1
|
Michael T, Solt I, Daniel S, Levy A, Hochwald O, Borenstein-Levin L, Hazan A, Berkovitch M, Brik A, Rabin AM, Betser M, Moskovich M, Livne A, Keidar R, Schwartsburd F, Weiner Z, Kohn E. The association of prenatal volatile organic compounds exposure and newborn anthropometrics: A cross-sectional study. Int J Hyg Environ Health 2025; 264:114493. [PMID: 39631195 DOI: 10.1016/j.ijheh.2024.114493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Several studies have associated prenatal exposure to volatile organic compounds (VOCs) with adverse health outcomes among newborns. However, little is known about the associations of VOCs at relatively low concentrations with newborn outcomes. Hence, this study aimed to investigate the potential associations between prenatal exposure to VOCs and VOC mixtures with newborn anthropometric measures. METHODS In this cross-sectional study, 883 mother-term infant pairs who lived in urban areas in Israel and were admitted to the delivery rooms of two major hospitals between 2016 and 2020 were recruited. Associations between VOC metabolites detected in maternal urine samples on the day of delivery with weight, length, and head circumference at birth were estimated using single-exposure linear models and weighted quantile sum (WQS) approach. RESULTS Toluene, ethylbenzene/styrene, and xylene metabolites were detected in most samples at levels comparable to OECD populations. In male newborns, higher levels of phenylglyoxylic acid (PGA), a metabolite of ethylbenzene/styrene, were associated with lower birth weight (β = -0.08, 95% CI: 0.14, -0.01; P = 0.03). WQS models suggested PGA as the most prominent contributor to this association. CONCLUSION This study suggests that moderate exposure to ethylbenzene/styrene may be associated with reduced birth weight in male newborns. The sex-specific finding requires further research for the potential endocrine-disrupting mechanisms of these compounds. While the effect size was small, these results highlight the need to better understand the associations of frequent VOC exposures in levels similar to those common in OECD countries with fetal and child development.
Collapse
Affiliation(s)
- Tal Michael
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Ido Solt
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Sharon Daniel
- Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Amalia Levy
- Department of Epidemiology, Biostatistics, and Community Health Sciences, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev Beer-Sheva, Israel; Environment and Health Epidemiology Research Center, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ori Hochwald
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Liron Borenstein-Levin
- Neonatal Intensive Care Unit, Rambam Health Care Campus, and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center, Zerifin, The Andy Lebach Chair of Clinical Pharmacology and Toxicology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Adi Malkoff Rabin
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Moshe Betser
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Miki Moskovich
- Delivery Rooms and Maternity Ward, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| | - Ayelet Livne
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Rimona Keidar
- Neonatal Intensive Care Unit, Shamir (Assaf Harofeh) Medical Center, Sackler School of Medicine, Tel-Aviv University, Israel
| | - Frieda Schwartsburd
- National Residue Control Laboratory, Kimron Veterinary Institute, Veterinary Services, Ministry of Agriculture and Rural Development, Beit Dagan, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Pediatric Division, Shamir (Assaf Harofeh) Medical Center, and Sackler School of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
2
|
Gou L, Ma X, Huang L, Qiu M, Guo R, Jia J, Xu P, Lian N. The characteristics of chronic benzene poisoning in 176 Chinese occupational population cases. Front Public Health 2025; 12:1498114. [PMID: 39901916 PMCID: PMC11788283 DOI: 10.3389/fpubh.2024.1498114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Benzene is a widespread environmental carcinogen known to induce leukemia. Chronic benzene poisoning is a significant occupational health issue in China, particularly among workers exposed to benzene. The aim of this study was to analyze the distribution patterns and trends of occupational benzene poisoning cases. This study included 176 cases who are diagnosed with occupational chronic benzene poisoning, via the Occupational Disease Direct Network Reporting System of the Sichuan Center for Disease Control and Prevention from 2005 to 2019. Data on gender, date of birth, years of benzene exposure, enterprise size, ownership type, industry were collected and descriptively analyzed. No significant differences were observed between males and females in terms of age or benzene exposure duration. The variation in gender distribution across 4 periods highlighted significant differences (χ 2 = 13.06, p = 0.004). Linear regression analysis indicated that the number of workers increased with year as the independent variable (r2 = 0.40, p = 0.016). The working duration of benzene exposure appeared to decline, but this trend was not statistically significant. The majority of employees were in medium and large-sized enterprises. Before 2016, workers were mainly in joint-stock enterprises and equipment manufacturing industries; however, from 2017 to 2019, benzene poisoning cases were increasingly found in private and light industries. Overall, this study may provide data resources for risk assessment among occupational benzene-exposed workers; therefore, the monitoring of benzene concentrations in the workplace should be strengthened, and targeted preventive measures for workers must be effectively implemented to protect their health.
Collapse
Affiliation(s)
- Lian Gou
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Xingyu Ma
- Department of Nutrition, Food Hygiene, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Lili Huang
- Department of Nutrition, Food Hygiene, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
- Department of Health Promotion, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Mei Qiu
- Department of Nutrition, Food Hygiene, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Ruiqing Guo
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, China
| | - Jun Jia
- Department of Animal Experiment, Sichuan Kelun Drug Research Institute Co., Ltd., Chengdu, China
| | - Peiyu Xu
- Department of Nutrition, Food Hygiene, and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China
| | - Nan Lian
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhang Z, Shi W, Ru L, Lv W. Biomarkers of occupational benzene exposure: A Systematic Review to estimate the exposure levels and individual susceptibility at low doses. Toxicol Ind Health 2024; 40:539-555. [PMID: 38864232 DOI: 10.1177/07482337241259053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Benzene is associated with diverse occupational and public health hazards. It exhibits an ability to rapidly permeate the skin and contaminate water and food sources, leading to dermal and ingestion exposures. Despite numerous studies examining the associations between benzene and various indicators of harm, the findings have yielded inconsistent results. Furthermore, relying solely on air concentration as a measure of benzene exposure is limited, as it fails to account for internal exposure dose and individual susceptibility. This study aimed to conduct a comprehensive review in order to present current knowledge on benzene biomarkers and their significance in evaluating exposure levels and associated health hazards. The search methodology adhered to the PRISMA guidelines and involved the application of specific inclusion and exclusion criteria across multiple databases including PubMed, Embase, and Web of Science. Two researchers independently extracted and evaluated the relevant data based on predetermined criteria. Following the screening process, a total of 80 articles were considered eligible out of the initially retrieved 1053 articles after undergoing screening and assessment for inclusion. As the level of exposure decreased, specific biomarkers demonstrated a gradual increase in limitations, including heightened background concentrations and vulnerability to confounding factors. The advancement of sampling and analysis techniques will yield new biomarkers. Additionally, when conducting practical work, it is crucial to employ a comprehensive utilization of diverse biomarkers while excluding individual metabolic variations and combined exposure factors.
Collapse
Affiliation(s)
- Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Zhang S, Tang H, Zhou M, Pan L. Sexual dimorphism association of combined exposure to volatile organic compounds (VOC) with kidney damage. ENVIRONMENTAL RESEARCH 2024; 258:119426. [PMID: 38879106 DOI: 10.1016/j.envres.2024.119426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Epidemiological evidence emphasizes air pollutants' role in chronic kidney disease (CKD). Volatile organic compounds (VOCs) contribute to air pollution, yet research on VOCs and kidney damage, especially gender disparities, is limited. METHODS This study analyzed NHANES data to explore associations between urinary VOC metabolite mixtures (VOCMs) and key kidney-related parameters: estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), chronic kidney disease (CKD), and albuminuria. Mediation analyses assessed the potential mediating roles of biological aging (BA) and serum albumin in VOCM mixtures' effects on kidney damage. Sensitivity analyses were also conducted. RESULTS The mixture analysis unveiled a noteworthy positive association between VOCM mixtures and the risk of developing CKD, coupled with a significant negative correlation with eGFR within the overall participant cohort. These findings remained consistent when examining the female subgroup. However, among male participants, no significant link emerged between VOCM mixtures and CKD or eGFR. Furthermore, in both the overall and female participant groups, there was an absence of a significant correlation between VOCM mixtures and either ACR or albuminuria. On the other hand, in male participants, while no significant correlation was detected with albuminuria, a significant positive correlation was observed with ACR. Pollutant analysis identified potential links between kidney damage and 1,3-butadiene, toluene, ethylbenzene, styrene, xylene, acrolein, crotonaldehyde and propylene oxide. Mediation analyses suggested that BA might partially mediate the relationship between VOCM mixtures and kidney damage. CONCLUSION The current findings highlight the widespread exposure to VOCs among the general U.S. adult population and indicate a potential correlation between exposure to VOC mixtures and compromised renal function parameters, with notable gender disparities. Females appear to exhibit greater sensitivity to impaired renal function resulting from VOCs exposure. Anti-aging treatments may offer some mitigation against kidney damage due to VOCs exposure.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Male Reproductive Health, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China.
| | - Hanhan Tang
- Graduate School of Xuzhou Medical University, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, 221004, China
| | - Minglian Zhou
- Department of Male Reproductive Health, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China; Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China
| | - Linqing Pan
- Clinical Center of Reproductive Medicine, Lianyungang Maternal and Child Health Hospital, Qindongmen Avenue, Haizhou District, Lianyungang, 222000, China
| |
Collapse
|
5
|
Chiavarini M, Rosignoli P, Sorbara B, Giacchetta I, Fabiani R. Benzene Exposure and Lung Cancer Risk: A Systematic Review and Meta-Analysis of Human Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:205. [PMID: 38397694 PMCID: PMC10887806 DOI: 10.3390/ijerph21020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Lung cancer is a leading cause of death with nearly 1.8 million deaths estimated worldwide in 2020. Although benzene is classified as a human carcinogen (Group 1) on the basis of its association with acute myeloid/non-lymphocytic leukaemia, there is still limited evidence that it may influence lung cancer risk. This study examined the potential link between benzene exposure and risk of lung cancer using a systematic review of epidemiological studies and meta-analysis. We searched through PubMed, Web of Science and Scopus databases up to 10 February 2023 to identify all articles on the association between benzene exposure and lung cancer (incidence or prevalence) and/or mortality. We extracted the risk estimates of the highest and the lowest reported categories of benzene exposure and conducted a meta-analysis using a random-effects model. Heterogeneity and publication bias were analysed using an I2 test and funnel plots asymmetry, respectively. Twenty-one studies were included in the final analysis, with a total of 10,750 lung cancer cases and 2899 lung cancer deaths. Overall, risk estimates of lung cancer prevalence and mortality in association with benzene exposure were 1.20 (n = 14; 95% CI 1.05-1.37) and 1.15 (n = 13; 95% CI 1.02-1.30), respectively. In all cases, heterogeneity was quite large, while no significant publication bias was observed. When only studies that adjusted for smoking habit were selected, the risk for lung cancer increased by up to 34% (n = 9; 95% CI 1.10-1.64). Our data, which show a strong association between benzene exposure and lung cancer risk, may have important public health implications. However, further studies are needed to identify the lung cancer risk associated with benzene exposure considering different smoking conditions.
Collapse
Affiliation(s)
- Manuela Chiavarini
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (P.R.); (B.S.)
| | - Beatrice Sorbara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (P.R.); (B.S.)
| | - Irene Giacchetta
- Department of Medicine and Surgery, Section of Public Heath, School of Hygiene and Preventive Medicine, University of Perugia, 06123 Perugia, Italy;
| | - Roberto Fabiani
- Department of Biomedical Sciences and Public Health, Section of Hygiene, Preventive Medicine and Public Health, Polytechnic University of the Marche Region, 60126 Ancona, Italy;
| |
Collapse
|
6
|
Zeidan RS, McElroy T, Rathor L, Martenson MS, Lin Y, Mankowski RT. Sex differences in frailty among older adults. Exp Gerontol 2023; 184:112333. [PMID: 37993077 DOI: 10.1016/j.exger.2023.112333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.
Collapse
Affiliation(s)
- Rola S Zeidan
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Taylor McElroy
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America; Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Laxmi Rathor
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Matthew S Martenson
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Yi Lin
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Robert T Mankowski
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
7
|
Connell ML, Wu CC, Blount JR, Haimbaugh A, Kintzele EK, Banerjee D, Baker BB, Baker TR. Adult-Onset Transcriptomic Effects of Developmental Exposure to Benzene in Zebrafish ( Danio rerio): Evaluating a Volatile Organic Compound of Concern. Int J Mol Sci 2023; 24:16212. [PMID: 38003401 PMCID: PMC10671089 DOI: 10.3390/ijms242216212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Urban environments are afflicted by mixtures of anthropogenic volatile organic compounds (VOCs). VOC sources that drive human exposure include vehicle exhaust, industrial emissions, and oil spillage. The highly volatile VOC benzene has been linked to adverse health outcomes. However, few studies have focused on the later-in-life effects of low-level benzene exposure during the susceptible window of early development. Transcriptomic responses during embryogenesis have potential long-term consequences at levels equal to or lower than 1 ppm, therefore justifying the analysis of adult zebrafish that were exposed during early development. Previously, we identified transcriptomic alteration following controlled VOC exposures to 0.1 or 1 ppm benzene during the first five days of embryogenesis using a zebrafish model. In this study, we evaluated the adult-onset transcriptomic responses to this low-level benzene embryogenesis exposure (n = 20/treatment). We identified key genes, including col1a2 and evi5b, that were differentially expressed in adult zebrafish in both concentrations. Some DEGs overlapped at the larval and adult stages, specifically nfkbiaa, mecr, and reep1. The observed transcriptomic results suggest dose- and sex-dependent changes, with the highest impact of benzene exposure to be on cancer outcomes, endocrine system disorders, reproductive success, neurodevelopment, neurological disease, and associated pathways. Due to molecular pathways being highly conserved between zebrafish and mammals, developmentally exposed adult zebrafish transcriptomics is an important endpoint for providing insight into the long term-effects of VOCs on human health and disease.
Collapse
Affiliation(s)
- Mackenzie L. Connell
- Department of Global and Environmental Health, University of Florida, Gainesville, FL 32610, USA; (M.L.C.); (E.K.K.); (D.B.)
| | - Chia-Chen Wu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City 300093, Taiwan;
| | - Jessica R. Blount
- Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; (J.R.B.); (A.H.)
| | - Alex Haimbaugh
- Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; (J.R.B.); (A.H.)
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Emily K. Kintzele
- Department of Global and Environmental Health, University of Florida, Gainesville, FL 32610, USA; (M.L.C.); (E.K.K.); (D.B.)
| | - Dayita Banerjee
- Department of Global and Environmental Health, University of Florida, Gainesville, FL 32610, USA; (M.L.C.); (E.K.K.); (D.B.)
| | - Bridget B. Baker
- IFAS Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA;
| | - Tracie R. Baker
- Department of Global and Environmental Health, University of Florida, Gainesville, FL 32610, USA; (M.L.C.); (E.K.K.); (D.B.)
- Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; (J.R.B.); (A.H.)
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Ye L, Jiang X, Chen L, Chen S, Li H, Du R, You W, Peng J, Guo P, Zhang R, Yu H, Dong G, Li D, Li X, Chen W, Xing X, Xiao Y. Moderate body lipid accumulation in mice attenuated benzene-induced hematotoxicity via acceleration of benzene metabolism and clearance. ENVIRONMENT INTERNATIONAL 2023; 178:108113. [PMID: 37506515 DOI: 10.1016/j.envint.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Recent population and animal studies have revealed a correlation between fat content and the severity of benzene-induced hematologic toxicity. However, the precise impact of lipid deposition on benzene-induced hematotoxicity and the underlying mechanisms remain unclear. In this study, we established a mouse model with moderate lipid accumulation by subjecting the mice to an 8-week high-fat diet (45% kcal from fat, HFD), followed by 28-day inhalation of benzene at doses of 0, 1, 10, and 100 ppm. The results showed that benzene exposure caused a dose-dependent reduction of peripheral white blood cell (WBC) counts in both diet groups. Notably, this reduction was less pronounced in the HFD-fed mice, suggesting that moderate lipid accumulation mitigates benzene-related hematotoxicity. To investigate the molecular basis for this effect, we performed bioinformatics analysis of high-throughput transcriptome sequencing data, which revealed that moderate lipid deposition alters mouse metabolism and stress tolerance towards xenobiotics. Consistently, the expression of key metabolic enzymes, such as Cyp2e1 and Gsta1, were upregulated in the HFD-fed mice upon benzene exposure. Furthermore, we utilized a real-time exhaled breath detection technique to monitor exhaled benzene metabolites, and the results indicated that moderate lipid deposition enhanced metabolic activation and increased the elimination of benzene metabolites. Collectively, these findings demonstrate that moderate lipid deposition confers reduced susceptibility to benzene-induced hematotoxicity in mice, at least in part, by accelerating benzene metabolism and clearance.
Collapse
Affiliation(s)
- Lizhu Ye
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huiyao Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Du
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei You
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Peng
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Guo
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyao Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiumei Xing
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Wahlang B. RISING STARS: Sex differences in toxicant-associated fatty liver disease. J Endocrinol 2023; 258:e220247. [PMID: 37074385 PMCID: PMC10330380 DOI: 10.1530/joe-22-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.
Collapse
Affiliation(s)
- Banrida Wahlang
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
- UofL Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
10
|
Arellano-González MÁ, López-Ordaz P, Palmerín-Carreño DM, Gracida-Rodríguez J, Arce-Vázquez MB, Mondragón-Cisneros A, Melgarejo-Torres R. Study of a light hydrocarbon fraction spill migration that occurred in an area of the Mexican southeast using computational fluid dynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64265-64284. [PMID: 37067704 DOI: 10.1007/s11356-023-26381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/07/2023] [Indexed: 05/11/2023]
Abstract
The present work aimed to study, predict and understand benzene migration that occurred during an industrial spill using numerical simulation by computational fluid dynamics. Advection, diffusion and adsorption were the main mechanisms considered that governed the spill incident. The incident occurred due to a fracture under a fuel oil storage tank. The tank was located on a hill 18 m high, and the initial value of benzene concentration (soil saturation) was 60 ppm. When the spill was discovered, samples in the affected zone were taken using an experimental design. Many samples showed a greater concentration of benzene than allowed by Mexican Official Standards (MOSs) (15 ppm). The concentrations found 100 m away from the spill were around 60 to 15 ppm. Due to the spill being under the tank, it was difficult to discover. The numerical simulation provided an estimate that the spill started around 2 years ago. The type of soil in the afflicted zone is rocky, and, consequently, it is difficult to estimate how long it will take to reach the concentration allowed by the MOSs, but the numerical simulation predicts that this concentration will be reached in 14 years. Experimental values of the spill contaminant concentration were statistically similar to the CFD estimated data (p < 0.05).
Collapse
Affiliation(s)
- Miguel Ángel Arellano-González
- Department of Chemical Engineering, Faculty of Higher Studies-Zaragoza, The National Autonomous University of Mexico, Batalla 5 de Mayo S/N, Colonia Ejercito de Oriente, 09230, Mexico City, Iztapalapa, Mexico
| | - Pedro López-Ordaz
- Biological Chemistry Division, Tecamac Technological University, Carretera Federal México-Pachuca Km 37.5, Sierra Hermosa, 55740, Estado de Mexico, Mexico
| | - Dulce María Palmerín-Carreño
- Faculty of Chemical, Autonomous University of Queretaro, C.U., Cerro de Las Campanas S/N, Col. Las Campanas, 76010, Santiago de Querétaro, Qro, Mexico
| | - Jorge Gracida-Rodríguez
- Faculty of Chemical, Autonomous University of Queretaro, C.U., Cerro de Las Campanas S/N, Col. Las Campanas, 76010, Santiago de Querétaro, Qro, Mexico
| | - María Belem Arce-Vázquez
- Department of Food Sciences of the Division, Autonomous Metropolitan University-Lerma, Av. de Las Garzas 10, Col. El Panteón, 52005, Lerma de Villada, State of Mexico, Mexico
| | - Analiz Mondragón-Cisneros
- Consultaría Especializada en Implementar, Sistemas Integrados de Gestión (CEISIG) S.A.S. U. Hab. Tenayo Edif, D2-3 Bis Int. 203, Col. Tenayo Norte, C.P. 54140, Tlalnepantla, State of Mexico, Mexico
| | - Rodrigo Melgarejo-Torres
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Mexico City, Mexico.
| |
Collapse
|
11
|
Wahlang B, Gao H, Rai SN, Keith RJ, McClain CJ, Srivastava S, Cave MC, Bhatnagar A. Associations between residential volatile organic compound exposures and liver injury markers: The role of biological sex and race. ENVIRONMENTAL RESEARCH 2023; 221:115228. [PMID: 36610539 PMCID: PMC9957966 DOI: 10.1016/j.envres.2023.115228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 05/28/2023]
Abstract
While occupational exposures to volatile organic compounds (VOCs) have been linked to steatohepatitis and liver cancer in industrial workers, recent findings have also positively correlated low-dose, residential VOC exposures with liver injury markers. VOC sources are numerous; factors including biological make up (sex), socio-cultural constructs (gender, race) and lifestyle (smoking) can influence both VOC exposure levels and disease outcomes. Therefore, the current study's objective is to investigate how sex and race influence associations between residential VOC exposures and liver injury markers particularly in smokers vs. nonsmokers. Subjects (n = 663) were recruited from residential neighborhoods; informed consent was obtained. Exposure biomarkers included 16 urinary VOC metabolites. Serological disease biomarkers included liver enzymes, direct bilirubin, and hepatocyte death markers (cytokeratin K18). Pearson correlations and generalized linear models were conducted. Models were adjusted for common liver-related confounders and interaction terms. The study population constituted approximately 60% females (n = 401) and 40% males (n = 262), and a higher percent of males were smokers and/or frequent drinkers. Both sexes had a higher percent of White (75% females, 82% males) vs. Black individuals. Positive associations were identified for metabolites of acrolein, acrylamide, acrylonitrile, butadiene, crotonaldehyde, and styrene with alkaline phosphatase (ALP), a biomarker for cholestatic injury; and for the benzene metabolite with bilirubin; only in females. These associations were retained in female smokers. Similar associations were also observed between these metabolites and ALP only in White individuals (n = 514). In Black individuals (n = 114), the styrene metabolite was positively associated with aspartate transaminase. Interaction models indicated that positive associations for acrylamide/crotonaldehyde metabolites with ALP in females were dose-dependent. Most VOC associations with K18 markers were negative in this residential population. Overall, the findings demonstrated that biological sex, race, and smoking status influence VOC effects on liver injury and underscored the role of biological-social-lifestyle factor(s) interactions when addressing air pollution-related health disparities.
Collapse
Affiliation(s)
- Banrida Wahlang
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Hong Gao
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Envirome Institute, University of Louisville, Louisville, KY, 40202, USA; Division of Environmental Medicine, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Shesh N Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA; Cancer Data Science Center, Biostatistics and Informatics Shared Resource, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Rachel J Keith
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Envirome Institute, University of Louisville, Louisville, KY, 40202, USA; Division of Environmental Medicine, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Craig J McClain
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Sanjay Srivastava
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Envirome Institute, University of Louisville, Louisville, KY, 40202, USA; Division of Environmental Medicine, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Mathew C Cave
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY, 40202, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Aruni Bhatnagar
- Superfund Research Center, University of Louisville, Louisville, KY, 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, 40202, USA; Envirome Institute, University of Louisville, Louisville, KY, 40202, USA; Division of Environmental Medicine, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| |
Collapse
|
12
|
Owusu BA, Lim A, Pongsiri N, Intawong C, Rheanpumikankit S, Suksri S, Ingviya T. Latent Trajectories of Haematological, Hepatic, and Renal Profiles after Oil Spill Exposure: A Longitudinal Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2871. [PMID: 36833568 PMCID: PMC9956276 DOI: 10.3390/ijerph20042871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) in crude oil has carcinogenic effects on various organ systems. This longitudinal cohort study examined the effects of oil spill exposure on the haematological, hepatic, and renal profiles of Rayong oil spill clean-up workers. The sample included 869 clean-up workers from the Rayong oil spill. Latent class mixture models were used to investigate and classify the longitudinal trajectories and trends of the haematological, hepatic, and renal indices. Subgroup analysis was used to evaluate the association between the urinary metabolites of PAHs and VOCs and haematological, hepatic, and renal parameters. Most clean-up workers (97.6%) had increasing levels of white blood cells (WBCs) (0.03 × 103 cells/µL), 94.90% of the workers had a significantly increasing trend of blood urea nitrogen (0.31 mg/dL per year), and 87.20% had a significantly increasing trend of serum creatinine (0.01 mg/dL per year). A high-decreasing trend of WBCs was seen in 2.42% (-0.73 × 103 per year). Post-exposure changes in haematological, renal, and hepatic profiles are present in workers exposed to the Rayong oil spill. This indicates possible long-term health complications and worsening renal function after exposure to PAHs and VOCs in crude oil.
Collapse
Affiliation(s)
- Benjamin Atta Owusu
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
- Multidisciplinary Research and Innovation Centre, Kumasi AOK569, Ghana
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
| | - Apiradee Lim
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
| | - Nitinun Pongsiri
- Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand
- Multidisciplinary Research and Innovation Centre, Kumasi AOK569, Ghana
| | - Chanthip Intawong
- Occupational Medicine Department, Rayong Hospital, Rayong 21000, Thailand
| | | | - Saijit Suksri
- Rayong Provincial Public Health Office, Rayong 21000, Thailand
| | - Thammasin Ingviya
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai Campus, Songkhla 90110, Thailand
| |
Collapse
|
13
|
Mozzoni P, Poli D, Pinelli S, Tagliaferri S, Corradi M, Cavallo D, Ursini CL, Pigini D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1920. [PMID: 36767288 PMCID: PMC9914606 DOI: 10.3390/ijerph20031920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.
Collapse
Affiliation(s)
- Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Cinzia Lucia Ursini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| |
Collapse
|
14
|
Lederer V, Messing K, Sultan-Taïeb H. How Can Quantitative Analysis Be Used to Improve Occupational Health without Reinforcing Social Inequalities? An Examination of Statistical Methods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:19. [PMID: 36612341 PMCID: PMC9819275 DOI: 10.3390/ijerph20010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Taking account of sex and gender in occupational health studies poses statistical challenges. Other sociodemographic variables, such as racialization, class, and age, also affect the relations between workplace exposures and health and interact with sex and gender. Our objective was to perform a critical review of conventional and emerging statistical tools, examining whether each analysis takes account of sociodemographic variables (1) in a way that contributes to identification of critical occupational determinants of health (2) while taking account of relevant population characteristics to reflect intersectional approaches to health and (3) using sample sizes and population characteristics available to researchers. A two-step search was conducted: (1) a scientific watch concerning the statistical tools most commonly used in occupational health over the past 20 years; (2) a screening of the 1980-2022 literature with a focus on emerging tools. Our examination shows that regressions with adjustment for confounders and stratification fail to reveal the sociodemographic mechanisms that interact with occupational health problems, endangering the identification of occupational risks. Multilevel (notably MAIHDA) analyses, decision tree, cluster, and latent analyses are useful methods to consider when seeking to orientate prevention. Researchers should consider methods that adequately reveal the mechanisms connecting sociodemographic variables and occupational health outcomes.
Collapse
Affiliation(s)
- Valérie Lederer
- Department of Industrial Relations, Université du Québec en Outaouais, Gatineau, QC J8X 3X7, Canada
| | - Karen Messing
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Hélène Sultan-Taïeb
- Department of Organization and Human Resources, School of Management (ESG-UQAM), Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|