1
|
Elfellaki N, Berrouch S, Biary A, Goïta S, Rafi H, Lachkar H, Dehhani O, de Rougemont A, Bourlet T, Hafid JE. Comparison of four concentration methods of adenovirus, norovirus and rotavirus in tap water. J Virol Methods 2024; 330:115013. [PMID: 39209160 DOI: 10.1016/j.jviromet.2024.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Human enteric viruses, as adenovirus (HAdV), norovirus (HuNoV) and rotavirus (RVA) are significant causes of gastroenteritis associated with consumption of contaminated water worldwide. Various methods have been described for their detection and monitoring in water. The aim of this study was to compare the performance of four conditions for concentrating HAdV, HuNoV and RVA from water matrices, in order to develop a single protocol that could simultaneously concentrate all target viruses from tap water. The tested conditions were based on the adsorption-elution using electronegative filters, in which we evaluated cation-coated filtration by MgCl2 with or without acid rinse by H2SO4 and two elution buffers, namely NaOH and tris-glycine-beef extract. Genomic material was extracted and amplified by real-time PCR and real-time RT-PCR using commercial kits. Based on the statistical analysis of amplification results (cycles of quantification), the condition involving cation-coated filtration by MgCl2 using electronegative filters with acid rinse by H2SO4 combined with NaOH elution allowed efficient recovery of both HAdV, HuNoV and RVA from tap water compared to the other conditions. These findings confirm the effectiveness of the approach used to monitor three major enteric viruses in tap water.
Collapse
Affiliation(s)
- Nouhaila Elfellaki
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Berrouch
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco; Higher School of Technology of El Kelâa des Sraghna, Cadi Ayyad University, El Kelâa des Sraghna, Morocco
| | - Abdelkader Biary
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Simeon Goïta
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Houda Rafi
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Hibatallah Lachkar
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Oussama Dehhani
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon Bourgogne, France
| | - Thomas Bourlet
- Infectious Agents and Hygiene Department, University Hospital of Saint Etienne, Saint-Etienne, France
| | - Jamal Eddine Hafid
- Laboratory of Bioresources and Food Safety, Faculty of Sciences and Technology, Cadi Ayyad University, Marrakech, Morocco.
| |
Collapse
|
2
|
Zulli A, Chan EMG, Boehm AB. Detection of Hepatovirus A (HAV) in wastewater indicates widespread national distribution and association with socioeconomic indicators of vulnerability. mSphere 2024; 9:e0064524. [PMID: 39475316 PMCID: PMC11580403 DOI: 10.1128/msphere.00645-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Wastewater-based epidemiology, which seeks to assess disease occurrence in communities through measurements of infectious disease biomarkers in wastewater, may represent a valuable tool for understanding the occurrence of hepatitis A infections in communities. In this study, we measured concentrations of Hepatovirus A (HAV) RNA, in samples from 191 wastewater treatment plants spanning 40 US states and the District of Columbia from September 2023 to June 2024 and compared the measurements with traditional measures of disease occurrence. Nationally, 13.76% of the 21,079 wastewater samples were positive for HAV RNA, and both concentrations and positivity rates were associated with NNDSS hepatitis A case data nationally (Kendall rank correlation coefficient = 0.20, concentrations; and 0.33, positivity rate; both P < 0.05). We further demonstrated that higher rates of wastewater HAV detection were positively associated with socioeconomic indicators of vulnerability including homelessness and drug overdose deaths (both P < 0.0001). Areas with above average levels of homelessness were 48% more likely to have HAV wastewater detections, while areas with above average levels of drug overdose deaths were 14% more likely to have HAV wastewater detections. Using more granular case data, we present a case study in the state of Maine that reinforces these results and suggests a potential lead time for wastewater over clinical case detection and exposure events. The ability to detect HAV RNA in wastewater before clinical cases emerge could allow public health officials to implement targeted interventions like vaccination campaigns.IMPORTANCEDespite the existence of a highly effective vaccine for hepatitis A, outbreaks in vulnerable populations remain common. The disease can be asymptomatic or subclinical, and disproportionately impacts populations with inadequate access to healthcare, leading to a severe underestimation of the occurrence of this viral infection. This study investigates the potential for wastewater measurements of biomarkers of the causative agent of hepatitis A (HAV RNA) to provide insights into disease occurrence. Results highlight the potential for wastewater-based epidemiology to be a complementary tool to traditional surveillance for monitoring and controlling HAV transmission.
Collapse
Affiliation(s)
- Alessandro Zulli
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Elana M. G. Chan
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Kevill JL, Li X, Garcia-Delgado A, Herridge K, Farkas K, Gaze W, Robins P, Malham SK, Jones DL. Microcosm experiment investigating climate-induced thermal effects on human virus viability in seawater: qPCR vs capsid integrity for enhanced risk management. MARINE POLLUTION BULLETIN 2024; 208:117006. [PMID: 39342910 DOI: 10.1016/j.marpolbul.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Climate change is intensifying extreme weather events in coastal areas, leading to more frequent discharge of untreated wastewater containing human viruses into coastal waters. This poses a health risk, especially during heatwaves when bathing activity increases. A study examined the survival and viability of seven common wastewater viruses in seawater at different temperatures. Viral genomes were quantified using direct qPCR, whilst viability was assessed using Capsid Integrity qPCR. Results showed that T90 values from direct qPCR were much higher than those from CI-qPCR, suggesting that risk mitigation should be based on viral integrity tests. All viruses remained potentially viable for at least 72 h in environmental seawater and longer in sterile artificial seawater, highlighting the importance of biotic processes in viral inactivation. Viral persistence decreased with increasing temperature. Whilst heatwaves may partially reduce risks from human viral pathogens in coastal waters, they do not eliminate them entirely.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| | - Xiaorong Li
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Alvaro Garcia-Delgado
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - William Gaze
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Peter Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
4
|
de Jong M, van der Loeff MFS, Schilperoort R, Vennema H, van der Weijden C, Langeveld J, Welkers M, Prins M, de Roda Husman AM, Fanoy E, Medema G. Use of passive samplers as sewage surveillance tool to monitor a hepatitis A outbreak at a school in Amsterdam, the Netherlands, Oct 2022 - March 2023. BMC Infect Dis 2024; 24:1044. [PMID: 39333937 PMCID: PMC11430438 DOI: 10.1186/s12879-024-09938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Enteric hepatitis A virus (HAV) infections during childhood are often asymptomatic but may cause severe illness in adults. To improve public health surveillance we assessed the applicability of sewage monitoring during an HAV outbreak at a primary school. METHODS Between October 19 and December 27, 2022, five symptomatic HAV cases were notified to the Public Health Service Amsterdam; all attended the same primary school. Passive samplers, small absorbent tools, were deployed in sewage near the school from November 14, 2022, to March 22, 2023. The absorbents were subjected to RNA extraction, HAV PCR testing, and, if positive, sequencing. PCR and sequencing were also performed on plasma and feces samples of HAV cases. RESULTS In 22 out of 88 (25%) of sewage samples, HAV RNA was detected. All HAV-RNA-positive sewage samples until 8 February 2023 were subgenotype IB, matching the strain detected in all cases. Another strain of HAV (subgenotype IA) was detected in sewage from 15 February 2023 onwards, without associated cases. CONCLUSIONS Passive sampler-based sewage monitoring is an effective method to rapidly detect HAV shedding linked to diagnosed cases. It detects unnoticed viral infections and allows monitoring of outbreaks. This suggests that passive sampler-based monitoring is a promising tool supporting the public health response during HAV and other outbreaks.
Collapse
Affiliation(s)
- Maarten de Jong
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands.
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam Infection & Immunity Institute, AmsterdamUMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Harry Vennema
- Department of Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Charlie van der Weijden
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
| | | | - Matthijs Welkers
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, AmsterdamUMC, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam Infection & Immunity Institute, AmsterdamUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ana Maria de Roda Husman
- Department of Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ewout Fanoy
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
5
|
Juraev J, Mirzaev U, Juraev I, Baynazarov M, Kurbanov B. A Comparative Analysis of Drinking Water Provision and Hepatitis A Incidence in Uzbekistan in 2010-2023. Cureus 2024; 16:e68347. [PMID: 39355068 PMCID: PMC11442888 DOI: 10.7759/cureus.68347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Objective This study aims to analyze the relationship between access to safe drinking water and the incidence of hepatitis A in Uzbekistan from 2010 to 2023 to inform public health strategies for disease prevention. Methods We utilized hepatitis A incidence data from the Sanitary and Epidemiological Well-Being and Public Health Authority and drinking water provision data from the Government Statistics Agency of Uzbekistan. A linear regression analysis was performed using R 4.3.2 to investigate the correlation between these variables. The study examined hepatitis A cases per 100,000 population and the percentage of households with access to safe drinking water. Results Hepatitis A incidence fluctuated significantly over the study period, with a notable spike to 162 cases per 100,000 population in 2023, despite relatively stable access to safe drinking water (ranging from 67.4% to 77% of households). The analysis revealed a complex relationship between water access and hepatitis A incidence. The linear regression coefficient was 3.89 (adjusted R-squared: 0.3021, P-value: 0.02), indicating that each growing percent of water supply is raising the incidence of hepatitis 3.89 cases of hepatitis infection. Conclusion The reverse effect of water supply percentage and the incidence of hepatitis A incidence in Uzbekistan suggests that other factors play significant roles in disease transmission. These may include sanitation practices, hygiene behaviors, and vaccination coverage. The findings emphasize the need for a multifaceted approach to hepatitis A prevention, incorporating improved water infrastructure, enhanced sanitation, public education, and comprehensive vaccination programs. Further research is needed to identify specific determinants of hepatitis A transmission in Uzbekistan to guide targeted interventions and public health policies.
Collapse
Affiliation(s)
- Jasur Juraev
- Department of Preventive Services, Kyoto University, Kyoto, JPN
| | - Ulugbek Mirzaev
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| | - Ilkhom Juraev
- Department of Traumatology and Orthopedics, Samarkand State Medical University, Samarkand, UZB
| | - Mirzarakhim Baynazarov
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| | - Botirjon Kurbanov
- Department of Epidemiology and Public Health, Sanitary-Epidemiological Welfare and Public Health Committee Under the Ministry of Health of the Republic of Uzbekistan, Tashkent, UZB
| |
Collapse
|
6
|
Ré VE, Ridruejo E, Fantilli AC, Moutinho BD, Pisano MB, Pessoa MG. Hepatitis A in Latin America: The current scenario. Rev Med Virol 2024; 34:e2566. [PMID: 38970225 DOI: 10.1002/rmv.2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
This review aims to gather and disseminate updated information regarding hepatitis A virus (HAV) in Latin America (LA) in the last 11 years, including seroprevalence, post-vaccination studies, virus detection in aqueous matrices and food samples, and outbreak reports. Only 24 seroprevalence studies were published between 2012 and 2023 with 55%-100% reported prevalences of anti-HAV IgG. Among the 25 LA countries, only eight of them have introduced HAV vaccines into their immunisation programs. Outbreaks of hepatitis A occurred between 2017-2019, mainly affecting men who have sex with men in Argentina, Brazil and Chile, probably as a consequence of the abrupt decline of young adults' immunity. This could be due to that young adult have never been infected in childhood (due to socio-health improvements) and are above the cut-off ages to be included when the vaccination programs were introduced. Although scarce, studies focused on environmental and food HAV surveillance have shown viral presence in these samples. Surface waters presented HAV detections between 1.2% and 86.7%, and untreated wastewaters between 2.8% and 70.9%. Genotypes found in all cases were IA and IC. The only wastewater-based epidemiology study showed to be a useful tool as a complement of traditional epidemiological surveillance. Only four LA countries have looked for HAV in food samples, with genome detection rates between 9% and 33%. Latin American HAV circulation scenario is changing. In countries where socioeconomic and sanitary conditions have not improved, the virus persists with high endemicity and the access to the vaccine should be re-evaluated by local governments. In countries where access to clean water, better sanitary conditions and HAV immunisation programs have been implemented, the number of cases among young adults seems to be increasing, alerting health authorities.
Collapse
Affiliation(s)
- Viviana E Ré
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Ridruejo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Department of Medicine. Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno 'CEMIC', Hepatology Section, Viral Hepatitits Special Interest Group, Latin American Association for the Study of the Liver (ALEH), Buenos Aires, Argentina
| | - Anabella C Fantilli
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Bruna Damásio Moutinho
- Department of Gastroenterology, Division of Clinical Gastroenterology and Hepatology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - María Belén Pisano
- Facultad de Ciencias Médicas, Instituto de Virología 'Dr. J. M. Vanella', Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mário Guimarães Pessoa
- Department of Gastroenterology, Division of Clinical Gastroenterology and Hepatology, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
7
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ondigui Ndzie JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko'o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Suffredini E, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Verani M, Federigi I, Carducci A, La Rosa G. Exploring adenovirus in water environments: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2504-2516. [PMID: 37678554 DOI: 10.1080/09603123.2023.2255559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
Adenoviruses (AdVs) have a significant impact in both medical and environmental contexts. The objective of this study was to investigate the prevalence of AdV in different water types, such as untreated and treated wastewater, surface water, groundwater, drinking water, and other water matrices. A total of 239 articles were included in this meta-analysis. Adenoviruses were detected in various waters worldwide. The overall prevalence in water was found to be 59.2%, with the highest prevalence in untreated wastewater (83.1%) and treated wastewater (75.3%), followed by "other water matrices" (53.4%), surface water (49.5%) drinking water (22.7%), and groundwater (18.5%). Most of the studies did not assess the viability of the viruses, leading to weak links between water contamination and risk. Both human and animal AdV were found in water environments. The findings suggest that water, including drinking water, could be a significant route of AdV transmission in both developed and developing economies.
Collapse
Affiliation(s)
- G R Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - S Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - C Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J L Ondigui Ndzie
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - R Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | - S Tchatchouang
- Scientific Direction, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - J Kenfack-Zanguim
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | - R Lontuo Fogang
- Department of Animal Biology, University of Dschang, Dschang, Cameroon
| | - E Zeuko'o Menkem
- Department of Biomedical Sciences, University of Buea, Buea, Cameroon
| | - G I Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary public health, Istituto Superiore di Sanità, Rome, Italy
| | - C Veneri
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - G Bonanno Ferraro
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| | - M Verani
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Pisa, Italy
| | - I Federigi
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Pisa, Italy
| | - A Carducci
- Hygiene and Environmental Virology Laboratory, Department of Biology, University of Pisa, Pisa, Italy
| | - G La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Usuda D, Kaneoka Y, Ono R, Kato M, Sugawara Y, Shimizu R, Inami T, Nakajima E, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Shimozawa S, Hotchi Y, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Nomura T, Sugita M. Current perspectives of viral hepatitis. World J Gastroenterol 2024; 30:2402-2417. [PMID: 38764770 PMCID: PMC11099385 DOI: 10.3748/wjg.v30.i18.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuki Kaneoka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Rikuo Ono
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Masashi Kato
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuto Sugawara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Runa Shimizu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomotari Inami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Eri Nakajima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
9
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Martella V, Veneri C, Mancini P, Ferraro GB, Iaconelli M, Suffredini E, La Rosa G. Assessing the Prevalence of Astroviruses in Water Environments: A Systematic Review and Meta-analysis. ACS ES&T WATER 2023; 3:3782-3789. [PMID: 38094915 PMCID: PMC10714392 DOI: 10.1021/acsestwater.3c00415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2024]
Abstract
Astroviruses (AstVs) are a major cause of gastroenteritis, especially in children. They can be transmitted through various pathways, including environmental contamination via water matrices. This study aimed to investigate the prevalence of AstV in different types of water, such as untreated and treated wastewater, surface water (e.g., rivers, lakes, and seawater), groundwater, drinking water, and other water matrices (e.g., irrigation water, gray water, reservoir water, floodwater, and pig slaughterhouse effluents). The meta-analysis included 80 articles, and the overall prevalence of AstV in water matrices was 36.6% [95% confidence interval (CI) of 29.6-44.0]. The highest prevalence was found in untreated wastewater at 56.8% (95% CI of 41.5-71.5), followed by treated wastewater at 48.5% (95% CI of 30.6-66.5), surface water at 28.6% (95% CI of 21.1-36.7), other matrices at 9.8% (95% CI of 0.7-25.3), drinking water at 3.3% (95% CI of 0.2-8.7), and groundwater at 0.5% (95% CI of 0.0-3.4). The most frequent AstVs detected in water environments were human AstVs, but canine and feline AstVs were also detected. Our findings highlight the importance of water as a potential route for AstV transmission, even in high-income countries. Effective water surveillance and treatment measures are necessary to minimize AstV environmental circulation and human infection through water.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre
for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Sebastien Kenmoe
- Department
of Microbiology and Parasitology, University
of Buea, Buea 00237, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological
Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Douala 00237, Cameroon
| | - Donatien Serge Mbaga
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | - Arnol Bowo-Ngandji
- Department
of Microbiology, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | - Raoul Kenfack-Momo
- Department
of Biochemistry, The University of Yaounde
I, Yaounde 00237, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical
Research Centre, Institute of Medical Research
and Medicinal Plants Studies, Yaounde 00237, Cameroon
| | | | - Vito Martella
- Department
of Veterinary Medicine, University of Bari
Aldo Moro, 70010 Valenzano, Italy
| | - Carolina Veneri
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Pamela Mancini
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Giusy Bonanno Ferraro
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Marcello Iaconelli
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| | - Elisabetta Suffredini
- Department
of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Giuseppina La Rosa
- National
Center for Water Safety (CeNSia), Istituto
Superiore di Sanità, Rome, 00162, Italy
| |
Collapse
|
10
|
Fallucca A, Restivo V, Sgariglia MC, Roveta M, Trucchi C. Hepatitis a Vaccine as Opportunity of Primary Prevention for Food Handlers: A Narrative Review. Vaccines (Basel) 2023; 11:1271. [PMID: 37515087 PMCID: PMC10383099 DOI: 10.3390/vaccines11071271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The hepatitis A virus (HAV) is still a leading cause of viral hepatitis worldwide. After a long incubation period, the clinical manifestations range from asymptomatic infection to acute liver failure. The severity of the disease increases with age and pre-existing liver disease. The transmission is mainly via person-to-person contact or ingestion of contaminated food or water. Food contamination can occur at any step of the food chain, especially when infected people handle not-heated or otherwise-treated food. HAV is endemic in low-income countries because of poor sanitary and sociodemographic conditions. The populations of developed countries are highly susceptible, and large outbreaks occur when HAV is introduced from endemic countries due to globalization, travel, and movement of foodstuffs. HAV prevention includes hygiene practices, immunoglobulins, and vaccination. Safe and effective inactivated and live attenuated vaccines are available and provide long-term protection. The vaccine targets are children and subjects at increased risk of HAV exposure or serious clinical outcomes. This review discusses the critical role of food handlers in the spread of HAV and the opportunity for food industry employers to consider food handler immunization a tool to manage both food safety in compliance with HACCP principles and food operators' biologic risk.
Collapse
Affiliation(s)
- Alessandra Fallucca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Vincenzo Restivo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Department of Prevention, Local Health Unit 3, 16142 Genoa, Italy
| |
Collapse
|