driver of differences between survey communities with the abundance in Chikhombwe (~1 km away) and Chiponde (~2 km away) being 0.35 (95% confidence interval [CI], 0.19-0.66) and 0.28 (95% CI, 0.16-0.47) lower than Malangano, respectively, after adjusting for other factors. These findings underscore the importance of targeted interventions, such as larval source management or housing improvements, near small dams to mitigate malaria transmission risks during the dry season. Further research is needed to develop cost-effective strategies for vector control within and around these impoundments.
Collapse
Affiliation(s)
- Kennedy Zembere
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Christopher M Jones
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rhosheen Mthawanji
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Clinton Nkolokosa
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Richard Kamwezi
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
- Centre for Health Informatics, Computing, and Statistics (CHICAS), Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Patrick Ken Kalonde
- Vector Biology Group, Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Michelle C Stanton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
10
|
Praulins G, Murphy-Fegan A, Gillespie J, Mechan F, Gleave K, Lees R. Unpacking WHO and CDC Bottle Bioassay Methods: A Comprehensive Literature Review and Protocol Analysis Revealing Key Outcome Predictors. Gates Open Res 2024; 8:56. [PMID: 39170853 PMCID: PMC11335745 DOI: 10.12688/gatesopenres.15433.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background Resistance monitoring is a key element in controlling vector-borne diseases. The World Health Organization (WHO) and Centres for Disease Control and Prevention (CDC) have each developed bottle bioassay methods for determining insecticide susceptibility in mosquito vectors which are used globally. Methods This study aimed to identify variations in bottle bioassay methodologies and assess the potential impact on the data that is generated. Our approach involved a systematic examination of existing literature and protocols from WHO and CDC, with a focus on the specifics of reported methodologies, variation between versions, and reported outcomes. Building on this, we experimentally evaluated the impact of several variables on bioassay results. Results Our literature review exposed a significant inconsistency in the how bioassay methods are reported, hindering reliable interpretation of data and the ability to compare results between studies. The experimental research provided further insight by specifically identifying two key factors that influence the outcomes of bioassays: mosquito dry weight and relative humidity (RH). This finding not only advances our comprehension of these assays but also underscores the importance of establishing precisely defined methodologies for resistance monitoring. The study also demonstrates the importance of controlling bioassay variables, noting the significant influence of wing length, as an indicator of mosquito size, on mortality rates in standardized bioassays. Conclusions Generating data with improved protocol consistency and precision will not only deepen our understanding of resistance patterns but also better inform vector control measures. We call for continued research and collaboration to refine and build consensus on bioassay techniques, to help bolster the global effort against vector-borne diseases like malaria.
Collapse
Affiliation(s)
- Giorgio Praulins
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Annabel Murphy-Fegan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jack Gillespie
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Frank Mechan
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine Gleave
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rosemary Lees
- Innovation to Impact (I2I), Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
11
|
Longo-Pendy NM, Sevidzem SL, Makanga BK, Ndotit-Manguiengha S, Boussougou-Sambe ST, Obame Ondo Kutomy P, Obame-Nkoghe J, Nkoghe-Nkoghe LC, Ngossanga B, Mvoubou FK, Koumba CRZ, Adegnika AA, Razack AS, Mavoungou JF, Mintsa-Nguema R. Assessment of environmental and spatial factors influencing the establishment of Anopheles gambiae larval habitats in the malaria endemic province of Woleu-Ntem, northern Gabon. Malar J 2024; 23:158. [PMID: 38773512 PMCID: PMC11106858 DOI: 10.1186/s12936-024-04980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND This study aimed to assess the spatial distribution of Anopheles mosquito larval habitats and the environmental factors associated with them, as a prerequisite for the implementation of larviciding. METHODS The study was conducted in December 2021, during the transition period between the end of the short rainy season (September-November) and the short dry season (December-February). Physical, biological, and land cover data were integrated with entomological observations to collect Anopheles larvae in three major towns: Mitzic, Oyem, and Bitam, using the "dipping" method during the transition from rainy to dry season. The collected larvae were then reared in a field laboratory established for the study period. After the Anopheles mosquitoes had emerged, their species were identified using appropriate morphological taxonomic keys. To determine the influence of environmental factors on the breeding of Anopheles mosquitoes, multiple-factor analysis (MFA) and a binomial generalized linear model were used. RESULTS According to the study, only 33.1% out of the 284 larval habitats examined were found to be positive for Anopheles larvae, which were primarily identified as belonging to the Anopheles gambiae complex. The findings of the research suggested that the presence of An. gambiae complex larvae in larval habitats was associated with various significant factors such as higher urbanization, the size and type of the larval habitats (pools and puddles), co-occurrence with Culex and Aedes larvae, hot spots in ambient temperature, moderate rainfall, and land use patterns. CONCLUSIONS The results of this research mark the initiation of a focused vector control plan that aims to eradicate or lessen the larval habitats of An. gambiae mosquitoes in Gabon's Woleu Ntem province. This approach deals with the root causes of malaria transmission through larvae and is consistent with the World Health Organization's (WHO) worldwide objective to decrease malaria prevalence in regions where it is endemic.
Collapse
Affiliation(s)
- Neil-Michel Longo-Pendy
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.
| | - Silas Lendzele Sevidzem
- Laboratoire d'Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville, Gabon
| | | | - Saturnin Ndotit-Manguiengha
- Institut de Recherche en Écologie Tropicale (IRET), Libreville, Gabon
- Agence Gabonaise d'Etudes et d'Observations Spatiales (AGEOS), Libreville, Gabon
| | | | - Piazzy Obame Ondo Kutomy
- Programme National de Lutte Contre Le Paludisme (PNLP), Libreville, Gabon
- Universite Cheikh Anta Diop de Dakar (UCAD), Dakar, Sénégal
| | - Judicaël Obame-Nkoghe
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
- Department of Zoology and Entomology, Faculty of Natural and Agricultural Sciences, University of the Free State, Phuthaditjhaba, Republic of South Africa
| | - Lynda-Chancelya Nkoghe-Nkoghe
- Unité de Recherche en Ecologie de la Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | | | | | - Ayôla Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut Für Tropenmedizin, Eberhard Karls Universität, Tübingen, Germany
- Fondation Pour la Recherche Scientifique (FORS), P.O. Box 88, Cotonou, Benin
- German Center for Infection Research (DZIF), Partner site Tübingen, Tübingen, Germany
| | | | | | - Rodrigue Mintsa-Nguema
- Laboratoire d'Ecologie des Maladies Transmissibles (LEMAT), Université Libreville Nord (ULN), Libreville, Gabon
- Institut de Recherche en Écologie Tropicale (IRET), Libreville, Gabon
| |
Collapse
|
12
|
Trzebny A, Nahimova O, Dabert M. High temperatures and low humidity promote the occurrence of microsporidians (Microsporidia) in mosquitoes (Culicidae). Parasit Vectors 2024; 17:187. [PMID: 38605410 PMCID: PMC11008030 DOI: 10.1186/s13071-024-06254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Olena Nahimova
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Genetics and Cytology Department, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Djègbè NDC, Da DF, Somé BM, Paré LIG, Cissé F, Mamai W, Mouline K, Sawadogo SP, Challenger JD, Churcher TS, Dabiré RK. Anopheles aquatic development kinetic and adults' longevity through different seasons in laboratory and semi-field conditions in Burkina Faso. Parasit Vectors 2024; 17:181. [PMID: 38589957 PMCID: PMC11000375 DOI: 10.1186/s13071-024-06260-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.
Collapse
Affiliation(s)
- Nicaise D C Djègbè
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso.
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| | - Bernard M Somé
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Lawata Inès G Paré
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Fatoumata Cissé
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Wadaka Mamai
- Institut de Recherche Agricole pour le Développement (IRAD), PO. Box 2123, Yaoundé, Cameroon
| | - Karine Mouline
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Joseph D Challenger
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas S Churcher
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 avenue de la liberte, 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| |
Collapse
|
14
|
Abdelkrim O, Said Z, Souad L. Anopheles mosquitoes in Morocco: implication for public health and underlined challenges for malaria re-establishment prevention under current and future climate conditions. PEST MANAGEMENT SCIENCE 2024; 80:2085-2095. [PMID: 38127359 DOI: 10.1002/ps.7943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The potential reappearance and/or expansion of vector-borne diseases is one of the terrifying issues awaiting humanity in the context of climate change. The presence of competent Anopheles vectors, as well as suitable environmental circumstances, may result in the re-emergence of autochthonous Malaria, after years of absence. In Morocco, international travel and migration movements from Malaria-endemic areas have recently increased the number of imported cases, raising awareness of Malaria's possible reintroduction. Using machine learning we developed model predictions, under current and future (2050) climate, for the prospective distribution of Anopheles claviger, Anopheles labranchiae, Anopheles multicolor, and Anopheles sergentii implicated or incriminated in Malaria transmission. RESULTS All modelled species are expected to find suitable habitats and have the potential to become established in the northern and central parts of the country, under present-day conditions. Distinct changes in the distributions of the four mosquitoes are to be expected under climate change. Even under the most optimistic scenario, all investigated species are likely to acquire new habitats that are now unsuitable, placing further populations in danger. We also observed a northward and altitudinal shift in their distribution towards higher altitudes. CONCLUSION Climate change is expected to expand the potential range of malaria vectors in Morocco. Our maps and predictions offer a way to intelligently focus efforts on surveillance and control programmes. To reduce the threat of human infection, it is crucial for public health authorities, entomological surveillance teams, and control initiatives to collaborate and intensify their actions, continuously monitoring areas at risk. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Outammassine Abdelkrim
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Zouhair Said
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Laboratory of Bacteriology-Virology, Avicienne Hospital Military, Marrakech, Morocco
| | - Loqman Souad
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Laboratoire de Microbiologie-Virologie de l'Hôpital Ar-Razi, Centre Hospitalier Universitaire Mohammed VI, Marrakech, Morocco
| |
Collapse
|
15
|
Mseti JJ, Maasayi MS, Lugenge AG, Mpelepele AB, Kibondo UA, Tenywa FC, Odufuwa OG, Tambwe MM, Moore SJ. Temperature, mosquito feeding status and mosquito density influence the measured bio-efficacy of insecticide-treated nets in cone assays. Parasit Vectors 2024; 17:159. [PMID: 38549097 PMCID: PMC10979578 DOI: 10.1186/s13071-024-06210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND The WHO cone bioassay is routinely used to evaluate the bioefficacy of insecticide-treated nets (ITNs) for product pre-qualification and confirmation of continued ITN performance during operational monitoring. Despite its standardized nature, variability is often observed between tests. We investigated the influence of temperature in the testing environment, mosquito feeding status and mosquito density on cone bioassay results. METHODS Cone bioassays were conducted on MAGNet (alphacypermethrin) and Veeralin (alphacypermethrin and piperonyl butoxide (PBO)) ITNs, using laboratory-reared pyrethroid-resistant Anopheles funestus sensu stricto (FUMOZ strain) mosquitoes. Three experiments were conducted using standard cone bioassays following WHO-recommended test parameters, with one variable changed in each bioassay: (i) environmental temperature during exposure: 22-23 °C, 26-27 °C, 29-30 °C and 32-33 °C; (ii) feeding regimen before exposure: sugar starved for 6 h, blood-fed or sugar-fed; and (iii) mosquito density per cone: 5, 10, 15 and 20 mosquitoes. For each test, 15 net samples per treatment arm were tested with four cones per sample (N = 60). Mortality after 24, 48 and 72 h post-exposure to ITNs was recorded. RESULTS There was a notable influence of temperature, feeding status and mosquito density on An. funestus mortality for both types of ITNs. Mortality at 24 h post-exposure was significantly higher at 32-33 °C than at 26-27 °C for both the MAGNet [19.33% vs 7%; odds ratio (OR): 3.96, 95% confidence interval (CI): 1.99-7.87, P < 0.001] and Veeralin (91% vs 47.33%; OR: 22.20, 95% CI: 11.45-43.05, P < 0.001) ITNs. Mosquito feeding status influenced the observed mortality. Relative to sugar-fed mosquitoes, The MAGNet ITNs induced higher mortality among blood-fed mosquitoes (7% vs 3%; OR: 2.23, 95% CI: 0.94-5.27, P = 0.068) and significantly higher mortality among starved mosquitoes (8% vs 3%, OR: 2.88, 95% CI: 1.25-6.63, P = 0.013); in comparison, the Veeralin ITNs showed significantly lower mortality among blood-fed mosquitoes (43% vs 57%; OR: 0.56, 95% CI: 0.38-0.81, P = 0.002) and no difference for starved mosquitoes (58% vs 57%; OR: 1.05, 95% CI: 0.72-1.51, P = 0.816). Mortality significantly increased with increasing mosquito density for both the MAGNet (e.g. 5 vs 10 mosquitoes: 7% vs 12%; OR: 1.81, 95% CI: 1.03-3.20, P = 0.040) and Veeralin (e.g. 5 vs 10 mosquitoes: 58% vs 71%; OR 2.06, 95% CI: 1.24-3.42, P = 0.005) ITNs. CONCLUSIONS The results of this study highlight that the testing parameters temperature, feeding status and mosquito density significantly influence the mortality measured in cone bioassays. Careful adherence to testing parameters outlined in WHO ITN testing guidelines will likely improve the repeatability of studies within and between product testing facilities.
Collapse
Affiliation(s)
- Jilly Jackson Mseti
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania.
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania.
| | - Masudi Suleiman Maasayi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
| | - Aidi Galus Lugenge
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
| | - Ahmadi B Mpelepele
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
| | - Frank Chelestino Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Mgeni Mohamed Tambwe
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah Jane Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, 74, Bagamoyo, Tanzania
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), 447, Arusha, Tanzania
- Vector Biology Unit, Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil, 4123, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| |
Collapse
|
16
|
Davidson G, Speldewinde P, Manin BO, Cook A, Weinstein P, Chua TH. Forest Restoration and the Zoonotic Vector Anopheles balabacensis in Sabah, Malaysia. ECOHEALTH 2024; 21:21-37. [PMID: 38411846 DOI: 10.1007/s10393-024-01675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Anthropogenic changes to forest cover have been linked to an increase in zoonotic diseases. In many areas, natural forests are being replaced with monoculture plantations, such as oil palm, which reduce biodiversity and create a mosaic of landscapes with increased forest edge habitat and an altered micro-climate. These altered conditions may be facilitating the spread of the zoonotic malaria parasite Plasmodium knowlesi in Sabah, on the island of Borneo, through changes to mosquito vector habitat. We conducted a study on mosquito abundance and diversity in four different land uses comprising restored native forest, degraded native forest, an oil palm estate and a eucalyptus plantation, these land uses varying in their vegetation types and structure. The main mosquito vector, Anopheles balabacensis, has adapted its habitat preference from closed canopy rainforest to more open logged forest and plantations. The eucalyptus plantations (Eucalyptus pellita) assessed in this study contained significantly higher abundance of many mosquito species compared with the other land uses, whereas the restored dipterocarp forest had a low abundance of all mosquitos, in particular, An. balabacensis. No P. knowlesi was detected by PCR assay in any of the vectors collected during the study; however, P. inui, P. fieldi and P. vivax were detected in An. balabacensis. These findings indicate that restoring degraded natural forests with native species to closed canopy conditions reduces abundance of this zoonotic malarial mosquito vector and therefore should be incorporated into future restoration research and potentially contribute to the control strategies against simian malaria.
Collapse
Affiliation(s)
- Gael Davidson
- School of Agriculture and Environment, University of Western Australia, Albany, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Peter Speldewinde
- School of Agriculture and Environment, University of Western Australia, Albany, Australia
| | - Benny Obrain Manin
- Borneo Medical and Health Research Centre (BMHRC), Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Tock H Chua
- Edulife Berhad, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
17
|
Traoré N, Singhal T, Millogo O, Sié A, Utzinger J, Vounatsou P. Relative effects of climate factors and malaria control interventions on changes of parasitaemia risk in Burkina Faso from 2014 to 2017/2018. BMC Infect Dis 2024; 24:166. [PMID: 38326750 PMCID: PMC10848559 DOI: 10.1186/s12879-024-08981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND In Burkina Faso, the prevalence of malaria has decreased over the past two decades, following the scale-up of control interventions. The successful development of malaria parasites depends on several climatic factors. Intervention gains may be reversed by changes in climatic factors. In this study, we investigated the role of malaria control interventions and climatic factors in influencing changes in the risk of malaria parasitaemia. METHODS Bayesian logistic geostatistical models were fitted on Malaria Indicator Survey data from Burkina Faso obtained in 2014 and 2017/2018 to estimate the effects of malaria control interventions and climatic factors on the temporal changes of malaria parasite prevalence. Additionally, intervention effects were assessed at regional level, using a spatially varying coefficients model. RESULTS Temperature showed a statistically important negative association with the geographic distribution of parasitaemia prevalence in both surveys; however, the effects of insecticide-treated nets (ITNs) use was negative and statistically important only in 2017/2018. Overall, the estimated number of infected children under the age of 5 years decreased from 704,202 in 2014 to 290,189 in 2017/2018. The use of ITNs was related to the decline at national and regional level, but coverage with artemisinin-based combination therapy only at regional level. CONCLUSION Interventions contributed more than climatic factors to the observed change of parasitaemia risk in Burkina Faso during the period of 2014 to 2017/2018. Intervention effects varied in space. Longer time series analyses are warranted to determine the differential effect of a changing climate on malaria parasitaemia risk.
Collapse
Affiliation(s)
- Nafissatou Traoré
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-4001, Basel, Switzerland
- Nouna Health Research Centre, National Institute of Public Health, BP 02, Nouna, Burkina Faso
| | - Taru Singhal
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-4001, Basel, Switzerland
| | - Ourohiré Millogo
- Nouna Health Research Centre, National Institute of Public Health, BP 02, Nouna, Burkina Faso
- Institut de Recherche en Sciences de la Santé/Centre National de Recherche Scientifique et Technologique, 01 BP, 2779, Bobo-Dioulasso, Burkina Faso
| | - Ali Sié
- Nouna Health Research Centre, National Institute of Public Health, BP 02, Nouna, Burkina Faso
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, CH-4001, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, CH-4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, CH-4001, Basel, Switzerland.
| |
Collapse
|
18
|
Ismail RBY, Bozorg-Omid F, Osei JHN, Pi-Bansa S, Frempong KK, Ofei MK, Boakye HA, Ansah-Owusu J, Akorful SCA, Tawiah-Mensah CNL, Abudu M, Asafu-Adjaye A, Appawu MA, Boakye DA, Vatandoost H, Sedaghat MM, Youssefi F, Hanafi-Bojd AA, Dadzie SK. Predicting the environmental suitability for Anopheles stephensi under the current conditions in Ghana. Sci Rep 2024; 14:1116. [PMID: 38212448 PMCID: PMC10784561 DOI: 10.1038/s41598-024-51780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Vector-borne diseases emergence, particularly malaria, present a significant public health challenge worldwide. Anophelines are predominant malaria vectors, with varied distribution, and influenced by environment and climate. This study, in Ghana, modelled environmental suitability for Anopheles stephensi, a potential vector that may threaten advances in malaria and vector control. Understanding this vector's distribution and dynamics ensures effective malaria and vector control programmes implementation. We explored the MaxEnt ecological modelling method to forecast An. stephensi's potential hotspots and niches. We analysed environmental and climatic variables to predict spatial distribution and ecological niches of An. stephensi with a spatial resolution of approximately 5 km2. Analysing geospatial and species occurrence data, we identified optimal environmental conditions and important factors for its presence. The model's most important variables guided hotspot prediction across several ecological zones aside from urban and peri-urban regions. Considering the vector's complex bionomics, these areas provide varying and adaptable conditions for the vector to colonise and establish. This is shown by the AUC = 0.943 prediction accuracy of the model, which is considered excellent. Based on our predictions, this vector species would thrive in the Greater Accra, Ashanti Central, Upper East, Northern, and North East regions. Forecasting its environmental suitability by ecological niche modelling supports proactive surveillance and focused malaria management strategies. Public health officials can act to reduce the risk of malaria transmission by identifying areas where mosquitoes may breed, which will ultimately improve health outcomes and disease control.
Collapse
Affiliation(s)
- Rahmat Bint Yusif Ismail
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Faramarz Bozorg-Omid
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Kwadwo Kyeremeh Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Mavis Koryo Ofei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Helena Anokyewaa Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Jane Ansah-Owusu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Sandra-Candys Adwirba Akorful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | | | - Mufeez Abudu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Andy Asafu-Adjaye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell Alexander Appawu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Daniel Adjei Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Hassan Vatandoost
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Youssefi
- Department of Photogrammetry and Remote Sensing, K. N. Toosi University of Technology, Tehran, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Zoonoses Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana.
| |
Collapse
|
19
|
Martin LE, Hillyer JF. Higher temperature accelerates the aging-dependent weakening of the melanization immune response in mosquitoes. PLoS Pathog 2024; 20:e1011935. [PMID: 38198491 PMCID: PMC10805325 DOI: 10.1371/journal.ppat.1011935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The body temperature of mosquitoes, like most insects, is dictated by the environmental temperature. Climate change is increasing the body temperature of insects and thereby altering physiological processes such as immune proficiency. Aging also alters insect physiology, resulting in the weakening of the immune system in a process called senescence. Although both temperature and aging independently affect the immune system, it is unknown whether temperature alters the rate of immune senescence. Here, we evaluated the independent and combined effects of temperature (27°C, 30°C and 32°C) and aging (1, 5, 10 and 15 days old) on the melanization immune response of the adult female mosquito, Anopheles gambiae. Using a spectrophotometric assay that measures phenoloxidase activity (a rate limiting enzyme) in hemolymph, and therefore, the melanization potential of the mosquito, we discovered that the strength of melanization decreases with higher temperature, aging, and infection. Moreover, when the temperature is higher, the aging-dependent decline in melanization begins at a younger age. Using an optical assay that measures melanin deposition on the abdominal wall and in the periostial regions of the heart, we found that melanin is deposited after infection, that this deposition decreases with aging, and that this aging-dependent decline is accelerated by higher temperature. This study demonstrates that higher temperature accelerates immune senescence in mosquitoes, with higher temperature uncoupling physiological age from chronological age. These findings highlight the importance of investigating the consequences of climate change on how disease transmission by mosquitoes is affected by aging.
Collapse
Affiliation(s)
- Lindsay E. Martin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
20
|
Pramasivan S, Ngui R, Jeyaprakasam NK, Low VL, Liew JWK, Vythilingam I. Spatial analyses of Plasmodium knowlesi vectors with reference to control interventions in Malaysia. Parasit Vectors 2023; 16:355. [PMID: 37814287 PMCID: PMC10563288 DOI: 10.1186/s13071-023-05984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Malaria parasites such as Plasmodium knowlesi, P. inui, and P. cynomolgi are spread from macaques to humans through the Leucosphyrus Group of Anopheles mosquitoes. It is crucial to know the distribution of these vectors to implement effective control measures for malaria elimination. Plasmodium knowlesi is the most predominant zoonotic malaria parasite infecting humans in Malaysia. METHODS Vector data from various sources were used to create distribution maps from 1957 to 2021. A predictive statistical model utilizing logistic regression was developed using significant environmental factors. Interpolation maps were created using the inverse distance weighted (IDW) method and overlaid with the corresponding environmental variables. RESULTS Based on the IDW analysis, high vector abundances were found in the southwestern part of Sarawak, the northern region of Pahang and the northwestern part of Sabah. However, most parts of Johor, Sabah, Perlis, Penang, Kelantan and Terengganu had low vector abundance. The accuracy test indicated that the model predicted sampling and non-sampling areas with 75.3% overall accuracy. The selected environmental variables were entered into the regression model based on their significant values. In addition to the presence of water bodies, elevation, temperature, forest loss and forest cover were included in the final model since these were significantly correlated. Anopheles mosquitoes were mainly distributed in Peninsular Malaysia (Titiwangsa range, central and northern parts), Sabah (Kudat, West Coast, Interior and Tawau division) and Sarawak (Kapit, Miri, and Limbang). The predicted Anopheles mosquito density was lower in the southern part of Peninsular Malaysia, the Sandakan Division of Sabah and the western region of Sarawak. CONCLUSION The study offers insight into the distribution of the Leucosphyrus Group of Anopheles mosquitoes in Malaysia. Additionally, the accompanying predictive vector map correlates well with cases of P. knowlesi malaria. This research is crucial in informing and supporting future efforts by healthcare professionals to develop effective malaria control interventions.
Collapse
Affiliation(s)
- Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of ParaClinical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia.
| | - Nantha Kumar Jeyaprakasam
- Biomedical Science Program, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | | | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya (UM), Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Meena P, Jha V. Environmental Change, Changing Biodiversity, and Infections-Lessons for Kidney Health Community. Kidney Int Rep 2023; 8:1714-1729. [PMID: 37705916 PMCID: PMC10496083 DOI: 10.1016/j.ekir.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
There is a direct and accelerating connection between ongoing environmental change, the unprecedented decline in biodiversity, and the increase in infectious disease epidemiology worldwide. Rising global temperatures are threatening the biodiversity that underpins the richness and diversity of flora and fauna species in our ecosystem. Anthropogenic activities such as burning fossil fuels, deforestation, rapid urbanization, and expanding population are the primary drivers of environmental change resulting in biodiversity collapse. Climate change is influencing the emergence, prevalence, and transmission of infectious diseases both directly and through its impact on biodiversity. The environment is gradually becoming more suitable for infectious diseases by affecting a variety of pathogens, hosts, and vectors and by favoring transmission rates in many parts of the world that were until recently free of these infections. The acute effects of these zoonotic, vector and waterborne diseases are well known; however, evidence is emerging about their role in the development of chronic kidney disease. The pathways linking environmental change and biodiversity loss to infections impacting kidney health are diverse and complex. Climate change and biodiversity loss disproportionately affect the vulnerable and limit their ability to access healthcare. The kidney health community needs to contribute to the issue of environmental change and biodiversity loss through multisectoral action alongside government, policymakers, advocates, businesses, and the general population. We describe various aspects of the environmental change effects on the transmission and emergence of infectious diseases particularly focusing on its potential impact on kidney health. We also discuss the adaptive and mitigation measures and the gaps in research and policy action.
Collapse
Affiliation(s)
- Priti Meena
- Department of Nephrology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, India
- School of Public Health, Imperial College, London, UK
| |
Collapse
|
22
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
23
|
Barr JS, Estevez-Lao TY, Khalif M, Saksena S, Yarlagadda S, Farah O, Shivere Y, Hillyer JF. Temperature and age, individually and interactively, shape the size, weight, and body composition of adult female mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2023; 148:104525. [PMID: 37236342 DOI: 10.1016/j.jinsphys.2023.104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Most insects are poikilotherms and ectotherms, so their body temperature fluctuates and closely aligns with the temperature of their environment. The rise in global temperatures is affecting the physiology of insects by altering their ability to survive, reproduce, and transmit disease. Aging also impacts insect physiology because the body deteriorates via senescence as the insect ages. Although temperature and age both impact insect biology, these factors have historically been studied in isolation. So, it is unknown whether or how temperature and age interact to shape insect physiology. Here, we investigated the effects of warmer temperature (27 °C, 30 °C and 32 °C), aging (1, 5, 10, and 15 days post-eclosion), and their interaction on the size and body composition of the mosquito, Anopheles gambiae. We found that warmer temperatures result in slightly smaller adult mosquitoes, as measured by abdomen and tibia length. Aging alters both abdominal length and dry weight in a manner that correlates with the increase in energetic resources and tissue remodeling that occurs after metamorphosis and the senescence-based decline that ensues later. Moreover, the carbohydrate and lipid contents of adult mosquitoes are not meaningfully affected by temperature but are altered by aging: carbohydrate content increases with age whereas lipid content increases over the first few days of adulthood and then decreases. Protein content decreases with both rising temperature and aging, and the aging-associated decrease accelerates at warmer temperatures. Altogether, temperature and age, individually and to a lesser extent interactively, shape the size and composition of adult mosquitoes.
Collapse
Affiliation(s)
- Jordyn S Barr
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Tania Y Estevez-Lao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Marina Khalif
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saksham Saksena
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Sagnik Yarlagadda
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Ommay Farah
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Yasmine Shivere
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Field EN, Smith RC. Seasonality influences key physiological components contributing to Culex pipiens vector competence. FRONTIERS IN INSECT SCIENCE 2023; 3:1144072. [PMID: 38469495 PMCID: PMC10926469 DOI: 10.3389/finsc.2023.1144072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 03/13/2024]
Abstract
Mosquitoes are the most important animal vector of disease on the planet, transmitting a variety of pathogens of both medical and veterinary importance. Mosquito-borne diseases display distinct seasonal patterns driven by both environmental and biological variables. However, an important, yet unexplored component of these patterns is the potential for seasonal influences on mosquito physiology that may ultimately influence vector competence. To address this question, we selected Culex pipiens, a primary vector of the West Nile virus (WNV) in the temperate United States, to examine the seasonal impacts on mosquito physiology by examining known immune and bacterial components implicated in mosquito arbovirus infection. Semi-field experiments were performed under spring, summer, and late-summer conditions, corresponding to historically low-, medium-, and high-intensity periods of WNV transmission, respectively. Through these experiments, we observed differences in the expression of immune genes and RNA interference (RNAi) pathway components, as well as changes in the distribution and abundance of Wolbachia in the mosquitoes across seasonal cohorts. Together, these findings support the conclusion that seasonal changes significantly influence mosquito physiology and components of the mosquito microbiome, suggesting that seasonality may impact mosquito susceptibility to pathogen infection, which could account for the temporal patterns in mosquito-borne disease transmission.
Collapse
Affiliation(s)
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| |
Collapse
|
25
|
Beloconi A, Nyawanda BO, Bigogo G, Khagayi S, Obor D, Danquah I, Kariuki S, Munga S, Vounatsou P. Malaria, climate variability, and interventions: modelling transmission dynamics. Sci Rep 2023; 13:7367. [PMID: 37147317 PMCID: PMC10161998 DOI: 10.1038/s41598-023-33868-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Assessment of the relative impact of climate change on malaria dynamics is a complex problem. Climate is a well-known factor that plays a crucial role in driving malaria outbreaks in epidemic transmission areas. However, its influence in endemic environments with intensive malaria control interventions is not fully understood, mainly due to the scarcity of high-quality, long-term malaria data. The demographic surveillance systems in Africa offer unique platforms for quantifying the relative effects of weather variability on the burden of malaria. Here, using a process-based stochastic transmission model, we show that in the lowlands of malaria endemic western Kenya, variations in climatic factors played a key role in driving malaria incidence during 2008-2019, despite high bed net coverage and use among the population. The model captures some of the main mechanisms of human, parasite, and vector dynamics, and opens the possibility to forecast malaria in endemic regions, taking into account the interaction between future climatic conditions and intervention scenarios.
Collapse
Affiliation(s)
- Anton Beloconi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bryan O Nyawanda
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - Godfrey Bigogo
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - Sammy Khagayi
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - David Obor
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - Ina Danquah
- Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Simon Kariuki
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - Stephen Munga
- Kenya Medical Research Institute - Centre for Global Health Research, Kisumu, Kenya
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Impact of temperature on infection with Japanese encephalitis virus of three potential urban vectors in Taiwan; Aedes albopictus, Armigeres subalbatus, and Culex quinquefasciatus. Acta Trop 2023; 237:106726. [DOI: 10.1016/j.actatropica.2022.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
27
|
Althoff RA, Huijben S. Comparison of the variability in mortality data generated by CDC bottle bioassay, WHO tube test, and topical application bioassay using Aedes aegypti mosquitoes. Parasit Vectors 2022; 15:476. [PMID: 36539831 PMCID: PMC9769033 DOI: 10.1186/s13071-022-05583-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insecticide resistance remains a major public health problem. Resistance surveillance is critical for effective vector control and resistance management planning. Commonly used insecticide susceptibility bioassays for mosquitoes are the CDC bottle bioassay and the WHO tube test. Less commonly used in the field but considered the gold standard for assessing insecticide susceptibility in the development of novel insecticides is the topical application bioassay. Each of these bioassays has critical differences in how they assess insecticide susceptibility that impacts their ability to differentiate between resistant and susceptible populations or determine different levels of resistance intensity. METHODS We compared the CDC bottle bioassay, the WHO tube test, and the topical application bioassay in establishing the dose-response against deltamethrin (DM) using the DM-resistant Aedes aegypti strain MC1. Mosquitoes were exposed to a range of insecticide concentrations to establish a dose-response curve and assess variation around model predictions. In addition, 10 replicates of 20-25 mosquitoes were exposed to a fixed dose with intermediate mortality to assess the degree of variation in mortality. RESULTS The topical application bioassay exhibited the lowest amount of variation in the dose-response data, followed by the WHO tube test. The CDC bottle bioassay had the highest level of variation. In the fixed-dose experiment, a higher variance was similarly found for the CDC bottle bioassay compared with the WHO tube test and topical application bioassay. CONCLUSION These data suggest that the CDC bottle bioassay has the lowest power and the topical application bioassay the highest power to differentiate between resistant and susceptible populations and assess changes over time and between populations. This observation has significant implications for the interpretation of surveillance results from different assays. Ultimately, it will be important to discuss optimal insecticide resistance surveillance tools in terms of the surveillance objective, practicality in the field, and accuracy of the tool to reach that objective.
Collapse
Affiliation(s)
- Rachel A. Althoff
- grid.215654.10000 0001 2151 2636The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - Silvie Huijben
- grid.215654.10000 0001 2151 2636The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ USA ,grid.215654.10000 0001 2151 2636Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ USA
| |
Collapse
|
28
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dwomoh D, Billah MK, Dadzie SK, Robins TG, Fobil JN. Effects of Elevated Temperatures on the Growth and Development of Adult Anopheles gambiae (s.l.) (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1413-1420. [PMID: 35452118 PMCID: PMC9278826 DOI: 10.1093/jme/tjac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 06/01/2023]
Abstract
Higher temperatures expected in a future warmer climate could adversely affect the growth and development of mosquitoes. This study investigated the effects of elevated temperatures on longevity, gonotrophic cycle length, biting rate, fecundity, and body size of Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. Anopheles gambiae (s.l.) eggs obtained from laboratory established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40°C), and 80 ± 10% RH. All adults were allowed to feed on a 10% sugar solution soaked in cotton wool; however, some mosquitoes were provided blood meal using guinea pig. Longevity was estimated for both blood-fed and non-blood-fed mosquitoes and analyzed using the Kaplan-Meier survival analysis. One-way ANOVA was used to test the effect of temperature on gonotrophic cycle length, biting rate, and fecundity. Adult measurement data were log-transformed and analyzed using ordinary least square regression with robust standard errors. Increasing temperature significantly decreased the longevity of both blood-fed (Log-rank test; X2(4) = 904.15, P < 0.001) and non-blood-fed (Log-rank test; X2(4) = 1163.60, P < 0.001) mosquitoes. In addition, the fecundity of mosquitoes decreased significantly (ANOVA; F(2,57) = 3.46, P = 0.038) with an increase in temperature. Body size (β = 0.14, 95% CI, 0.16, 0.12, P < 0.001) and proboscis length (β = 0.13, 95% CI, 0.17, 0.09, P < 0.001) significantly decreased with increasing temperature from 25 to 34°C. Increased temperatures expected in a future warmer climate could cause some unexpected effects on mosquitoes by directly influencing population dynamics and malaria transmission.
Collapse
Affiliation(s)
- Thomas P Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Paul K Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Jonathan N Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell K Billah
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Thomas G Robins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
29
|
Mbwambo SG, Bubun N, Mbuba E, Moore J, Mbina K, Kamande D, Laman M, Mpolya E, Odufuwa OG, Freeman T, Karl S, Moore SJ. Comparison of cone bioassay estimates at two laboratories with different Anopheles mosquitoes for quality assurance of pyrethroid insecticide-treated nets. Malar J 2022; 21:214. [PMID: 35799172 PMCID: PMC9264565 DOI: 10.1186/s12936-022-04217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quality assurance (QA) of insecticide-treated nets (ITNs) delivered to malaria-endemic countries is conducted by measuring physiochemical parameters, but not bioefficacy against malaria mosquitoes. This study explored utility of cone bioassays for pre-delivery QA of pyrethroid ITNs to test the assumption that cone bioassays are consistent across locations, mosquito strains, and laboratories. Methods Double-blinded bioassays were conducted on twenty unused pyrethroid ITNs of 4 brands (100 nets, 5 subsamples per net) that had been delivered for mass distribution in Papua New Guinea (PNG) having passed predelivery inspections. Cone bioassays were performed on the same net pieces following World Health Organization (WHO) guidelines at the PNG Institute of Medical Research (PNGIMR) using pyrethroid susceptible Anopheles farauti sensu stricto (s.s.) and at Ifakara Health Institute (IHI), Tanzania using pyrethroid susceptible Anopheles gambiae s.s. Additionally, WHO tunnel tests were conducted at IHI on ITNs that did not meet cone bioefficacy thresholds. Results from IHI and PNGIMR were compared using Spearman’s Rank correlation, Bland–Altman (BA) analysis and analysis of agreement. Literature review on the use of cone bioassays for unused pyrethroid ITNs testing was conducted. Results In cone bioassays, 13/20 nets (65%) at IHI and 8/20 (40%) at PNGIMR met WHO bioefficacy criteria. All nets met WHO bioefficacy criteria on combined cone/tunnel tests at IHI. Results from IHI and PNGIMR correlated on 60-min knockdown (KD60) (rs = 0.6,p = 0.002,n = 20) and 24-h mortality (M24) (rs = 0.9,p < 0.0001,n = 20) but BA showed systematic bias between the results. Of the 5 nets with discrepant result between IHI and PNGIMR, three had confidence intervals overlapping the 80% mortality threshold, with averages within 1–3% of the threshold. Including these as a pass, the agreement between the results to predict ITN failure was good with kappa = 0.79 (0.53–1.00) and 90% accuracy. Conclusions Based on these study findings, the WHO cone bioassay is a reproducible bioassay for ITNs with > 80% M24, and for all ITNs provided inherent stochastic variation and systematic bias are accounted for. The literature review confirms that WHO cone bioassay bioefficacy criteria have been previously achieved by all pyrethroid ITNs (unwashed), without the need for additional tunnel tests. The 80% M24 threshold remains the most reliable indicator of pyrethroid ITN quality using pyrethroid susceptible mosquitoes. In the absence of alternative tests, cone bioassays could be used as part of pre-delivery QA.
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04217-3.
Collapse
Affiliation(s)
- Stephen G Mbwambo
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania. .,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania. .,Sokoine RRH, Ministry of Health, Lindi, Tanzania. .,Regional Health Management Team, P.O Box 1011, Lindi, Tanzania.
| | - Nakei Bubun
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mbuba
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Jason Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| | - Kasiani Mbina
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Dismas Kamande
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Moses Laman
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea
| | - Emmanuel Mpolya
- Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania
| | - Olukayode G Odufuwa
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland.,MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Tim Freeman
- Rotarian Against Malaria, P.O Box 3686, Boroko, NCD 111, Papua New Guinea
| | - Stephan Karl
- Vector Borne Disease Unit, PNG Institute of Medical Research, Madang Province 511, P.O Box 378, Madang, Papua New Guinea.,Australian Institute of Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD, 4870, Australia
| | - Sarah J Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo, Tanzania.,Nelson Mandela Africa Institution of Science and Technology, Arusha, Tanzania.,University of Basel, Basel, Switzerland.,Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH, Allschwil, Kreuzstrasse 2, 4123, , Basel, Switzerland
| |
Collapse
|
30
|
Kahamba NF, Finda M, Ngowo HS, Msugupakulya BJ, Baldini F, Koekemoer LL, Ferguson HM, Okumu FO. Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malar J 2022; 21:158. [PMID: 35655190 PMCID: PMC9161514 DOI: 10.1186/s12936-022-04198-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
The most important malaria vectors in sub-Saharan Africa are Anopheles gambiae, Anopheles arabiensis, Anopheles funestus, and Anopheles coluzzii. Of these, An. funestus presently dominates in many settings in east and southern Africa. While research on this vector species has been impeded by difficulties in creating laboratory colonies, available evidence suggests it has certain ecological vulnerabilities that could be strategically exploited to greatly reduce malaria transmission in areas where it dominates. This paper examines the major life-history traits of An. funestus, its aquatic and adult ecologies, and its responsiveness to key interventions. It then outlines a plausible strategy for reducing malaria transmission by the vector and sustaining the gains over the medium to long term. To illustrate the propositions, the article uses data from south-eastern Tanzania where An. funestus mediates over 85% of malaria transmission events and is highly resistant to key public health insecticides, notably pyrethroids. Both male and female An. funestus rest indoors and the females frequently feed on humans indoors, although moderate to high degrees of zoophagy can occur in areas with large livestock populations. There are also a few reports of outdoor-biting by the species, highlighting a broader range of behavioural phenotypes that can be considered when designing new interventions to improve vector control. In comparison to other African malaria vectors, An. funestus distinctively prefers permanent and semi-permanent aquatic habitats, including river streams, ponds, swamps, and spring-fed pools. The species is therefore well-adapted to sustain its populations even during dry months and can support year-round malaria transmission. These ecological features suggest that highly effective control of An. funestus could be achieved primarily through strategic combinations of species-targeted larval source management and high quality insecticide-based methods targeting adult mosquitoes in shelters. If done consistently, such an integrated strategy has the potential to drastically reduce local populations of An. funestus and significantly reduce malaria transmission in areas where this vector species dominates. To sustain the gains, the programmes should be complemented with gradual environmental improvements such as house modification to maintain biting exposure at a bare minimum, as well as continuous engagements of the resident communities and other stakeholders.
Collapse
Affiliation(s)
- Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Francesco Baldini
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather M Ferguson
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G128QQ, Glasgow, UK.
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.
- School of Life Science and Biotechnology, Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| |
Collapse
|
31
|
Agyekum TP, Arko-Mensah J, Botwe PK, Hogarh JN, Issah I, Dadzie SK, Dwomoh D, Billah MK, Robins T, Fobil JN. Relationship between temperature and Anopheles gambiae sensu lato mosquitoes' susceptibility to pyrethroids and expression of metabolic enzymes. Parasit Vectors 2022; 15:163. [PMID: 35527275 PMCID: PMC9080126 DOI: 10.1186/s13071-022-05273-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Malaria remains one of the most devastating diseases globally, and the control of mosquitoes as the vector is mainly dependent on chemical insecticides. Elevated temperatures associated with future warmer climates could affect mosquitoes' metabolic enzyme expression and increase insecticide resistance, making vector control difficult. Understanding how mosquito rearing temperatures influence their susceptibility to insecticide and expression of metabolic enzymes could aid in the development of novel tools and strategies to control mosquitoes in a future warmer climate. This study evaluated the effects of temperature on the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to pyrethroids and their expression of metabolic enzymes. Methods Anopheles gambiae s.l. eggs obtained from laboratory-established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40 °C). Upon adult emergence, 3- to 5-day-old female non-blood-fed mosquitoes were used for susceptibility tests following the World Health Organization (WHO) bioassay protocol. Batches of 20–25 mosquitoes from each temperature regime (25–34 °C) were exposed to two pyrethroid insecticides (0.75% permethrin and 0.05% deltamethrin). In addition, the levels of four metabolic enzymes (α-esterase, β-esterase, glutathione S-transferase [GST], and mixed-function oxidase [MFO]) were examined in mosquitoes that were not exposed and those that were exposed to pyrethroids. Results Mortality in An. gambiae s.l. mosquitoes exposed to deltamethrin and permethrin decreased at temperatures above 28 °C. In addition, mosquitoes reared at higher temperatures were more resistant and had more elevated enzyme levels than those raised at low temperatures. Overall, mosquitoes that survived after being exposed to pyrethroids had higher levels of metabolic enzymes than those that were not exposed to pyrethroids. Conclusions This study provides evidence that elevated temperatures decreased An. gambiae s.l. mosquitoes' susceptibility to pyrethroids and increased the expression of metabolic enzymes. This evidence suggests that elevated temperatures projected in a future warmer climate could increase mosquitoes' resistance to insecticides and complicate malaria vector control measures. This study therefore provides vital information, and suggests useful areas of future research, on the effects of temperature variability on mosquitoes that could guide vector control measures in a future warmer climate. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05273-z.
Collapse
Affiliation(s)
- Thomas Peprah Agyekum
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana.
| | - John Arko-Mensah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Paul Kingsley Botwe
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Jonathan Nartey Hogarh
- Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ibrahim Issah
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| | - Samuel Kweku Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, P.O. Box LG 581, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Maxwell Kelvin Billah
- Department of Animal Biology and Conservation Science, University of Ghana, P.O. Box L.G. 67, Accra, Ghana
| | - Thomas Robins
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109, USA
| | - Julius Najah Fobil
- Department of Biological, Environmental and Occupational Health Sciences, School of Public Health, University of Ghana, P.O. Box L.G. 13, Accra, Ghana
| |
Collapse
|
32
|
Cross DE, Healey AJE, McKeown NJ, Thomas CJ, Macarie NA, Siaziyu V, Singini D, Liywalii F, Sakala J, Silumesii A, Shaw PW. Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain. Sci Rep 2022; 12:240. [PMID: 34997149 PMCID: PMC8742069 DOI: 10.1038/s41598-021-04314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Regional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.
Collapse
Affiliation(s)
- Dónall Eoin Cross
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Amy J E Healey
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Niall J McKeown
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Christopher James Thomas
- Lincoln Centre for Water and Planetary Health, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK.
| | - Nicolae Adrian Macarie
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Vincent Siaziyu
- Limulunga District Health Office, P.O. Box 910022, Mongu, Zambia
| | - Douglas Singini
- School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Francis Liywalii
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | - Jacob Sakala
- Provincial Health Office, Western Province, P.O. Box 910022, Mongu, Zambia
| | | | - Paul W Shaw
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| |
Collapse
|
33
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
34
|
Grobusch LC, Grobusch MP. A hot topic at the environment-health nexus: investigating the impact of climate change on infectious diseases. Int J Infect Dis 2021; 116:7-9. [PMID: 34973415 PMCID: PMC8716146 DOI: 10.1016/j.ijid.2021.12.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
CLIMATE CHANGE - THE ULTIMATE CHALLENGE OF OUR TIME COVID-19 pandemic aside, climate change is the ultimate challenge of our time. However, to date, there has been insufficient political thrust to make that much-needed climate action a reality. CLIMATE CHANGE AND INFECTIOUS DISEASES Infectious diseases represent only one facet of the threats arising from climate change. Direct impacts from climate change include the more frequent occurrence and increased magnitude of extreme weather events, as well as changing temperatures and precipitation patterns. For climate-sensitive infectious diseases, these changes implicate a shift in geographical and temporal distribution, seasonality, and transmission intensity. SIZING UP THE PROBLEM Susceptibility to the deleterious effects of climate change is a net result of the interplay of not only environmental factors, but also human, societal, and economic factors, with social inequalities being a major determinant of vulnerability. The global South is already disproportionately affected by the climate crisis. The financial capacity to pursue adaptation options is also limited and unevenly distributed. CONCLUSIONS Climate change-induced mortality and morbidity from both infectious and non-infectious diseases, among other adverse scenarios, are expected to rise globally in the future. The coming decade will be crucial for using all remaining opportunities to develop and implement adequate mitigation and adaptation strategies.
Collapse
Affiliation(s)
- Lena C Grobusch
- Erasmus Mundus Joint Masters Degree in Environmental Sciences, Policy and Management, University of Lund, Lund, Sweden and Central European University, Vienna, Austria
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection and Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, The Netherlands; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa; Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon; Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
| |
Collapse
|