1
|
Alizadeh Z, Sadeghi Z, Khorrami F, Ojaghi Aghbash K, Moridi Farimani M. Salvia abrotanoides methanolic extract Fe 3O 4@Carbon nanocomposite as biological approach for protection against the Potato Tuber Moth. Nat Prod Res 2024:1-4. [PMID: 39711232 DOI: 10.1080/14786419.2024.2443488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/04/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Plant-based nano-insecticides like Salvia abrotanoides provide eco-friendly pest control with low resistance risk. This study aimed to evaluate the insecticidal activity of the Fe3O4 @Carbon nanoformulation of S. abrotanoides extract with a carbon shell and pure extract against Phthorimaea operculella (eggs and larvae), a significant potato pest in Iran. A modified solvothermal method produced highly water-dispersible magnetite (Fe3O4) particles, with citrate as a stabilising agent. A carbon layer was added through hydrothermal treatment, using polyethylene glycol as a linking agent between glucose and the Fe3O4 spheres. SEM analysis confirmed the structure of the Fe3O4@Carbon nanocomposite, while FTIR and EDS verified the methanolic extract's presence. The Fe3O4@Carbon nano extract demonstrated greater toxicity to the pest's eggs and larvae than the pure extract, with lower LC50 values (752.23-355 ppm), indicating higher potency. These findings confirm that Fe3O4@Carbon S. abrotanoides nanoparticles are effective, pollution-free, and green nano-insecticides against Ph. operculella.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Phytochemistry Department, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Tehran, Iran
| | - Zahra Sadeghi
- Department of Production and Utilization of Medicinal Plants, Faculty of Agricultural and Natural Resources, University of Saravan, Saravan, Iran
| | - Fereshteh Khorrami
- Young Researchers and Elite Club, Urmia Branch, Islamic Azad University, Urmia, Iran
| | | | - Mahdi Moridi Farimani
- Phytochemistry Department, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C, Tehran, Iran
| |
Collapse
|
2
|
Vivekanandhan P, Swathy K, Sarayut P, Krutmuang P. Effects of copper nanoparticles synthesized from the entomopathogen Metarhizium robertsii against the dengue vector Aedes albopictus (Skuse, 1894). PLoS One 2024; 19:e0314279. [PMID: 39585856 PMCID: PMC11588212 DOI: 10.1371/journal.pone.0314279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024] Open
Abstract
Aedes albopictus, known as the Asian tiger mosquito, is a significant vector for dengue fever, chikungunya, zika virus, yellow fever. Current control methods rely on chemical insecticides, which face challenges such as resistance, environmental harm, and impact on non-target species Eudrilus eugeniae and Artemia salina. This study evaluates the toxic effects of biogenic copper nanoparticles (CuNPs) synthesized using Metarhizium robertsii intracellular extract obtained from our previous research. The CuNPs were tested against A. albopictus and non-target species at 24 and 48 hours post-treatment. Results demonstrated that entomopathogenic fungi-derived CuNPs exhibited potent mosquitocidal activity, resulting in 97.33% mortality in larvae, 93.33% in pupae, and 74.66% in adults at 48 hours post-treatment. The CuNPs derived from M. robertsii showed lower LC50 values of 74.873 mg/L in larvae, 76.101 mg/L in pupae, and 136.645 mg/L in adults at 48 hours post-treatment. Additionally, 12 hours post-treatment, catalase (an antioxidant enzyme) activity decreased 1.5-fold in a dose-dependent manner, while glutathione S-transferase (a detoxification enzyme) activity increased 7.8-fold. CuNPs demonstrated lower toxicity to non-target species, with 24% mortality in A. salina and 24.44% mortality in E. eugeniae at 24 hours post-treatment. The LC50 values were 634.747 mg/L for A. salina and 602.494 mg/L for E. eugeniae at 24 hours post-treatment. These findings indicate that entomopathogenic fungi-derived CuNPs are a promising, target-specific candidate for controlling A. albopictus at various life stages (larvae, pupae, and adults).
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agriculture, Department of Entomology and Plant Pathology, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Faculty of Agriculture, Department of Entomology and Plant Pathology, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agriculture, Department of Entomology and Plant Pathology, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Krutmuang
- Faculty of Agriculture, Department of Entomology and Plant Pathology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Gonçalves Diniz A, de Freitas Grasse R, de Lima AGG, de Oliveira Ribeiro TK, da Costa AF, Tiago PV. Susceptibility of Aphis craccivora (Hemiptera: Aphididae) to three entomopathogenic Fusarium species. Microb Pathog 2024; 196:107015. [PMID: 39396687 DOI: 10.1016/j.micpath.2024.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
The black aphid (Aphis craccivora) is an insect pest that can cause significant losses to different agricultural crops. Entomopathogenic fungi can be good options for controlling this insect. Fusarium species have shown promising results in the biological control of several agricultural pests, mainly of the order Hemiptera. This study investigated the susceptibility of A. craccivora to 27 Fusarium isolates, distributed among F. sulawesiense (4), F. pernambucanum (6) and F. caatingaense (17). The viability of the conidia of all isolates was assessed by measuring their germination rate. Pathogenicity tests were conducted at 10⁷ conidia/mL, and the best-performing isolate was further tested at different concentrations (10⁴ to 10⁸ conidia/mL). Data were analyzed using ANOVA, Tukey's test at 5 %, and R for calculating lethal times (LT50,90) and lethal concentrations (LC50,90). All isolates had viable conidia with germination rates between 92.67 % and 100 %. Mortality rates ranged from 17.22 % to 90.23 %. F. pernambucanum URM 7559 had the shortest lethal times (LT50 of 2.24 days and LT90 of 4.42 days), followed by F. sulawesiense URM 7555 (LT50 of 2.35 days and LT90 of 4.77 days) and F. caatingaense with LT50 of 3.93 days for URM 6784 and LT90 of 8.27 days for URM 6807. The three Fusarium species tested, especially F. pernambucanum, showed promise in the biological control of A. craccivora. Although the results are promising, additional studies are needed to evaluate the safety, field efficacy and environmental impacts of Fusarium use, focusing on the interaction with the agricultural ecosystem and the risks to non-target organisms.
Collapse
|
4
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
5
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Classification, biology and entomopathogenic fungi-based management and their mode of action against Drosophila species (Diptera: Drosophilidae): a review. Front Microbiol 2024; 15:1443651. [PMID: 39439942 PMCID: PMC11493638 DOI: 10.3389/fmicb.2024.1443651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
This review provides a comprehensive analysis of the classification, biology, and management of Drosophila species (Diptera: Drosophilidae) with a focus on entomopathogenic fungi (EPF) as a biocontrol strategy. Drosophila species, particularly Drosophila suzukii, and Drosophila melanogaster have emerged as significant pests in various agricultural systems, causing extensive damage to fruit crops. Understanding their taxonomic classification and biological traits is crucial for developing effective management strategies. This review delves into the life cycle, behavior, and ecological interactions of Drosophila species, highlighting the challenges posed by their rapid reproduction and adaptability. The review further explores the potential of EPF as an eco-friendly alternative to chemical pesticides. The mode of action of EPF against Drosophila species is examined, including spore adhesion, germination, and penetration of the insect cuticle, leading to host death. Factors influencing the efficacy of EPF, such as environmental conditions, fungal virulence, and host specificity, are discussed in detail. By synthesizing current research, this review aims to provide valuable insights into the application of EPF and to identify future research directions for enhancing the effectiveness of EPF-based control measures against Drosophila species.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Ragavendran C, Govindaraj A, Kamaraj C, Natarajan D, Malafaia G, Alrefaei AF, Almutairi MH. Fusarium begoniae metabolites: a promising larvicidal, pupicidal potential, histopathological alterations and detoxifications enzyme profiles of medically important mosquito vector Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi. 3 Biotech 2024; 14:226. [PMID: 39263325 PMCID: PMC11384672 DOI: 10.1007/s13205-024-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Endophytic fungal molecules have the potential to be a cost-effective chemical source for developing eco-friendly disease-controlling pharmaceuticals that target mosquito-borne illnesses. The primary aims of the study were to identify the fungus Fusarium begoniae larvicidal ability against Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi. The ethyl acetate extract demonstrated lethal concentrations that kill 50% of exposed larvae (LC50) and 90% of exposed larvae (LC90) for the 1st to 4th instar larvae of An. stephensi (LC50 = 54.821, 66.525, 68.250, and 73.614; LC90 = 104.56, 138.205, 150.415, and 159.466 μg/mL), Cx. quinquefasciatus (LC50 = 64.981, 36.505, 42.230, and 36.514; LC90 = 180.46, 157.105, 140.318, and 153.366 μg/ mL), and Ae. aegypti (LC50 = 74.890, 33.607, 52.173, and 26.974; LC90 = 202.56, 162.205, 130.518, and 163.286 μg/mL). Mycelium metabolites were evaluated for their pupicidal activity towards Ae. aegypti (LC50 = 80.669, LC90 = 119.904), Cx. quinquefasciatus (LC50 = 70.569, LC90 = 109.840), and An. stephensi (LC50 = 73.269, LC90 = 110.590 μg/mL). The highest larvicidal activity was recorded at 300 µg/mL, with 100% mortality against first and second-instar larvae of Cx. quinquefasciatus. Metabolite exposure to larvae exhibited several abnormal behavioral changes. The exposure to F. begoniae metabolite, key esterases such as acetylcholinesterase, α-and-β-carboxylesterase, and acid and alkaline phosphatase activity significantly decreased compared to control larvae. The outcomes of the histology analysis revealed that the mycelium metabolites-treated targeted larvae had a disorganized abdominal mid and hindgut epithelial cells. The is first-hand information on study of ethyl-acetate-derived metabolites from F. begoniae tested against larvae and pupae of Ae. aegypti, Cx. quinquefasciatus and An. stephensi. Bio-indicator toxicity findings demonstrate that A. nauplii displayed no mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04061-z.
Collapse
Affiliation(s)
- Chinnasamy Ragavendran
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600 077 Tamil Nadu India
| | - Annadurai Govindaraj
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Tamil Nadu, Kattankulathur, Chennai 603203 India
| | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011 Tamil Nadu India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO Brazil
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG Brazil
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO Brazil
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Kuhn D, Nägele N, Tolasch T, Petschenka G, Steidle JLM. Can a Mixture of Farnesene Isomers Avert the Infestation of Aphids in Sugar Beet Crops? INSECTS 2024; 15:736. [PMID: 39452312 PMCID: PMC11508235 DOI: 10.3390/insects15100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024]
Abstract
The negative impact of pesticides on the environment and the potential of pest species to develop pesticide resistance make it necessary to explore new methods of pest control. Pheromones and other behavior-modifying semiochemicals are already important in integrated pest management (IPM). (E)-ß-farnesene (EBF) is a semiochemical that acts as an alarm pheromone in aphids. Upon perception of EBF, aphids stop feeding, move away, and sometimes even abandon the host plant. The aphids Myzus persicae and Aphis fabae are significant crop pests and vectors of many harmful phytopathogens affecting sugar beet (Beta vulgaris). Field trials were conducted at different locations in Germany to test whether dispensers containing a mixture of farnesene isomers (FIMs) including EBF were able to reduce the infestation of these species on sugar beet. Our results showed a reduction in aphid abundance in the FIM-treated patches in two out of three sites. Therefore, we hypothesize that FIM dispensers could prevent aphid infestation and could be used in combination with other IPM measures. However, more research is required to increase the effect and ensure the reliability of this method.
Collapse
Affiliation(s)
- Denise Kuhn
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany;
- Department of Applied Entomology 360c, Institute of Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (N.N.); (G.P.)
| | - Nils Nägele
- Department of Applied Entomology 360c, Institute of Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (N.N.); (G.P.)
| | - Till Tolasch
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Georg Petschenka
- Department of Applied Entomology 360c, Institute of Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (N.N.); (G.P.)
| | - Johannes L. M. Steidle
- Department of Chemical Ecology 190t, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany;
- KomBioTa—Center of Biodiversity and Integrative Taxonomy, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
8
|
Vivekanandhan P, Swathy K, Sarayut P, Patcharin K. Biology, classification, and entomopathogen-based management and their mode of action on Tuta absoluta (Meyrick) in Asia. Front Microbiol 2024; 15:1429690. [PMID: 39171273 PMCID: PMC11335496 DOI: 10.3389/fmicb.2024.1429690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Tuta absoluta, known as the South American tomato leaf miner, significantly impacts tomato plants (Solanum lycopersicum) economically on a global scale. This pest, belonging to the Gelechiidae family, is native to South America and was first identified in Peru in 1917. Since its discovery, T. absoluta has rapidly spread to Europe, Africa, and Asia, severely threatening tomato production in these regions. The widespread application of chemical pesticides against this pest has resulted in significant environmental harm, including contamination of soil and water, and has had negative effects on non-target species such as beneficial insects, birds, and aquatic life. Although substantial research has been conducted, biological control methods for T. absoluta remain insufficient, necessitating further study. This review covers the Biology, Classification, and Entomopathogen-Based Management of T. absoluta (Meyrick) in Asia. It provides essential insights into the pest's life cycle, ecological impacts, and the potential of entomopathogens as biocontrol agents. The detailed information presented aims to facilitate the development of sustainable pest control strategies, minimizing environmental impact and promoting the use of entomopathogens as viable alternatives to chemical pesticides in controlling T. absoluta insect pest.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Pittarate Sarayut
- Research Administration Section, Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Krutmuang Patcharin
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
9
|
Vivekanandhan P, Kamaraj C, Alharbi SA, Ansari MJ. Novel report on soil infection with Metarhizium rileyi against soil-dwelling life stages of insect pests. J Basic Microbiol 2024; 64:e2400159. [PMID: 38771084 DOI: 10.1002/jobm.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Entomopathogenic fungi are the most effective control remedy against a wide range of medical and agricultural important pests. The present study aimed to isolate, identify, and assess the virulence of Metarhizium rileyi against Spodoptera litura and Spodoptera frugiperda pupae under soil conditions. The biotechnological methods were used to identify the isolate as M. rileyi. The fungal conidial pathogenicity (2.0 × 107, 2.0 × 108, 2.0 × 109, 2.0 × 1010, and 2.0 × 1011 conidia/mL-1) was tested against prepupae of S. litura and S. frugiperda at 3, 6, 9, and 12 days after treatments. Additionally, the artificial soil-conidial assay was performed on a nontarget species earthworm Eudrilus eugeniae, using M. rileyi conidia. The present results showed that the M. rileyi caused significant mortality rates in S. litura pupae (61-90%), and S. litura pupae were more susceptible than S. frugiperda pupae (46%-73%) at 12 day posttreatment. The LC50 and LC90 of M. rileyi against S. litura, were 3.4 × 1014-9.9 × 1017 conidia/mL-1 and 6.6 × 105-4.6 × 1014 conidia/mL-1 in S. frugiperda, respectively. The conidia of M. rileyi did not exhibit any sublethal effect on the adult stage of E. eugeniae, and Artemia salina following a 12-day treatment period. Moreover, in the histopathological evaluation no discernible harm was observed in the gut tissues of E. eugeniae, including the lumen and epithelial cells, as well as the muscles, setae, nucleus, mitochondria, and coelom. The present findings provide clear evidence that M. rileyi fungal conidia can be used as the foundation for the development of effective bio-insecticides to combat the pupae of S. litura and S. frugiperda agricultural pests.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sulaiman A Alharbi
- Department of Botany & Microbiology, College of Science King Saud University, Riyadh, Saudi Arabia
| | - Mohammad J Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Malandrakis AA, Varikou K, Kavroulakis Ν, Nikolakakis A, Dervisi I, Reppa CΙ, Papadakis S, Holeva MC, Chrysikopoulos CV. Copper nanoparticles interfere with insecticide sensitivity, fecundity and endosymbiont abundance in olive fruit fly Bactrocera oleae (Diptera: Tephritidae). PEST MANAGEMENT SCIENCE 2024; 80:3640-3649. [PMID: 38456555 DOI: 10.1002/ps.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND The potential of copper nanoparticles (Cu-NPs) to be used as an alternative control strategy against olive fruit flies (Bactrocera oleae) with reduced sensitivity to the pyrethroid deltamethrin and the impact of both nanosized and bulk copper hydroxide (Cu(OH)2) on the insect's reproductive and endosymbiotic parameters were investigated. RESULTS The application of nanosized and bulk copper applied by feeding resulted in significant levels of adult mortality, comparable to or surpassing those achieved with deltamethrin at recommended doses. Combinations of Cu-NPs or copper oxide nanoparticles (CuO-NPs) with deltamethrin significantly enhanced the insecticide's efficacy against B. oleae adults. When combined with deltamethrin, Cu-NPs significantly reduced the mean total number of offspring compared with the control, and the number of stings, pupae, female and total number of offspring compared with the insecticide alone. Both bulk and nanosized copper negatively affected the abundance of the endosymbiotic bacterium Candidatus Erwinia dacicola which is crucial for the survival of B. oleae larvae. CONCLUSION The Cu-NPs can aid the control of B. oleae both by reducing larval survival and by enhancing deltamethrin performance in terms of toxicity and reduced fecundity, providing an effective anti-resistance tool and minimizing the environmental footprint of synthetic pesticides by reducing the required doses for the control of the pest. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kyriaki Varikou
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Νektarios Kavroulakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Antonis Nikolakakis
- Hellenic Agricultural Organization 'ELGO-Dimitra', Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, Chania, Greece
| | - Irene Dervisi
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Chrysavgi Ι Reppa
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | | | - Maria C Holeva
- Scientific Directorate of Phytopathology, Laboratory of Bacteriology, Benaki Phytopathological Institute, Kifissia, Greece
| | - Constantinos V Chrysikopoulos
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Oz E, Polat B, Cengiz A, Kahraman S, Gultekin ZN, Caliskan C, Cetin H. Effects of solid and aqueous dietary diflubenzuron ingestion on some biological parameters in synthetic pyrethroid-resistant German cockroach, Blattella germanica L. (Blattodea: Ectobiidae). MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:172-178. [PMID: 38124363 DOI: 10.1111/mve.12704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Cockroaches, widespread pests found in metropolitan areas, are known as vectors of various disease agents, including viruses, fungi and antibiotic-resistant bacteria, as well as causing allergies in humans. Insect growth regulators have been used in pest management for several decades. These insecticides disrupt insect development and reproduction. Chitin synthesis inhibitors interfere with chitin biosynthesis in insects, causing abortive moulting and mortality, as well as inhibiting egg fertility, and larval hatching in insects. In this research, we evaluated the various effects of diflubenzuron, a chitin synthesis inhibitor, on synthetic pyrethroid-resistant German cockroach (Blattella germanica L. Blattodea: Ectobiidae), including ootheca production, oothecal viability, ootheca incubation time, the number of nymphs emerging from the ootheca and survivorship of nymphs. The cockroaches were fed diets that contained diflubenzuron, which was added to solid bait (impregnated fish food) and ingestible aqueous bait (impregnated cotton). Three concentrations (0.5%, 1% and 2%) were used in the experiments. As a result, diflubenzuron treatment led to ootheca production ranging from 60% to 100%; statistically, no difference was found between the treatment and the control groups. The number of nymphs emerging from the first and second ootheca was reduced by 40%-100% in the diflubenzuron-treated groups compared with the control. Nymphs exposed to diflubenzuron-impregnated solid bait and ingestible aqueous bait experienced mortality exceeding 92.1% and 66.27% within 15 days, respectively. In conclusion, diflubenzuron is a potential insecticide for use in cockroach baits to control B. germanica, as it caused high nymphal and embryonic mortality in the synthetic pyrethroid-resistant population and decreased the number of nymphs emerging from the ootheca.
Collapse
Affiliation(s)
- Emre Oz
- Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, Antalya, Türkiye
| | - Burak Polat
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| | - Aysegul Cengiz
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| | - Sevval Kahraman
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| | - Zeynep Nur Gultekin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| | - Cansu Caliskan
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| | - Huseyin Cetin
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
12
|
Vivekanandhan P, Alharbi SA, Ansari MJ. Toxicity, biochemical and molecular docking studies of Acacia nilotica L., essential oils against insect pests. Toxicon 2024; 243:107737. [PMID: 38677379 DOI: 10.1016/j.toxicon.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Sulaiman Ali Alharbi
- Department of Botany & Microbiology College of Science King Saud University, P.O Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| |
Collapse
|
13
|
Moraes-de-Souza I, de Moraes BPT, Silva AR, Ferrarini SR, Gonçalves-de-Albuquerque CF. Tiny Green Army: Fighting Malaria with Plants and Nanotechnology. Pharmaceutics 2024; 16:699. [PMID: 38931823 PMCID: PMC11206820 DOI: 10.3390/pharmaceutics16060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 06/28/2024] Open
Abstract
Malaria poses a global threat to human health, with millions of cases and thousands of deaths each year, mainly affecting developing countries in tropical and subtropical regions. Malaria's causative agent is Plasmodium species, generally transmitted in the hematophagous act of female Anopheles sp. mosquitoes. The main approaches to fighting malaria are eliminating the parasite through drug treatments and preventing transmission with vector control. However, vector and parasite resistance to current strategies set a challenge. In response to the loss of drug efficacy and the environmental impact of pesticides, the focus shifted to the search for biocompatible products that could be antimalarial. Plant derivatives have a millennial application in traditional medicine, including the treatment of malaria, and show toxic effects towards the parasite and the mosquito, aside from being accessible and affordable. Its disadvantage lies in the type of administration because green chemical compounds rapidly degrade. The nanoformulation of these compounds can improve bioavailability, solubility, and efficacy. Thus, the nanotechnology-based development of plant products represents a relevant tool in the fight against malaria. We aim to review the effects of nanoparticles synthesized with plant extracts on Anopheles and Plasmodium while outlining the nanotechnology green synthesis and current malaria prevention strategies.
Collapse
Affiliation(s)
- Isabelle Moraes-de-Souza
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Bianca P. T. de Moraes
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Adriana R. Silva
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| | - Stela R. Ferrarini
- Pharmaceutical Nanotechnology Laboratory, Federal University of Mato Grosso of Sinop Campus—UFMT, Cuiabá 78550-728, Brazil;
| | - Cassiano F. Gonçalves-de-Albuquerque
- Immunopharmacology Laboratory, Department of Physiological Sciences, Federal University of the State of Rio de Janeiro—UNIRIO, Rio de Janeiro 20211-010, Brazil; (I.M.-d.-S.); (B.P.T.d.M.)
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-361, Brazil;
| |
Collapse
|
14
|
Stern M, Botha N, Cloete KJ, Maaza M, Tan S, Bicker G. Neurotoxicity and Developmental Neurotoxicity of Copper Sulfide Nanoparticles on a Human Neuronal In-Vitro Test System. Int J Mol Sci 2024; 25:5650. [PMID: 38891838 PMCID: PMC11172337 DOI: 10.3390/ijms25115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Nanoparticles (NPs) are becoming increasingly important novel materials for many purposes, including basic research, medicine, agriculture, and engineering. Increasing human and environmental exposure to these promising compounds requires assessment of their potential health risks. While the general direct cytotoxicity of NPs is often routinely measured, more indirect possible long-term effects, such as reproductive or developmental neurotoxicity (DNT), have been studied only occasionally and, if so, mostly on non-human animal models, such as zebrafish embryos. In this present study, we employed a well-characterized human neuronal precursor cell line to test the concentration-dependent DNT of green-manufactured copper sulfide (CuS) nanoparticles on crucial early events in human brain development. CuS NPs turned out to be generally cytotoxic in the low ppm range. Using an established prediction model, we found a clear DNT potential of CuS NPs on neuronal precursor cell migration and neurite outgrowth, with IC50 values 10 times and 5 times, respectively, lower for the specific DNT endpoint than for general cytotoxicity. We conclude that, in addition to the opportunities of NPs, their risks to human health should be carefully considered.
Collapse
Affiliation(s)
- Michael Stern
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany; (M.S.)
| | - Nandipha Botha
- UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria 0003, South Africa
| | - Karen J. Cloete
- UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria 0003, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria 0003, South Africa
| | - Saime Tan
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany; (M.S.)
| | - Gerd Bicker
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15/102, D-30173 Hannover, Germany; (M.S.)
| |
Collapse
|
15
|
Perumal V, Kannan S, Alford L, Pittarate S, Krutmuang P. Study on the virulence of Metarhizium anisopliae against Spodoptera frugiperda (J. E. Smith, 1797). J Basic Microbiol 2024; 64:e2300599. [PMID: 38308078 DOI: 10.1002/jobm.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study examined the impact of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) conidia on the eggs, larvae, pupae, and adults of Spodoptera frugiperda. The results showed that eggs, larvae, pupae, and adults exhibited mortality rates that were dependent on the dose. An increased amount of conidia (1.5 × 109 conidia/mL) was found to be toxic to larvae, pupae, and adults after 9 days of treatment, resulting in a 100% mortality rate in eggs, 98% in larvae, 76% in pupae, and 85% in adults. A study using earthworms as bioindicators found that after 3 days of exposure, M. anisopliae conidia did not cause any harmful effects on the earthworms. In contrast, the chemical treatment (positive control) resulted in 100% mortality at a concentration of 40 ppm. Histopathological studies showed that earthworm gut tissues treated with fungal conidia did not show significant differences compared with those of the negative control. The gut tissues of earthworms treated with monocrotophos exhibited significant damage, and notable differences were observed in the chemical treatment. The treatments with 70 and 100 µg/mL solutions of Eudrilus eugeniae epidermal mucus showed no fungal growth. An analysis of the enzymes at a biochemical level revealed a decrease in the levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase in S. frugiperda larvae after exposure to fungal conidia. This study found that M. anisopliae is effective against S. frugiperda, highlighting the potential of this entomopathogenic fungus in controlling this agricultural insect pest.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Swathy Kannan
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Patcharin Krutmuang
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| |
Collapse
|
16
|
Vivekanandhan P, Alahmadi TA, Ansari MJ. Pathogenicity of Metarhizium rileyi (Hypocreales: Clavicipitaceae) against Tenebrio molitor (Coleoptera: Tenebrionidae). J Basic Microbiol 2024; 64:e2300744. [PMID: 38466146 DOI: 10.1002/jobm.202300744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 03/12/2024]
Abstract
Tenebrio molitor L., also known as the mealworm, is a polyphagous insect pest that infests various stored grains worldwide. Both the adult and larval stages can cause significant damage to stored grains. The present study focused on isolating entomopathogenic fungi from an infected larval cadaver under environmental conditions. Fungal pathogenicity was tested on T. molitor larvae and pupae for 12 days. Entomopathogenic fungi were identified using biotechnological methods based on their morphology and the sequence of their nuclear ribosomal internal transcribed spacer (ITS). The results of the insecticidal activity indicate that the virulence of fungi varies between the larval and pupal stages. In comparison to the larval stage, the pupal stage is highly susceptible to Metarhizium rileyi, exhibiting 100% mortality rates after 12 days (lethal concentration 50 [LC50] = 7.8 × 106 and lethal concentration 90 (LC90) = 2.1 × 1013 conidia/mL), whereas larvae showed 92% mortality rates at 12 days posttreatment (LC50 = 1.0 × 106 and LC90 = 3.0 × 109 conidia/mL). The enzymatic analyses revealed a significant increase in the levels of the insect enzymes superoxide dismutase (4.76-10.5 mg-1) and glutathione S-transferase (0.46-6.53 mg-1) 3 days after exposure to M. rileyi conidia (1.5 × 105 conidia/mL) compared to the control group. The findings clearly show that M. rileyi is an environmentally friendly and effective microbial agent for controlling the larvae and pupae of T. molitor.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India, Chennai, Tamil Nadu, India
| | - Tahani A Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Mohammad J Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, Uttar Pradesh, India
| |
Collapse
|
17
|
Guo Y, Awais MM, Fei S, Xia J, Sun J, Feng M. Applications and Potentials of a Silk Fibroin Nanoparticle Delivery System in Animal Husbandry. Animals (Basel) 2024; 14:655. [PMID: 38396623 PMCID: PMC10885876 DOI: 10.3390/ani14040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Silk fibroin (SF), a unique natural polymeric fibrous protein extracted from Bombyx mori cocoons, accounts for approximately 75% of the total mass of silk. It has great application prospects due to its outstanding biocompatibility, biodegradability, low immunogenicity, and mechanical stability. Additionally, it is non-toxic and environmentally friendly. Nanoparticle delivery systems constructed with SF can improve the bioavailability of the carriers, increase the loading rates, control the release behavior of the deliverables, and enhance their action efficiencies. Animal husbandry is an integral part of agriculture and plays a vital role in the development of the rural economy. However, the pillar industry experiences a lot of difficulties, like drug abuse while treating major animal diseases, and serious environmental pollution, restricting sustainable development. Interestingly, the limited use cases of silk fibroin nanoparticle (SF NP) delivery systems in animal husbandry, such as veterinary vaccines and feed additives, have shown great promise. This paper first reviews the SF NP delivery system with regard to its advantages, disadvantages, and applications. Moreover, we describe the application status and developmental prospects of SF NP delivery systems to provide theoretical references for further development in livestock production and promote the high-quality and healthy development of animal husbandry.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.G.); (M.M.A.); (S.F.); (J.X.); (J.S.)
| |
Collapse
|
18
|
José de Arruda E, Biasotto G, Beppu MM, Monteiro FJ, Granja PL, Rangel M, Leite A, Cabrini I, Santos T, Gonçalves DA, Neitzke Abreu HC. Nano-encapsulated Cu(II) complex as a promising insecticidal for Aedes aegypti (Diptera: Culicidae). Heliyon 2024; 10:e23198. [PMID: 38163248 PMCID: PMC10756974 DOI: 10.1016/j.heliyon.2023.e23198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Nanoparticle (NP) research is an area of scientific interest with high potential for application in biomedical, optical, and electronic fields. Due to their relatively large surface area compared to their mass, NPs can be more chemically reactive and change their reactive strength or other properties. NP-based drug delivery systems provide transport and an effective and controlled way to release the drugs. This work aimed to study the solubility and biological activity of nano-encapsulated copper metal complexes for the induction of toxicity and mortality in larvae of Aedes aegypti mosquitoes. After the nano-encapsulated metal complexes were prepared, the efficiency of this incorporation was determined by electron paramagnetic resonance, and toxicity bioassays were performed. The polymeric-based PLGA NPs encapsulating metal complexes exhibited high toxicity and specificity for target organisms (insect vectors, i.e., A. aegypti), with relatively less environmental impact and long-term control of their breeding.
Collapse
Affiliation(s)
- Eduardo José de Arruda
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Glenda Biasotto
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Marisa Masumi Beppu
- Faculty of Chemical Engineering (FEQ), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernando Jorge Monteiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Faculty of Engineering of the University of Porto (FEUP), Porto, Portugal
| | - Pedro L. Granja
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Maria Rangel
- Associated Laboratory for Green Chemistry (LAQV)- Network for Chemistry and Technology (REQUIMTE), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Leite
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Isaías Cabrini
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
- Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tiago Santos
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Daniel A. Gonçalves
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| | | |
Collapse
|
19
|
Shabir A, Sarwar ZM, Ali H. Eco-friendly approaches of zinc oxide and silver nitrate nanoparticles along with plant extracts against Spodoptera litura (Fabricius) under laboratory conditions. Sci Prog 2023; 106:368504231219171. [PMID: 38113117 PMCID: PMC10734334 DOI: 10.1177/00368504231219171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The tobacco cutworm (Spodoptera litura) is a widespread pest that inflicts severe damage on various crops, including cotton, tobacco, and vegetables, with a particular preference for solanaceous plants. Traditional control methods often rely heavily on synthetic insecticides, leading to adverse effects on the environment, human health, and the development of insecticide resistance. In light of these challenges, this study explores the potential of nanotechnology as an innovative and sustainable approach to combat this notorious pest. Bioassays were conducted using laboratory-reared 3rd instar S. litura larvae. Eight different plant extracts coated with zinc oxide and silver nitrate nanoparticles were tested, with concentrations in both distilled water and ethanol at 3, 5, and 7 ml. Data were collected at 24, 48, and 72-h intervals. The results revealed that the highest larval mortality, reaching 98%, was observed in the group treated with silver nitrate nanoparticles derived from Cymbopogon citratus. In comparison, the group treated with zinc oxide nanoparticles dissolved in ethanol exhibited a larval mortality rate of 90%. Ethanol is a polar solvent that is widely used in the synthesis of nanocomposites. It is capable of forming strong hydrogen bonds with oxygen atoms, making it a good dispersant for zinc oxide nanoparticles. Additionally, ethanol has a low boiling point and a non-toxic nature, which makes it a safe and effective option for the dispersion of nanoparticles. Notably, the study concluded that silver nanoparticles combined with ethanol exhibited prolonged and more potent toxic effects against S. litura when compared to zinc oxide nanoparticles. Overall, this research underscores the potential of nanotechnology as a valuable component of Integrated Pest Management (IPM) strategies. By integrating nanotechnology into pest management practices, we can promote sustainable and environmentally friendly approaches that benefit both farmers and the ecosystem.
Collapse
Affiliation(s)
- Aqsa Shabir
- Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
20
|
Li X, Chen Y, Xu J, Lynch I, Guo Z, Xie C, Zhang P. Advanced nanopesticides: Advantage and action mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108051. [PMID: 37820512 DOI: 10.1016/j.plaphy.2023.108051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The use of various chemical substances to control pests, diseases, and weeds in the field is a necessary part of the agricultural development process in every country. While the application of pesticides can improve the quality and yield of crops, plant resistance and the harm caused by pesticide residues to the environment and humans have led to the search for greener and safer pesticide formulations to improve the current situation. In recent years, nanopesticides (NPts) have shown great potential in agriculture due to their high efficiency, low toxicity, targeting, resistance, and controlled slow release demonstrated in the experimental stage. Commonly used approaches to prepare NPts include the use of nanoscale metal materials as active ingredients (AI) (ingredients that can play a role in insecticide, sterilization and weeding) or the construction of carriers based on commonly used pesticides to make them stable in nano-sized form. This paper systematically summarizes the advantages and effects of NPts over conventional pesticides, analyzes the formation and functions of NPts in terms of structure, AI, and additives, and describes the mechanism of action of NPts. Despite the feasibility of NPts use, there is not enough comprehensive research on NPts, which must be supplemented by more experiments in terms of biotoxicology and ecological effects to provide strong support for NPts application.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yiqing Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Perumal V, Kannan S, Alford L, Pittarate S, Mekchay S, Reddy GVP, Elangovan D, Marimuthu R, Krutmuang P. Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate-derived chemical molecules: An eco-friendly anti-malarial drug and insecticide. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-19. [PMID: 37497800 DOI: 10.1002/arch.22037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of General Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Gadi V P Reddy
- USDA-ARS-Southern Insect Management Research Unit, Stoneville, Mississippi, USA
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
23
|
Helmy EAM, San PP, Zhang YZ, Adarkwah C, Tuda M. Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests. Sci Rep 2023; 13:8508. [PMID: 37231118 DOI: 10.1038/s41598-023-35697-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Nanopesticides, particularly biosynthesized ones using organic reductants, hold great promise as a cost-effective and eco-friendly alternative to chemical pesticides. However, their efficacy on stored product pests, which can cause damage to dried grains, has not been extensively tested, especially on immature stages. Here, we biosynthesized six types of nanoparticles (NPs) using extracts from the fungus Fusarium solani: silver (AgNPs), selenium (SeNPs), silicon dioxide (SiO2NPs), copper oxide (CuONPs), titanium dioxide (TiO2NPs) and zinc oxide (ZnONPs) ranging in size from 8 to 33 nm. To test their efficacy on stored bean pests, they were applied to the eggs and larvae of pest beetles Callosobruchus chinensis and Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae), which burrow into seeds as larvae. Susceptibility to the NPs was species-dependent and differed between developmental stages; eggs were more susceptible than larvae inhabiting in seeds. SeNPs and TiO2NPs reduced the hatchability of C. chinensis eggs by 23% and 18% compared to the control, respectively, leading to an 18% reduction in egg-to-adult survival by SeNPs. In C. maculatus, TiO2NPs applied to eggs reduced larva-to-adult survivorship by 11%, resulting in a 15% reduction in egg-to-adult survival. The egg mass of C. chinensis was 23% smaller than that of C. maculatus: the higher surface-area-to-volume ratio of the C. chinensis eggs could explain their higher acute mortality caused by the NPs compared to C. maculatus eggs. The biosynthesized SeNPs and TiO2NPs have potential for controlling major stored bean pests when applied to their eggs. This is the first to show the efficacy of biosynthesized SeNPs and TiO2NPs on stored product pests and the efficacy of Fusarium-synthesized NPs on insects.
Collapse
Affiliation(s)
- Eman Ahmed Mohamed Helmy
- The Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt.
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Phyu Phyu San
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Department of Entomology and Zoology, Yezin Agricultural University, Naypyitaw, Myanmar
| | - Yao Zhuo Zhang
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Charles Adarkwah
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
- Department of Horticulture and Crop Production, School of Agriculture and Technology, Dormaa-Ahenkro Campus, University of Energy and Natural Resources, PO Box 214, Sunyani, Ghana.
- Division Urban Plant Ecophysiology, Faculty Life Sciences, Humboldt-University of Berlin, Lentzeallee 55/57, 14195, Berlin, Germany.
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
24
|
Kamaraj C, Vimal S, Ragavendran C, Priyadharsan A, Marimuthu K, Malafaia G. Traditionally used medicinal plants mediate the biosynthesis of silver nanoparticles: methodological, larvicidal, and ecotoxicological approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162402. [PMID: 36841404 DOI: 10.1016/j.scitotenv.2023.162402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
It has been shown that vegetal species constitute an alternative natural source for the biosynthesis of new nanomaterials. Thus, aiming to expand knowledge about the potential use of plants in the fabrication of metallic nanomaterials, we aimed to synthesize silver nanoparticles (AgNPs) from phyto-formulation (PF) of ten commonly used medicinal plants. Our results demonstrate the formation of spherical, stable, polycrystalline AgNPs with a diameter of 8.42 nm to 18.40 nm, whose biosynthesis confirmation was performed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM)-energy dispersive X-ray spectroscopy (EDS) mapping, high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta potential studies. Furthermore, we demonstrated that the biosynthesized AgNPs showed larvicidal activity against Aedes aegypti and Anopheles stephensi larvae, with the histopathology findings from the fourth instar larval stage validating such larvicidal toxicity. The histological examinations showed severe degradation of the larvae's hindgut, epithelial cells, midgut, and cortical area. However, the PF extract and the biosynthesized AgNPs showed high ecotoxicity in Danio rerio larvae exposed to different concentrations. The treatments induced changes in hatchability percentage, animal growth, and heartbeat. Therefore, despite supporting the potential of PF (from ten plant species) as a raw material source for AgNPs biosynthesis, our study also sheds light on its ecotoxicological potential, suggesting that more comprehensive assessments of the ecotoxicity of biosynthesized would be performed before its application in different sectors.
Collapse
Affiliation(s)
- Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India.
| | - Sugumar Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India
| | - Arumugam Priyadharsan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India
| | - K Marimuthu
- Department of Environmental Science, Tezpur Univrsity, Napaam, Tezpur, Assam 784028, India.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
25
|
Pittarate S, Perumal V, Kannan S, Mekchay S, Thungrabeab M, Suttiprapan P, Sengottayan SN, Krutmuang P. Insecticidal efficacy of nanoparticles against Spodoptera frugiperda (J.E. Smith) larvae and their impact in the soil. Heliyon 2023; 9:e16133. [PMID: 37251900 PMCID: PMC10213184 DOI: 10.1016/j.heliyon.2023.e16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
The present study aims to evaluate the different nanoparticles (Cu NPs, KI NPs, Ag NPs, Bd NPs, and Gv NPs) against 4th instar Spodoptera frugiperda larvae as well as the microbial toxicity, phytotoxicity, and soil pH. Nanoparticles were tested at three concentrations (1000, 10000, and 100000 ppm) using two methods (food dip and larvae dip) against S. frugiperda larvae. Results (from the larval dip method) showed that among the nanoparticles, the KI NPs caused 63%, 98%, and 98% mortality within 5 days in the treatment of 1000, 10000, and 100000 ppm, respectively. After 24 h post treatment, a 1000 ppm concentration showed 95%, 54%, and 94% germination rates in Metarhizium anisopliae, Beauveria bassiana, and Trichoderma harzianum, respectively. The phytotoxicity evaluation clearly showed that NPs did not affect the morphology of the corn plants after the treatment. The soil nutrient analysis results showed that no effect was observed in soil pH or soil nutrients compared to control treatments. The study clearly showed that nanoparticles are caused toxic effect against S. frugiperda larvae.
Collapse
Affiliation(s)
- Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 77, Tamil Nadu, India
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Malee Thungrabeab
- Agriculture Technology Research Institute, Rajamangala University of Technology Lanna, Lampang, 50300, Thailand
| | - Piyawan Suttiprapan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Senthil-Nathan Sengottayan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
26
|
Perumal V, Kannan S, Pittarate S, Chinnasamy R, Krutmuang P. Essential oils from Acacia nilotica (Fabales: Fabaceae) seeds: May have insecticidal effects? Heliyon 2023; 9:e14808. [PMID: 37089397 PMCID: PMC10119573 DOI: 10.1016/j.heliyon.2023.e14808] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
In the present study Acacia nilotica seed derived essential oils were tested against Spodoptera litura, Tenebrio molitor, Oxycarenus hyalinipennis, and Aphis fabae, as well as their effects on non-target species Eudrilus eugeniae and Artemia salina at 24 h post treatment. The seed essential oil produced insecticidal activity against A. fabae (LC50 = 41.679, LC90 = 75.212 μl/mL), O. hyalinipennis (LC50 = 37.629, LC90 = 118.485 μl/mL), T. molitor (LC50 = 56.796, LC90 = 201.912 μl/mL), and S. litura (LC50 = 62.215, LC90 = 241.183 μl/mL). Essential oils do not cause a remarkable effect on E. eugeniae and A. salina cytotoxicity. The essential oils produced a lower effect on Artemia salina (LC50 = 384.382, LC90 = 1341.397 μl/mL) and no lethal effects were observed on E. eugeniae. The histopathological evaluation showed no sub-lethal effects of essential oils on earthworm gut tissues. GC-MS analysis results revealed that the major chemical constituent was hexadecane (19.560%) and heptacosane (17.214%) and FT-IR analysis revealed the presence of alkanes and alkyles, aromatics, and amides functional groups that may be involved in insecticidal activity. Overall, the results showed that the seed derived essential oil has excellent insecticidal action against major agricultural insect pests and may therefore offer an environmentally benign alternative to conventional insecticide.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 77, Tamil Nadu, India
- Corresponding author. Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand.
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
| | | | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiangmai 50200, Thailand
- Corresponding author.
| |
Collapse
|
27
|
Shah IH, Manzoor MA, Sabir IA, Ashraf M, Liaquat F, Gulzar S, Chang L, Zhang Y. Phytotoxic effects of chemically synthesized copper oxide nanoparticles induce physiological, biochemical, and ultrastructural changes in Cucumis melo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51595-51606. [PMID: 36813939 DOI: 10.1007/s11356-023-26039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanotechnology has achieved great attention due to its impressive performance especially engineered nanoparticles (ENPs). Copper-based nanoparticles offer favorable development in the fabrication of agrochemicals including fertilizers and pesticides in the field of agriculture. However, their toxic impact on melon plants (Cucumis melo) still needs to be investigated. Therefore, the aim of the current work was performed to focus on the toxic impact of Cu oxide nanoparticles (CuONPs) in hydroponically grown Cucumis melo. Our results demonstrated that CuONPs with 75, 150, and 225 mg/L significantly (P<0.005) suppressed the growth rate and badly affect physiological and biochemical activities in melon seedlings. Also, results revealed remarkable phenotypical changes besides significantly reduced fresh biomass and decreased levels of total chlorophyll contents in a dose-dependent manner. Atomic absorption spectroscopy (ASS) analysis exhibited that C. melo treated with CuONPs accumulates NPs in the shoot. Moreover, exposure to higher CuONPs (75-225mg/L) significantly increased the reactive oxygen species (ROS) accumulation, malondialdehyde (MDA), and hydrogen peroxide (H2O2) level in the shoot and induced toxicity in melon root with an increase in electrolyte leakage. Furthermore, antioxidant enzyme peroxidase (POD) and superoxide dismutase (SOD) activity in the shoot significantly increased under exposure to higher CuONPs. Exposure to higher concentrations of CuONPs (225 mg/L) significantly deformed the stomatal aperture. Furthermore, reducing the number and abnormal size of palisade mesophyll and spongy mesophyll cells were investigated especially at high doses of CuONPs. Overall, our current work demonstrates that CuONPs of 10-40 nm size provide direct evidence for a toxic effect in C. melo seedlings. Our findings were expected to inspire the safe production of NPs and agrifood security. Thus, CuONPs prepared from toxic route and its bioaccumulation into our food chain through crop plants possess a serious threat to the ecological system.
Collapse
Affiliation(s)
- Iftikhar Hussain Shah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Aamir Manzoor
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Irfan Ali Sabir
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhammad Ashraf
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fiza Liaquat
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, Seoul, South Korea
| | - Shazma Gulzar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liying Chang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yidong Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
28
|
Shi W, Li S, Wang X, Li S, Zhang X. Characterization and properties of hexaconazole-loaded nanoparticles prepared by anti-solvent method. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
29
|
Vinothkanna A, Mathivanan K, Ananth S, Ma Y, Sekar S. Biosynthesis of copper oxide nanoparticles using Rubia cordifolia bark extract: characterization, antibacterial, antioxidant, larvicidal and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42563-42574. [PMID: 35175521 DOI: 10.1007/s11356-022-18996-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Rubia cordifolia represents the pivotal plant resource belonging to traditional Chinese medicine and Indian Ayurveda. The present study aims to synthesize biocompatible copper oxide nanoparticles (CuONPs) using R. cordifolia bark extracts, characterize the incumbent chemical transitions, and explore their biomedical and environmental applications. The absorbance peak between 250 and 300 nm clearly demonstrates the formation of CuONPs in the UV-visible spectrum. Fourier transform infrared spectroscopy results showed the presence of functional groups essential for copper ion reduction. Field emission scanning electron microscopy (FE-SEM) and dynamic light scattering analysis revealed that the CuONPs are spherical-shaped with a mean particle size of 50.72 nm. Additionally, the zeta potential demonstrates its robustness at 11.2 mV. X-ray diffraction pattern showed mixed phases (Cu, Cu2O, and CuO) of cubic monoclinic crystalline nature. CuONPs exhibited noticeable antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus cereus) pathogenic bacteria. Bacterial cell damages were affirmed through FE-SEM imaging when treated with CuONPs. Further, CuONPs demonstrated considerable antioxidant activities by quenching free radicals such as DPPH (60.75%), ABTs (70.88%), nitric oxide (65.48%) and reducing power (71.44%) in a dose-dependent way. CuONPs showed significant larvicidal activity against Aedes aegypti (65 ± 8.66%), Anopheles stephensi (80 ± 13.69%), and Culex quinquefasciatus (72 ± 13.04%) mosquito larvae. The photocatalytic activity of the CuONPs demonstrates the methylene blue (81.84%) and crystal violet (64.0%) dye degradation potentials, indicating the environmental bioremediation efficacy. Hence the present study is the first report in accounting for the versatile applications of the phyto-CuONPs. Moreover, the green synthesis of CuONPS has future applications in designing the drug for life-threatening diseases and various environmental issues.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, People's Republic of China
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, People's Republic of China
| | - Sivapunniyam Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam, Tamil Nadu, India
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, People's Republic of China.
| | - Soundarapandian Sekar
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
30
|
Perumal V, Kannan S, Alford L, Pittarate S, Geedi R, Elangovan D, Marimuthu R, Krutmuang P. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An ecofriendly microbial insecticide. Front Microbiol 2023; 14:1104079. [PMID: 36937255 PMCID: PMC10019823 DOI: 10.3389/fmicb.2023.1104079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- *Correspondence: Vivekanandhan Perumal,
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ruchika Geedi
- Geedi-Horticultural Insects Research Laboratory, USDA- Agricultural Research Services, Wooster, OH, United States
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Patcharin Krutmuang,
| |
Collapse
|
31
|
Rahman A, Pittarate S, Perumal V, Rajula J, Thungrabeab M, Mekchay S, Krutmuang P. Larvicidal and Antifeedant Effects of Copper Nano-Pesticides against Spodoptera&nbsp; frugiperda (J.E. Smith) and Its Immunological Response. INSECTS 2022; 13:insects13111030. [PMID: 36354854 PMCID: PMC9692944 DOI: 10.3390/insects13111030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 05/25/2023]
Abstract
This study aimed to synthesize and evaluate the efficacy of CuO NPs (copper oxide nanoparticles) with varying test concentrations (10−500 ppm) against larvicidal, antifeedant, immunological, and enzymatic activities against larvae of S. frugiperda at 24 h of treatment. Copper nanoparticles were characterized by using a scanning electron microscope (SEM) and energy dispersive X-ray (EDaX) analysis. The EDaX analysis results clearly show that the synthesized copper nanoparticles contain copper as the main element, and the SEM analysis results show nanoparticle sizes ranging from 29 to 45 nm. The CuO NPs showed remarkable larvicidal activity (97%, 94%, and 81% were observed on the 3rd, 4th, and 5th instar larvae, respectively). The CuO NPs produced high antifeedant activity (98.25%, 98.01%, and 98.42%), which was observed on the 3rd, 4th, and 5th instar larvae, respectively. CuO NPs treatment significantly reduced larval hemocyte levels 24 h after treatment; hemocyte counts and sizes changed in the CuO NPs treatment compared to the control. After 24 h of treatment with CuO NPs, the larval acetylcholinesterase enzyme levels decreased with dose-dependent activity. The present findings conclude that CuO NPs cause remarkable larvicidal antifeedant activity and that CuO NPs are effective, pollution-free green nano-insecticides against S. frugiperda.
Collapse
Affiliation(s)
- Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Julius Rajula
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Malee Thungrabeab
- Agriculture Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 50200, Thailand
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
32
|
Toxicity of Metarhizium flavoviride conidia virulence against Spodoptera litura (Lepidoptera: Noctuidae) and its impact on physiological and biochemical activities. Sci Rep 2022; 12:16775. [PMID: 36202839 PMCID: PMC9537412 DOI: 10.1038/s41598-022-20426-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Insect pests of agricultural crops have establish immunological tolerance against fungal infection caused by pathogens via different humoral and cellular processes. Fungal infection can be prevented by insect antioxidant and detoxifying enzymes, but there is no clear understanding of how they physiologically and biochemically interact. Our study aims to examine the antioxidant and detoxifying enzyme defense systems of the pest insect Spodoptera litura in response to infection by Metarhizium flavoviride. At 48 h following exposure to M. flavoviride, antioxidant enzyme levels were modified, and phenoloxidase and total hemocyte count were decreased significantly. The amount of detoxifying enzymes increased significantly. M. flavoviride appears to directly affect the S. litura immune system and results in decreased immunity. In a bioassay, M. flavoviride was found to be harmful to S. litura larvae in their third and fourth instar stage. M. flavoviride may be an effective tool in the control of S. litura larvae. Such entomopathogenic fungi represent cheaper, pollution free, target specific, promising alternatives to synthetic chemical tools in the for control insect pests.
Collapse
|
33
|
Vivekanandhan P, Swathy K, Murugan AC, Krutmuang P. Insecticidal Efficacy of Metarhizium anisopliae Derived Chemical Constituents against Disease-Vector Mosquitoes. J Fungi (Basel) 2022; 8:300. [PMID: 35330302 PMCID: PMC8950813 DOI: 10.3390/jof8030300] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Insecticides can cause significant harm to both terrestrial and aquatic environments. The new insecticides derived from microbial sources are a good option with no environmental consequences. Metarhizium anisopliae (mycelia) ethyl acetate extracts were tested on larvae, pupae, and adult of Anopheles stephensi (Liston, 1901), Aedes aegypti (Meigen, 1818), and Culex quinquefasciatus (Say, 1823), as well as non-target species Eudrilus eugeniae (Kinberg, 1867) and Artemia nauplii (Linnaeus, 1758) at 24 h post treatment under laboratory condition. In bioassays, Metarhizium anisopliae extracts had remarkable toxicity on all mosquito species with LC50 values, 29.631 in Ae. aegypti, 32.578 in An. stephensi and 48.003 in Cx. quinquefasciatus disease-causing mosquitoes, in A. nauplii shows (5.33-18.33 %) mortality were produced by the M. anisopliae derived crude extract. The LC50 and LC90 values were, 620.481; 6893.990 μg/mL. No behavioral changes were observed. A low lethal effect was observed in E. eugeniae treated with the fungi metabolites shows a 14.0 % mortality. The earthworm E. eugeniae mid-gut histology revealed that M. anisopliae extracts had no more harmful effects on the epidermis, circular muscle, setae, mitochondrion, and intestinal lumen tissues than chemical pesticides. By Liquid chromatography mass spectrometry (LC-MS) analysis, camphor (25.4 %), caprolactam (20.68 %), and monobutyl phthalate (19.0 %) were identified as significant components of M. anisopliae metabolites. Fourier transform infrared (FT-IR) spectral investigations revealed the presence of carboxylic acid, amides, and phenol groups, all of which could be involved in mosquito toxicity. The M. anisopliae derived chemical constituents are effective on targeted pests, pollution-free, target-specific, and are an alternative chemical insecticide.
Collapse
Affiliation(s)
- Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kannan Swathy
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
| | - Amarchand Chordia Murugan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur, Gujarat-382735, India; (K.S.); (A.C.M.)
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S, Krutmuang P. Insecticidal Effect of Zinc Oxide Nanoparticles against Spodoptera frugiperda under Laboratory Conditions. INSECTS 2021; 12:insects12111017. [PMID: 34821816 PMCID: PMC8618014 DOI: 10.3390/insects12111017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Fall armyworm has devastated several crops around the world, especially maize that is widely grown and utilized globally. Also, it has been known to cause a lot of damage in rice fields. However, controlling this pest has been a challenge to farmers due to its ability to reproduce faster and its development of resistance to synthetic chemicals, among other factors. Moreover, synthetic chemicals are a threat to the environment and humanity. For these reasons, we are constantly looking for safer yet effective means of controlling this pest, and nanotechnology comes in handy. Zinc Oxide nanoparticles have proved to be efficacious to several insect pests, of which some are in the same genus as Spodoptera frugiperda. This study aimed to find out the insecticidal effects of ZnO nanoparticles on S. frugiperda under laboratory conditions. We observed body deformations, reduced fecundity, reduced oviposition, and mortality when insects were fed on food treated with several concentrations of ZnO nanoparticles, yet the ones fed on control were normal in all the aspects. Therefore, we recommend ZnO nanoparticles for further studies with the aim of using them as an alternative control agent against fall armyworm under field conditions. Abstract Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.
Collapse
Affiliation(s)
- Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Julius Rajula
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Afroja Rahman
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
| | - Perumal Vivekanandhan
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Grambharti, Amarapur Rd, Gujarat 382735, India;
| | - Malee Thungrabeab
- Agricultural Technology Research Institute, Rajamangala University of Technology Lanna, Lampang 52000, Thailand;
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (S.P.); (J.R.); (A.R.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-865-863-008
| |
Collapse
|