1
|
Jiang W, Tong T, Chen X, Deng F, Zeng F, Pan R, Zhang W, Chen G, Chen ZH. Molecular response and evolution of plant anion transport systems to abiotic stress. PLANT MOLECULAR BIOLOGY 2022; 110:397-412. [PMID: 34846607 DOI: 10.1007/s11103-021-01216-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We propose that anion channels are essential players for green plants to respond and adapt to the abiotic stresses associated changing climate via reviewing the literature and analyzing the molecular evolution, comparative genetic analysis, and bioinformatics analysis of the key anion channel gene families. Climate change-induced abiotic stresses including heatwave, elevated CO2, drought, and flooding, had a major impact on plant growth in the last few decades. This scenario could lead to the exposure of plants to various stresses. Anion channels are confirmed as the key factors in plant stress responses, which exist in the green lineage plants. Numerous studies on anion channels have shed light on their protein structure, ion selectivity and permeability, gating characteristics, and regulatory mechanisms, but a great quantity of questions remain poorly understand. Here, we review function of plant anion channels in cell signaling to improve plant response to environmental stresses, focusing on climate change related abiotic stresses. We investigate the molecular response and evolution of plant slow anion channel, aluminum-activated malate transporter, chloride channel, voltage-dependent anion channel, and mechanosensitive-like anion channel in green plant. Furthermore, comparative genetic and bioinformatic analysis reveal the conservation of these anion channel gene families. We also discuss the tissue and stress specific expression, molecular regulation, and signaling transduction of those anion channels. We propose that anion channels are essential players for green plants to adapt in a diverse environment, calling for more fundamental and practical studies on those anion channels towards sustainable food production and ecosystem health in the future.
Collapse
Affiliation(s)
- Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xuan Chen
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia.
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia.
| |
Collapse
|
2
|
Ashraf M, Mao Q, Hong J, Shi L, Ran X, Liaquat F, Uzair M, Liang W, Fernie AR, Shi J. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:3616-3627. [PMID: 34173257 DOI: 10.1111/pce.14138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) transport plays a crucial role in seed germination under unfavourable conditions such as cold stress. Both heat shock protein 70 (HSP70) and voltage-dependent anion channel (VDAC) protein are involved in cold stress responses in Arabidopsis. However, their roles in seed germination with regard to ABA signaling remain unknown. Here we demonstrated that Arabidopsis HSP70-16 and VDAC3 jointly suppress seed germination under cold stress conditions. At 4°C, both HSP70-16 and VDAC3 facilitated the efflux of ABA from the endosperm to the embryo and thus inhibited seed germination. HSP70-16 interacted with VDAC3 on the plasma membrane and in the nucleus, and the interplay between HSP70-16 and VDAC3 activated the opening of the VDAC3 ion channel. Our work established a novel function of HSP70-16 in seed germination under cold stress and a possible association of VDAC3 activity with ABA transportation from endosperm to embryo under cold stress conditions. This study reveals that HSP70-16 interacts with VDAC3 and facilitates the opening of the VDAC3 ion channel, which influences ABA efflux from endosperm to embryo, thus negatively regulates seed germination under cold stress.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoruo Ran
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111603. [PMID: 34769031 PMCID: PMC8584032 DOI: 10.3390/ijms222111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are the most important proteins in mitochondria. They localize to the outer mitochondrial membrane and contribute to the metabolite transport between the mitochondria and cytoplasm, which aids plant growth regulation. Here, we report that Arabidopsis thaliana VDAC1 is involved in the floral transition, with the loss of AtVDAC1 function, resulting in an early-flowering phenotype. AtVDAC1 is expressed ubiquitously in Arabidopsis. To identify the flowering pathway integrators that may be responsible for AtVDAC1′s function during the floral transition, an RNA-seq analysis was performed. In total, 106 differentially expressed genes (DEGs) were identified between wild-type and atvdac1-5 mutant seedlings. However, none were involved in flowering-related pathways. In contrast, AtVDAC1 physically associated with FLOWERING LOCUS T. Thus, in the floral transition, AtVDAC1 may function partly through the FLOWERING LOCUS T protein.
Collapse
|
4
|
Xu T, Wang X, Ma H, Su L, Wang W, Meng J, Xu Y. Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:670505. [PMID: 34220892 PMCID: PMC8242593 DOI: 10.3389/fpls.2021.670505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the most abundant proteins in the mitochondrial outer membranes of all eukaryotic cells. They participate in mitochondrial energy metabolism, mitochondria-mediated apoptosis, and cell growth and reproduction. Here, the chromosomal localizations, gene structure, conserved domains, and phylogenetic relationships were analyzed. The amino acid sequences of VDACs were found to be highly conserved. The tissue-specific transcript analysis from transcriptome data and qRT-PCR demonstrated that grapevine VDACs might play an important role in plant growth and development. It was also speculated that VDAC3 might be a regulator of modulated leaf and berry development as the expression patterns during these developmental stages are up-regulated. Further, we screened the role of all grape VDACs' response to pathogen stress and found that VDAC3 from downy mildew Plasmopara viticola-resistant Chinese wild grapevine species Vitis piasezkii "Liuba-8" had a higher expression than the downy mildew susceptible species Vitis vinifera cv. "Thompson Seedless" after inoculation with P. viticola. Overexpression of VpVDAC3 resulted in increased resistance to pathogens, which was found to prevent VpVDAC3 protein accumulation through protein post-transcriptional regulation. Taken together, these data indicate that VpVDAC3 plays a role in P. viticola defense and provides the evidence with which to understand the mechanism of grape response to pathogen stress.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Sanyal SK, Kanwar P, Fernandes JL, Mahiwal S, Yadav AK, Samtani H, Srivastava AK, Suprasanna P, Pandey GK. Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast. FRONTIERS IN PLANT SCIENCE 2020; 11:50. [PMID: 32184792 PMCID: PMC7058595 DOI: 10.3389/fpls.2020.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Voltage-dependent anion channels (VDACs) are conserved proteins of the mitochondria. We have functionally compared Arabidopsis VDACs using Saccharomyces cerevisiae Δpor1 and M3 yeast system. VDAC (1, 2, and 4) were able to restore Δpor1 growth in elevated temperature, in oxidative and salt stresses, whereas VDAC3 only partially rescued Δpor1 in these conditions. The ectopic expression of VDAC (1, 2, 3, and 4) in mutant yeast recapitulated the mitochondrial membrane potential thus, enabled it to maintain reactive oxygen species homeostasis. Overexpression of these VDACs (AtVDACs) in M3 strain did not display any synergistic or antagonistic activity with the native yeast VDAC1 (ScVDAC1). Collectively, our data suggest that Arabidopsis VDACs are involved in regulating respiration, reactive oxygen species homeostasis, and stress tolerance in yeast.
Collapse
Affiliation(s)
- Sibaji K. Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akhilesh K. Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
6
|
dos Santos EC, Pirovani CP, Correa SC, Micheli F, Gramacho KP. The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´ broom disease. BMC PLANT BIOLOGY 2020; 20:1. [PMID: 31898482 PMCID: PMC6941324 DOI: 10.1186/s12870-019-2170-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Witches' broom disease (WBD) of cacao (Theobroma cacao L.), caused by Moniliophthora perniciosa, is the most important limiting factor for the cacao production in Brazil. Hence, the development of cacao genotypes with durable resistance is the key challenge for control the disease. Proteomic methods are often used to study the interactions between hosts and pathogens, therefore helping classical plant breeding projects on the development of resistant genotypes. The present study compared the proteomic alterations between two cacao genotypes standard for WBD resistance and susceptibility, in response to M. perniciosa infection at 72 h and 45 days post-inoculation; respectively the very early stages of the biotrophic and necrotrophic stages of the cacao x M. perniciosa interaction. RESULTS A total of 554 proteins were identified, being 246 in the susceptible Catongo and 308 in the resistant TSH1188 genotypes. The identified proteins were involved mainly in metabolism, energy, defense and oxidative stress. The resistant genotype showed more expressed proteins with more variability associated with stress and defense, while the susceptible genotype exhibited more repressed proteins. Among these proteins, stand out pathogenesis related proteins (PRs), oxidative stress regulation related proteins, and trypsin inhibitors. Interaction networks were predicted, and a complex protein-protein interaction was observed. Some proteins showed a high number of interactions, suggesting that those proteins may function as cross-talkers between these biological functions. CONCLUSIONS We present the first study reporting the proteomic alterations of resistant and susceptible genotypes in the T. cacao x M. perniciosa pathosystem. The important altered proteins identified in the present study are related to key biologic functions in resistance, such as oxidative stress, especially in the resistant genotype TSH1188, that showed a strong mechanism of detoxification. Also, the positive regulation of defense and stress proteins were more evident in this genotype. Proteins with significant roles against fungal plant pathogens, such as chitinases, trypsin inhibitors and PR 5 were also identified, and they may be good resistance markers. Finally, important biological functions, such as stress and defense, photosynthesis, oxidative stress and carbohydrate metabolism were differentially impacted with M. perniciosa infection in each genotype.
Collapse
Affiliation(s)
- Everton Cruz dos Santos
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
| | - Stephany Cristiane Correa
- Stem Cell Laboratory, Bone Marrow Transplantation Center (CEMO), National Cancer Institute (INCA), Rio de Janeiro, RJ Brazil
| | - Fabienne Micheli
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Karina Peres Gramacho
- Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus, Bahia 45652-900 Brazil
- Molecular Plant Pathology Laboratory, Cocoa Research Center (CEPEC), CEPLAC, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia 45600-970 Brazil
| |
Collapse
|
7
|
Zhang M, Liu S, Takano T, Zhang X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. PLANTA 2019; 249:417-429. [PMID: 30225672 DOI: 10.1007/s00425-018-3010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
- School of Medicine, He University, Shenyang, 110163, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
8
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
9
|
Laino P, Russo MP, Guardo M, Reforgiato-Recupero G, Valè G, Cattivelli L, Moliterni VMC. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. PHYSIOLOGIA PLANTARUM 2016; 156:444-67. [PMID: 26459956 DOI: 10.1111/ppl.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection.
Collapse
Affiliation(s)
- Paolo Laino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Maria P Russo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Maria Guardo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giuseppe Reforgiato-Recupero
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giampiero Valè
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rice Research Unit, Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Vita M C Moliterni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| |
Collapse
|
10
|
Zhang M, Takano T, Liu S, Zhang X. Arabidopsismitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 2015; 589:1207-13. [DOI: 10.1016/j.febslet.2015.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/20/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
|
11
|
Luo C, He XH, Hu Y, Yu HX, Ou SJ, Fang ZB. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 2014; 548:182-9. [PMID: 25017057 DOI: 10.1016/j.gene.2014.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango.
Collapse
Affiliation(s)
- Cong Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, Guangxi 530007, China.
| | - Ying Hu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-xia Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Jin Ou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong-Bin Fang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Abstract
Voltage-dependent anion channels (VDACs), known as outer mitochondrial membrane proteins, are present in all eukaryotic cells. In mammals, they are now recognized to play crucial roles in the regulation of metabolic and energetic functions of mitochondria as well as in mitochondria-mediated apoptosis, in association with various proteins and non-protein modulators. Although there is much less information available for plant than for animal VDACs, their similar electrophysiological and topological properties suggest that some common functions are conserved among eukaryotic VDACs. Recently, it has been revealed that plant VDACs also have various important physiological functions not only in developmental and reproductive processes, but also in biotic and abiotic stress responses, including programmed cell death. In this review, we summarize recent findings about the sequence motifs, localization, and function of plant VDACs and discuss these results in the light of recent advances in research on animal VDACs.
Collapse
Affiliation(s)
- Yoshihiro Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan.
| | | |
Collapse
|
13
|
Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelský PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohatý B. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4193-206. [PMID: 24064926 PMCID: PMC3808309 DOI: 10.1093/jxb/ert227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively. Proteome profiling identified >1100 proteins, 155 of which responded to HvCKX2 and/or ipt activation, mostly involved in growth, development, and/or hormone and light signalling. The metabolome profiling covered 79 metabolites, 33 of which responded to HvCKX2 and/or ipt activation, mostly amino acids, carbohydrates, and organic acids. Comparison of the data sets obtained from activated CaMV35S>GR>HvCKX2 and CaMV35S>GR>ipt plants revealed unexpectedly extensive overlaps. Integration of the proteomic and metabolomic data sets revealed: (i) novel components of molecular circuits involved in CK action (e.g. ribosomal proteins); (ii) previously unrecognized links to redox regulation and stress hormone signalling networks; and (iii) CK content markers. The striking overlaps in profiles observed in CK-deficient and CK-overproducing seedlings might explain surprising previously reported similarities between plants with down- and up-regulated CK levels.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Alena Kuklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Wolfgang Hoehenwarter
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- *Present address: Proteome Analysis Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle, Germany
| | - Lena Fragner
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Rotková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Petr L. Jedelský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague, Czech Republic
| | - Kateřina Žáková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Mária Šmehilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Abstract
SIGNIFICANCE For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. RECENT ADVANCES Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. CRITICAL ISSUES Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. FUTURE DIRECTIONS Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling.
Collapse
|
15
|
The voltage-dependent anion channel 1 (AtVDAC1) negatively regulates plant cold responses during germination and seedling development in Arabidopsis and interacts with calcium sensor CBL1. Int J Mol Sci 2013; 14:701-13. [PMID: 23344040 PMCID: PMC3565290 DOI: 10.3390/ijms14010701] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC), a highly conserved major mitochondrial outer membrane protein, plays crucial roles in energy metabolism and metabolite transport. However, knowledge about the roles of the VDAC family in plants is limited. In this study, we investigated the expression pattern of VDAC1 in Arabidopsis and found that cold stress promoted the accumulation of VDAC1 transcripts in imbibed seeds and mature plants. Overexpression of VDAC1 reduced tolerance to cold stress in Arabidopsis. Phenotype analysis of VDAC1 T-DNA insertion mutant plants indicated that a vdac1 mutant line had faster germination kinetics under cold treatment and showed enhanced tolerance to freezing. The yeast two-hybrid system revealed that VDAC1 interacts with CBL1, a calcium sensor in plants. Like the vdac1, a cbl1 mutant also exhibited a higher seed germination rate. We conclude that both VDAC1 and CBL1 regulate cold stress responses during seed germination and plant development.
Collapse
|
16
|
Zhang Z, Chen J, Lin S, Li Z, Cheng R, Fang C, Chen H, Lin W. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:259-73. [PMID: 22325889 DOI: 10.1016/j.plantsci.2011.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 05/08/2023]
Abstract
Cultivars of rice (Oryza sativa L.), especially the large-spikelet-type, often fail to achieve the high yield potential due to poor grain-filling of their inferior (late-flowering) spikelets. The superior (early-flowering) spikelets normally contain more abscisic acid (ABA) than the inferior spikelets. It was speculated that ABA might play a pivotal role in the grain-filling of inferior spikelets. To understand the molecular regulation involved in this process, we employed the 2-D gel-based comparative proteomic and phosphoproteomic analyses to search for differentially expressed proteins in the inferior spikelets under exogenous ABA treatment. A total of 111 significantly differential proteins and 31 phosphoproteins were found in the inferior spikelets after treatment. Among them, 100 proteins and 23 phosphoproteins were identified by using MALDI-TOF/TOF MS. In addition, the gene expression patterns of the inferior spikelets were confirmed with RT-PCR. These differentially expressed proteins are active in defense response, carbohydrate, protein, amino acid, energy and secondary metabolisms, as well as cell development and photosynthesis. The results suggest that the grain-filling of rice inferior spikelets is regulated by ABA through some proteins and phosphoproteins participating in carbon, nitrogen and energy metabolisms.
Collapse
Affiliation(s)
- Zhixing Zhang
- Institute of Agricultural Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 35002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4773-85. [PMID: 21705391 PMCID: PMC3192994 DOI: 10.1093/jxb/err113] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.
Collapse
|
18
|
Zörb C, Schmitt S, Mühling KH. Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 2010; 10:4441-9. [PMID: 21136597 DOI: 10.1002/pmic.201000231] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is of fundamental importance to understand adaptation processes leading to salt resistance. The initial effects on maize roots in the first hour after the adjustment to saline conditions were monitored to elucidate initial responses. The subsequent proteome change was monitored using a 2-D proteomic approach. We found several new salt-inducible proteins, whose expression has not been previously reported to be modulated by salt. A set of phosphoproteins in maize was detected but only ten proteins were phosphorylated and six proteins were dephosphorylated after the application of 25 mM NaCl for 1 h. Some of the phosphorylated maize proteins such as fructokinase, UDP-glucosyl transferase BX9, and 2-Cys-peroxyredoxine were enhanced, whereas an isocitrate-dehydrogenase, calmodulin, maturase, and a 40-S-ribosomal protein were dephosphorylated after adjustment to saline conditions. The initial reaction of the proteome and phosphoproteome of maize after adjustment to saline conditions reveals members of sugar signalling and cell signalling pathways such as calmodulin, and gave hint to a transduction chain which is involved in NaCl-induced signalling. An alteration of 14-3-3 proteins as detected may change plasma membrane ATPase activity and cell wall growth regulators such as xyloglucane endotransglycosylase were also found to be changed immediately after the adjustment to salt stress.
Collapse
Affiliation(s)
- Christian Zörb
- Institute of Plant Nutrition and Soil Science, Christian Albrechts University Kiel, Kiel, Germany.
| | | | | |
Collapse
|
19
|
Abstract
Gram-negative bacteria and mitochondria are both covered by two distinct biological membranes. These membrane systems have been maintained during the course of evolution from an early evolutionary precursor. Both outer membranes accommodate channels of the porin family, which are designed for the uptake and exchange of metabolites, including ions and small molecules, such as nucleosides or sugars. In bacteria, the structure of the outer membrane porin protein family of β-barrels is generally characterized by an even number of β-strands; usually 14, 16 or 18 strands are observed forming the bacterial porin barrel wall. In contrast, the recent structures of the mitochondrial porin, also known as VDAC (voltage-dependent anion channel), show an uneven number of 19 β-strands, but a similar molecular architecture. Despite the lack of a clear evolutionary link between these protein families, their common principles and differences in assembly, architecture and function are summarized in the present review.
Collapse
|
20
|
Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. The Ca(2+) -dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:484-98. [PMID: 20497378 PMCID: PMC2988408 DOI: 10.1111/j.1365-313x.2010.04257.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/29/2010] [Accepted: 05/10/2010] [Indexed: 05/18/2023]
Abstract
Plants use different signalling pathways to respond to external stimuli. Intracellular signalling via calcium-dependent protein kinases (CDPKs) or mitogen-activated protein kinases (MAPKs) present two major pathways that are widely used to react to a changing environment. Both CDPK and MAPK pathways are known to be involved in the signalling of abiotic and biotic stresses in animal, yeast and plant cells. Here, we show the essential function of the CDPK CPK3 (At4g23650) for salt stress acclimation in Arabidopsis thaliana, and test crosstalk between CPK3 and the major salt-stress activated MAPKs MPK4 and MPK6 in the salt stress response. CPK3 kinase activity was induced by salt and other stresses after transient overexpression in Arabidopsis protoplasts, but endogenous CPK3 appeared to be constitutively active in roots and leaves in a strictly Ca(2+) -dependent manner. cpk3 mutants show a salt-sensitive phenotype comparable with mutants in MAPK pathways. In contrast to animal cells, where crosstalk between Ca(2+) and MAPK signalling is well established, CPK3 seems to act independently of those pathways. Salt-induced transcriptional induction of known salt stress-regulated and MAPK-dependent marker genes was not altered, whereas post-translational protein phosphorylation patterns from roots of wild type and cpk3 plants revealed clear differences. A significant portion of CPK3 was found to be associated with the plasma membrane and the vacuole, both depending on its N-terminal myristoylation. An initial proteomic study led to the identification of 28 potential CPK3 targets, predominantly membrane-associated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Markus Teige
- *For correspondence (fax +43 142779528; e-mail )
| |
Collapse
|