1
|
Yan B, Liao P, Han Z, Zhao J, Gao H, Liu Y, Chen F, Lei P. Association of aging related genes and immune microenvironment with major depressive disorder. J Affect Disord 2024; 369:706-717. [PMID: 39419187 DOI: 10.1016/j.jad.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To study the relationship between aging related genes (ARGs) and Major Depressive Disorder (MDD). METHODS The datasets GSE98793, GSE52790 and GSE39653 for MDD were obtained from the GEO database, and ARGs were obtained from the Human Aging Genome Resources database. Differential expression genes (DEGs) screening and GO, KEGG enrichment analysis were performed to uncover the underlying mechanisms. To identify key ARGs associated with MDD (key ARG-DEGs), we employed machine learning methods such as LASSO, SVM, and Random Forest, as well as the plug-ins CytoHubba-MCC and MCODE methods. SsGSEA was used to analyze the immune infiltration of MDD and healthy controls. Furthermore, we created risk prediction nomograms model and ROC curves to assess not only the ability of key ARG-DEGs to diagnose MDD, but also predicted miRNAs and transcription factors (TFs) that might interact. Finally, a two-sample Mendelian randomization (MR) study was performed to confirm the association of identified key ARG-DEGs with depression. RESULTS DEGs of ARGs between MDD and healthy controls led to the identification of eight ARG-DEGs. GO and KEGG analysis revealed that the pathways associated with these eight ARG-DEGs were primarily concentrated in Foxo pathway, JAK-STAT pathway, Pl3K-AKT pathway, and metabolic diseases. A comprehensive analysis further narrowed down the 8 ARG-DEGs to 4 key ARG-DEGs: MMP9, IL7R, S100B, and EGF. Immune infiltration analysis indicated significant differences in CD8(+) T cells, macrophages, neutrophils, Th2 cells, and TIL cells between MDD and control groups, correlating with these four key ARG-DEGs. Based on these four key ARG-DEGs, a risk prediction model for MDD was developed. The miRNA-TF-mRNA interaction network of the key ARG-DEGs highlights the complexity of the regulatory process, providing valuable insights for future related research. The MR study suggested a potential causal relationship between MMP9 and the risk of depression. CONCLUSION The process of aging, immune dysregulation, and MDD are closely interconnected. MMP9, IL7R, S100B, and EGF may be used as novel diagnostic biomarkers and potential therapeutic targets for MDD, especially MMP9.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jing Zhao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yuan Liu
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Fanglian Chen
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
2
|
Wu Y, Lu Y, Kong L, Xie Y, Liu W, Yang A, Xin K, Yan X, Wu L, Liu Y, Zhu Q, Cao Y, Zhou Y, Jiang X, Tang Y, Wu F. Gender differences in plasma S100B levels of patients with major depressive disorder. BMC Psychiatry 2024; 24:387. [PMID: 38783266 PMCID: PMC11112965 DOI: 10.1186/s12888-024-05852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Low concentrations of S100B have neurotrophic effects and can promote nerve growth and repair, which plays an essential role in the pathophysiological and histopathological alterations of major depressive disorder (MDD) during disease development. Studies have shown that plasma S100B levels are altered in patients with MDD. In this study, we investigated whether the plasma S100B levels in MDD differ between genders. METHODS We studied 235 healthy controls (HCs) (90 males and 145 females) and 185 MDD patients (65 males and 120 females). Plasma S100B levels were detected via multifactor assay. The Mahalanobis distance method was used to detect the outliers of plasma S100B levels in the HC and MDD groups. The Kolmogorov-Smirnov test was used to test the normality of six groups of S100B samples. The Mann-Whitney test and Scheirer-Ray-Hare test were used for the comparison of S100B between diagnoses and genders, and the presence of a relationship between plasma S100B levels and demographic details or clinical traits was assessed using Spearman correlation analysis. RESULTS All individuals in the HC group had plasma S100B levels that were significantly greater than those in the MDD group. In the MDD group, males presented significantly higher plasma S100B levels than females. In the male group, the plasma S100B levels in the HC group were significantly higher than those in the MDD group, while in the female group, no significant difference was found between the HC and MDD groups. In the male MDD subgroup, there was a positive correlation between plasma S100B levels and years of education. In the female MDD subgroup, there were negative correlations between plasma S100B levels and age and suicidal ideation. CONCLUSIONS In summary, plasma S100B levels vary with gender and are decreased in MDD patients, which may be related to pathological alterations in glial cells.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yihui Lu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Lingtao Kong
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yu Xie
- Faculty of Public Health, China Medical University, 110001, Liaoning, P.R. China
| | - Wen Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Anqi Yang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Kaiqi Xin
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xintong Yan
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Longhai Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yilin Liu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Qianying Zhu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Yang Cao
- Shenyang Mental Health Center, 110001, Liaoning, P.R. China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
| | - Xiaowei Jiang
- Brain Function Research Section, Department of Radiology, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China
- Department of Geriatric Medicine, The First Hospital of China Medical University, 110001, Liaoning, P.R. China
| | - Feng Wu
- Department of Psychiatry, The First Hospital of China Medical University, 155 Nanjing North Street, 110001, Liaoning, P.R. China.
| |
Collapse
|
3
|
Varghese SM, Patel S, Nandan A, Jose A, Ghosh S, Sah RK, Menon B, K V A, Chakravarty S. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol 2024:10.1007/s12035-024-04205-5. [PMID: 38730081 DOI: 10.1007/s12035-024-04205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Depression is a highly prevalent psychological disorder characterized by persistent dysphoria, psychomotor retardation, insomnia, anhedonia, suicidal ideation, and a remarkable decrease in overall well-being. Despite the prevalence of accessible antidepressant therapies, many individuals do not achieve substantial improvement. Understanding the multifactorial pathophysiology and the heterogeneous nature of the disorder could lead the way toward better outcomes. Recent findings have elucidated the substantial impact of compromised blood-brain barrier (BBB) integrity on the manifestation of depression. BBB functions as an indispensable defense mechanism, tightly overseeing the transport of molecules from the periphery to preserve the integrity of the brain parenchyma. The dysfunction of the BBB has been implicated in a multitude of neurological disorders, and its disruption and consequent brain alterations could potentially serve as important factors in the pathogenesis and progression of depression. In this review, we extensively examine the pathophysiological relevance of the BBB and delve into the specific modifications of its components that underlie the complexities of depression. A particular focus has been placed on examining the effects of peripheral inflammation on the BBB in depression and elucidating the intricate interactions between the gut, BBB, and brain. Furthermore, this review encompasses significant updates on the assessment of BBB integrity and permeability, providing a comprehensive overview of the topic. Finally, we outline the therapeutic relevance and strategies based on BBB in depression, including COVID-19-associated BBB disruption and neuropsychiatric implications. Understanding the comprehensive pathogenic cascade of depression is crucial for shaping the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Shamili Mariya Varghese
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Shashikant Patel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Anju Jose
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Soumya Ghosh
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Bindu Menon
- Department of Psychiatry, Amrita School of Medicine, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India
| | - Athira K V
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682 041, India.
| | - Sumana Chakravarty
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, Telangana, 500007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
4
|
Abe H, Okada‐Tsuchioka M, Kajitani N, Omori W, Itagaki K, Shibasaki C, Boku S, Matsuhisa T, Takebayashi M. Serum levels of high mobility group box-1 protein (HMGB1) and soluble receptors of advanced glycation end-products (RAGE) in depressed patients treated with electroconvulsive therapy. Neuropsychopharmacol Rep 2023; 43:359-364. [PMID: 37337402 PMCID: PMC10496042 DOI: 10.1002/npr2.12358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/21/2023] Open
Abstract
AIMS High mobility group box-1 (HMGB1) is one of the damage-associated molecular patterns produced by stress and induces inflammatory responses mediated by receptors of advanced glycation end-products (RAGE) on the cell surface. Meanwhile, soluble RAGE (sRAGE) exhibits an anti-inflammatory effect by capturing HMGB1. Animal models have shown upregulation of HMGB1 and RAGE in the brain or blood, suggesting the involvement of these proteins in depression pathophysiology. However, there have been no reports using blood from depressed patients, nor ones focusing on HMGB1 and sRAGE changes associated with treatment and their relationship to depressive symptoms. METHODS Serum HMGB1 and sRAGE concentrations were measured by enzyme-linked immunosorbent assay in a group of patients with severe major depressive disorder (MDD) (11 males and 14 females) who required treatment with electroconvulsive therapy (ECT), and also in a group of 25 age- and gender-matched healthy subjects. HMGB1 and sRAGE concentrations were also measured before and after a course of ECT. Depressive symptoms were assessed using the Hamilton Rating Scale for Depression (HAMD). RESULTS There was no significant difference in HMGB1 and sRAGE concentrations in the MDD group compared to healthy subjects. Although ECT significantly improved depressive symptoms, there was no significant change in HMGB1 and sRAGE concentrations before and after treatment. There was also no significant correlation between HMGB1 and sRAGE concentrations and the HAMD total score or subitem scores. CONCLUSION There were no changes in HMGB1 and sRAGE in the peripheral blood of severely depressed patients, and concentrations had no relationship with symptoms or ECT.
Collapse
Affiliation(s)
- Hiromi Abe
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of PharmacyNational Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Mami Okada‐Tsuchioka
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Naoto Kajitani
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Wataru Omori
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Kei Itagaki
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Chiyo Shibasaki
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tetsuaki Matsuhisa
- Department of PharmacyNational Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
| | - Minoru Takebayashi
- Division of Psychiatry and NeuroscienceInstitute for Clinical Research, National Hospital Organization (NHO) Kure Medical Center and Chugoku Cancer CenterKure, HiroshimaJapan
- Department of Neuropsychiatry, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
5
|
Aksoy SH, Yurdaışık I, Timurağaoğlu A. Ionizing Radiation Exposure due to Medical Imaging in Hematopoietic Stem Cell Transplant Recipients. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.40771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
6
|
ProBDNF as an Indicator of Improvement among Women with Depressive Episodes. Metabolites 2022; 12:metabo12040358. [PMID: 35448545 PMCID: PMC9027259 DOI: 10.3390/metabo12040358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a chronic psychiatric disorder with a heavy socioeconomic burden. Studies on biomarkers are needed to comprehend the pathophysiology of depression and to improve treatment outcomes. Research points to the importance of imbalance between mature brain-derived neurotrophic factor (BDNF) and its precursor, pro–brain–derived neurotrophic factor (proBDNF), in the pathophysiology of mood disorders and the potential neurodegenerative role of calcium-binding protein B (S100B). Our objective was to compare BDNF, proBDNF, and S100B serum levels before and after the treatment of acute depressive episodes and to assess their correlation with the severity of symptoms and history of stress. We also aimed to investigate the differences in BDNF, proBDNF, and S100B levels between depression in the course of bipolar disorder (BD) and major depressive disorder (MDD). We recruited 31 female patients diagnosed with BD or MDD who were hospitalized due to current depressive episodes. The patients had their serum BDNF, proBDNF, and S100B levels evaluated using the ELISA method upon admission and after the symptoms improved, at discharge. We found that proBDNF levels decreased significantly with the treatment (p = 0.0478), while BDNF and S100B levels were not altered significantly. No differences in biochemical parameters between MDD and BD subjects were observed. Consequently, we concluded that a decrease in serum proBDNF levels could be considered a biomarker of recovery from depressive episodes.
Collapse
|
7
|
Ergenc M, Ozacmak HS, Turan I, Ozacmak VH. Melatonin reverses depressive and anxiety like-behaviours induced by diabetes: involvement of oxidative stress, age, rage and S100B levels in the hippocampus and prefrontal cortex of rats. Arch Physiol Biochem 2022; 128:402-410. [PMID: 31726890 DOI: 10.1080/13813455.2019.1684954] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is associated with depression and anxiety symptoms. The current investigation was designed to explore the effect of melatonin on depressive and anxiety like-behaviours, oxidative stress, levels of AGE, RAGE and S100B in streptozotocin-induced diabetic rats. The animals were divided into four groups: Normoglycemic; Normoglycemic + melatonin; diabetic; diabetic + melatonin (10 mg/kg, for 4 weeks). The malondialdehyde (MDA), reduced glutathione (GSH), AGE, RAGE and S100B were measured and the depressive and anxiety like-behaviours were assessed by forced swimming and elevated plus maze tests, respectively. Melatonin ameliorates depressive and anxiety like-behaviours. Concomitantly, melatonin reversed diabetes induced increase of MDA, AGE and decrease of GSH and S100B levels in the hippocampus and prefrontal cortex. In conclusion, our results showed that melatonin administration may exert antidepressant-like and anxiolytic effects in diabetic rats through normalising of AGE/RAGE, S100B and oxidative stress in the prefrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Meryem Ergenc
- Faculty of Medicine, Department of Physiology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Hale Sayan Ozacmak
- Faculty of Medicine, Department of Physiology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Inci Turan
- Faculty of Medicine, Department of Physiology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Veysel Haktan Ozacmak
- Faculty of Medicine, Department of Physiology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
8
|
Shen Z, Cui L, Mou S, Ren L, Yuan Y, Shen X, Li G. Combining S100B and Cytokines as Neuro-Inflammatory Biomarkers for Diagnosing Generalized Anxiety Disorder: A Proof-of-Concept Study Based on Machine Learning. Front Psychiatry 2022; 13:881241. [PMID: 35815053 PMCID: PMC9256955 DOI: 10.3389/fpsyt.2022.881241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/29/2022] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION S100 calcium-binding protein B (S100B) is a neurotrophic factor that regulates neuronal growth and plasticity by activating astrocytes and microglia through the production of cytokines involved in Generalized Anxiety Disorder (GAD). However, few studies have combined S100B and cytokines to explore their role as neuro-inflammatory biomarkers in GAD. METHODS Serum S100B and cytokines (IL-1β, IL-2, IL-4, and IL-10) of 108 untreated GAD cases and 123 healthy controls (HC) were determined by enzyme-linked immunosorbent assay (ELISA), while Hamilton Anxiety Rating Scale (HAMA) scores and Hamilton Depression Rating Scale (HAMD) scores were measured to evaluate anxiety and depression severity. This was used to help physicians identify persons having GAD. Machine learning techniques were applied for feature ordering of cytokines and S100B and the classification of persons with GAD and HC. RESULTS The serum S100B, IL-1β, and IL-2 levels of GAD cases were significantly lower than HC (P < 0.001), and the IL-4 level in persons with GAD was significantly higher than HC (P < 0.001). At the same time, IL-10 had no significant difference between the two groups (P = 0.215). The feature ranking distinguishing GAD from HC using machine learning ranked the features in the following order: IL-2, IL-1β, IL-4, S100B, and IL-10. The accuracy of S100B combined with IL-1β, IL-2, IL-4, and IL-10 in distinguishing persons with GAD from HC was 94.47 ± 2.06% using an integrated back propagation neural network based on a bagging algorithm (BPNN-Bagging). CONCLUSION The serum S-100B, IL-1β, and IL-2 levels in persons with GAD were down-regulated while IL-4 was up-regulated. The combination of S100B and cytokines had a good diagnosis value in determining GAD with an accuracy of 94.47%. Machine learning was a very effective method to study neuro-inflammatory biomarkers interacting with each other and mediated by plenty of factors.
Collapse
Affiliation(s)
- Zhongxia Shen
- School of Medicine, Southeast University, Nanjing, China.,Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Lijun Cui
- School of Medicine, Southeast University, Nanjing, China
| | - Shaoqi Mou
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Lie Ren
- School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychiatry, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Xinhua Shen
- Department of Neurosis and Psychosomatic Diseases, Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, China
| | - Gang Li
- College of Engineering, Zhejiang Normal University, Zhejiang, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Zhejiang, China
| |
Collapse
|
9
|
Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry 2021; 11:308. [PMID: 34021122 PMCID: PMC8139962 DOI: 10.1038/s41398-021-01423-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory processes involving altered microglial activity may play a relevant role in the pathophysiology of depressive disorders. Glial fibrillary acidic protein (GFAP) and calcium-binding protein S100B are considered microglial markers. To date, their role has been studied in the serum and tissue material of patients with unipolar depression but not in the cerebrospinal fluid (CSF). Therefore, the aim of the current study was to examine GFAP and S100B levels in the CSF of patients with major depression to better understand their role in affective disorders. In this retrospective study, 102 patients with unipolar depression and 39 mentally healthy controls with idiopathic intracranial hypertension were investigated. GFAP and S100B levels were measured using commercially available ELISA kits. CSF routine parameters were collected during routine clinical care. The mean values of GFAP and S100B were compared using age (and sex) corrected ANOVAs. Matched subgroups were analyzed by using an independent sample t-test. In addition, correlation analyses between GFAP/S100B levels and CSF routine parameters were performed within the patient group. Patients with unipolar depression had significantly higher levels of GFAP than controls (733.22 pg/ml vs. 245.56 pg/ml, p < 0.001). These results remained significant in a sub-analysis in which all controls were compared with patients suffering from depression matched 1:1 by age and sex (632.26 pg/ml vs. 245.56 pg/ml, p < 0.001). Levels of S100B did not differ significantly between patients and controls (1.06 ng/ml vs. 1.17 ng/ml, p = 0.385). GFAP levels correlated positively with albumin quotients (p < 0.050), S100B levels correlated positively with white blood cell counts (p = 0.001), total protein concentrations (p < 0.001), and albumin quotients (p = 0.001) in the CSF. The significance of the study is limited by its retrospective and open design, methodological aspects, and the control group with idiopathic intracranial hypertension. In conclusion, higher GFAP levels in patients with depression may be indicative of altered microglia activity, especially in astrocytes, in patients with unipolar depression. In addition, correlation analyses support the idea that S100B levels could be related to the integrity of the blood-brain/CSF barrier. Further multimodal and longitudinal studies are necessary to validate these findings and clarify the underlying biological processes.
Collapse
|
10
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
11
|
Yang F, Wang H, Chen H, Ran D, Tang Q, Weng P, Sun Y, Jiang W. RAGE Signaling pathway in hippocampus dentate gyrus involved in GLT-1 decrease induced by chronic unpredictable stress in rats. Brain Res Bull 2020; 163:49-56. [PMID: 32621862 DOI: 10.1016/j.brainresbull.2020.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/17/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022]
Abstract
A pivotal role of glutamatergic neurotransmission in the pathophysiology of major depressive disorder (MDD) has been supported in preclinical and clinical studies. Glutamate transporters are responsible for rapid uptake of glutamate to maintain glutamate homeostasis. Down-regulation of glutamate transporters has been reported in MDD patients and animal models. However, the mechanism for stress-induced modulation of glutamate transporter expression is poorly understood. Receptor for advanced glycosylation end products (RAGE), a member of immunoglobulin family, is found expressed widely in brain and play important roles in neuronal development, neurite growth, neurogenesis and neuroinflammation. Our study showed chronic unpredictable stress (CUS) induced depressive-like behaviors and reduced RAGE expression in hippocampus DG, CA1 and CA3 areas. The protein levels of GLT-1, p-CREB and p-p65 decreased in hippocampus DG as well. Knockdown of RAGE expression in hippocampus DG with RAGE shRNA lentivirus particles induced depressive-like behaviors. Meanwhile, the protein and mRNA levels of GLT-1 were significantly decreased as well as phosphorylation of CREB and p65. Neither CUS nor RAGE knockdown altered GLAST protein and mRNA levels. These findings suggested that RAGE/CREB-NF-κB signaling pathway in hippocampus DG involved in modulation of GLT-1 expression, which possibly contributed to the depressive-like behavior induced by CUS.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Huali Chen
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dongzhi Ran
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qiang Tang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ping Weng
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuzhuo Sun
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wengao Jiang
- Key Laboratory of Molecular and Biochemical Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2018; 396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Bojana Mićić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; University of Belgrade, Faculty of Biology, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia. http://www.vinca.rs
| |
Collapse
|
13
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
14
|
Gong H, Su WJ, Cao ZY, Lian YJ, Peng W, Liu YZ, Zhang Y, Liu LL, Wu R, Wang B, Zhang T, Wang YX, Jiang CL. Hippocampal Mrp8/14 signaling plays a critical role in the manifestation of depressive-like behaviors in mice. J Neuroinflammation 2018; 15:252. [PMID: 30180864 PMCID: PMC6122683 DOI: 10.1186/s12974-018-1296-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
Background Depression is one of the most common mental disorders characterized mainly by low mood and loss of interest or pleasure. About a third of patients with depression do not respond to classic antidepressant treatments. Recent evidence suggests that Mrp8/14 (myeloid-related protein 8/14) plays a crucial role in cognitive dysfunction and neuroinflammatory diseases, yet its role in mood regulation remains largely uninvestigated. In the present work, we explored the potential role of Mrp8/14 in the progression of depression. Methods After 4 weeks of chronic unpredictable mild stress (CUMS), depressive-like symptoms and Mrp8/14 were determined. To verify the effects of Mrp8/14 on depressive-like behaviors, the inhibitor TAK-242 and recombinant Mrp8/14 were used. Furthermore, the molecular mechanisms in Mrp8/14-induced behavioral and biological changes were examined in vivo and ex vivo. Results Four-week CUMS contributed to the development of depressive symptoms. Mrp8 and Mrp14 were upregulated in the hippocampus and serum after exposure to CUMS. Pharmacological inhibition of Mrp14 attenuated CUMS-induced TLR4/NF-κB signaling activation and depressive-like behaviors. Furthermore, central administration of recombinant Mrp8, Mrp14, and Mrp8/14 resulted in neuroinflammation and depressive-like behaviors. Mrp8/14-provoked proinflammatory effects and depressive-like behaviors were improved by pretreatment with a TLR4 inhibitor. Moreover, pharmacological inhibition of TLR4 reduced the release of nitric oxide and reactive oxygen species in Mrp8/14-activated BV2 microglia. Conclusions These data suggest that the hippocampal Mrp8/14-TLR4-mediated neuroinflammation contributes to the development of depressive-like behaviors. Targeting the Mrp8/14 may be a novel promising antidepressant approach. Electronic supplementary material The online version of this article (10.1186/s12974-018-1296-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Gong
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, People's Republic of China
| | - Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China.,Department of Psychiatry, The 102nd Hospital of PLA, Changzhou, 213003, People's Republic of China
| | - Yong-Jie Lian
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Wei Peng
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yun-Zi Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Lin-Lin Liu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ran Wu
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Bo Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ting Zhang
- Department of Navy Medicine, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yun-Xia Wang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
15
|
Franklin TC, Xu C, Duman RS. Depression and sterile inflammation: Essential role of danger associated molecular patterns. Brain Behav Immun 2018; 72:2-13. [PMID: 29102801 DOI: 10.1016/j.bbi.2017.10.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/14/2017] [Accepted: 10/31/2017] [Indexed: 12/12/2022] Open
Abstract
Stress is a major risk factor for psychiatric disorder including major depressive disorder (MDD) and can induce inflammation, which is known to be dysregulated in depression. Several clinical and pre-clinical studies have demonstrated a strong association between depressive symptoms and the expression of factors that increase inflammation. Conversely, administration of anti-inflammatory agents has been shown to ameliorate depressive symptoms, demonstrating the importance of inflammation as a mediator of depression. Although it is clear that inflammation plays a role in the pathophysiology of depression, the mechanism by which inflammation is activated in mood disorders remains unclear. To address this issue, studies have investigated the role of pattern recognition receptor (PRR) activation in stress-induced inflammation and mood disorders. However, the identification of the endogenous factors, referred to as danger-associated molecular patterns (DAMP) that activate these receptors remains understudied. Here we review the role of DAMPs in depression and highlight the clinical evidence for elevation of DAMP signaling in MDD patients and in pre-clinical animal stress models of depression.
Collapse
Affiliation(s)
- Tina C Franklin
- Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Chelsea Xu
- Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | - Ronald S Duman
- Laboratory of Molecular Psychiatry, Center for Genes and Behavior, Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| |
Collapse
|
16
|
Zhao Y, Lin Z, Chen L, Ouyang L, Gu L, Chen F, Zhang Q. Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:99-109. [PMID: 29369777 DOI: 10.1016/j.pnpbp.2018.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Astrocytes have become promising new agents against major depressive disorders (MDD) primarily due to the crucial role they play in the pathogenesis of such disorders. However, a simple and reliable animal model that can be used to screen for astrocyte-targeting antidepressants has not yet been developed. In this study, we utilized a repeated corticosterone (CORT) injection paradigm to develop a mouse depression model wherein we examined the occurrence of alterations in hippocampal astrocyte population by using two astrocytic markers, namely, glial fibrillary acidic protein (GFAP) and S100β. Moreover, we determined the effects of fluoxetine and diazepam on CORT-induced astrocytic alterations to assess the predictive validity. Results showed that repeated CORT injections showed no effects on the number of GFAP+ and S100β+ astrocytes, but they decreased the protrusion length of GFAP+ astrocytes and GFAP protein expression in the hippocampus. Furthermore, repeated CORT injections produced a sustained increase of S100β protein levels in the entire hippocampus of male mice. CORT-induced hippocampal astrocyte disruption was antagonized by chronic fluoxetine treatment. By contrast, the anxiolytic drug diazepam was ineffective in the same experimental setting. All these findings suggest that the repeated CORT injection paradigm produces the astrocytic alterations similar to those in MDD and can serve as a useful mouse model to screen antidepressants meant to target astrocytes. These observations can also help in further discussing the underlying mechanisms of CORT-induced astrocytic alterations.
Collapse
Affiliation(s)
- Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Lin Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Liufeng Ouyang
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an 716000, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Feiyan Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210046, China
| |
Collapse
|
17
|
S100B Levels in Patients with Type 2 Diabetes Mellitus and Co-Occurring Depressive Symptoms. DEPRESSION RESEARCH AND TREATMENT 2018; 2018:5304759. [PMID: 30581620 PMCID: PMC6276443 DOI: 10.1155/2018/5304759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
Abstract
Depression is a comorbid condition in patients with Type 2 Diabetes mellitus (T2DM). S100B, a glia derived protein, is linked to depression and has been suggested as a biomarker for depression outcomes in several populations. However, to date there is no data about S100B levels and depression in patients with T2DM. Objective. We hypothesized that S100B serum levels are increased in patients with T2DM and recently diagnosed, drug-free depressive symptoms, and could be used for the diagnosis of depression in T2DM. Methods. Overall 52 patients (62 ± 12 years, female 66, 7%) with no history of depression deriving from the Diabetes out-patient clinic of our University Hospital underwent a one-to-one interview with a psychiatrist and filled a self-assessment (Zung) questionnaire. Serum S00B levels were compared between 30 (63±12 years, female 66, 7%) diabetic patients without depressive symptoms vs 22 patients (62 ±12 years, female 68, 2%) with T2DM and depressive symptoms. Results. There was no difference in serum levels of S100B between patients with T2DM without depressive symptoms vs diabetic patients suffering from depressive symptoms (2.1 (1.9-10.9) pg/ml vs 2.4 (1.9-14.8) pg/ml, p=0. 637+). Moreover, linear regression analysis did not show any association between lnS100B levels and depressive symptoms (β = 0.084, 95% CI 0.470-0.871, and p=0.552), Zung self-assessment score (β = 0.048, 95% CI -0.024-0.033, and p=0.738), and other patients' characteristics. Conclusions. In patients with T2DM there is no correlation between S100B serum levels and newly detected mild depressive symptoms. The brain biochemistry pathways of depression in T2DM warrant further investigation in a larger scale population.
Collapse
|
18
|
Todorović N, Filipović D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-α. Pharmacol Biochem Behav 2017; 163:57-65. [DOI: 10.1016/j.pbb.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
|
19
|
Prefrontal cortical glutathione-dependent defense and proinflammatory mediators in chronically isolated rats: Modulation by fluoxetine or clozapine. Neuroscience 2017; 355:49-60. [PMID: 28499974 DOI: 10.1016/j.neuroscience.2017.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/24/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022]
Abstract
Chronic psychosocial stress modulates brain antioxidant systems and causes neuroinflammation that plays a role in the pathophysiology of depression. Although the antidepressant fluoxetine (FLX) represents the first-line treatment for depression and the atypical antipsychotic clozapine (CLZ) is considered as a second-line treatment for psychotic disorders, the downstream mechanisms of action of these treatments, beyond serotonergic or dopaminergic signaling, remain elusive. We examined behavioral changes, glutathione (GSH)-dependent defense and levels of proinflammatory mediators in the prefrontal cortex (PFC) of adult male Wistar rats exposed to 21days of chronic social isolation (CSIS). We also tested the ability of FLX (15mg/kg/day) or CLZ (20mg/kg/day), applied during CSIS, to prevent stress-induced changes. CSIS caused depressive- and anxiety-like behaviors, compromised GSH-dependent defense, and induced nuclear factor-kappa B (NF-κB) activation with a concomitant increase in cytosolic levels of proinflammatory mediators cyclooxigenase-2, interleukin-1beta and tumor necrosis factor-alpha in the PFC. NF-κB activation and proinflammatory response in the PFC were not found in CSIS rats treated with FLX or CLZ. In contrast, only FLX preserved GSH content in CSIS rats. CLZ not only failed to protect against CSIS-induced GSH depletion, but it diminished its levels when applied to non-stressed rats. In conclusion, prefrontal cortical GSH depletion and the proinflammatory response underlying depressive- and anxiety-like states induced by CSIS were prevented by FLX. The protective effect of CLZ, which was equally effective as FLX on the behavioral level, was limited to proinflammatory components. Hence, different mechanisms underlie the protective effects of these two drugs in CSIS rats.
Collapse
|
20
|
Brinkley TE, Leng X, Nicklas BJ, Kritchevsky SB, Ding J, Kitzman DW, Hundley WG. Racial differences in circulating levels of the soluble receptor for advanced glycation endproducts in middle-aged and older adults. Metabolism 2017; 70:98-106. [PMID: 28403949 PMCID: PMC5396843 DOI: 10.1016/j.metabol.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low levels of the soluble receptor for advanced glycation endproducts (sRAGE) have been implicated in a number of chronic diseases. Previous studies indicate that sRAGE levels are ~30% lower in Blacks compared to Whites. However, the reasons for these differences are unclear. PURPOSE We aimed to identify predictors of circulating sRAGE biomarkers among Black and White adults at high cardiac risk. METHODS Serum levels of total sRAGE, endogenous secretory RAGE (esRAGE), carboxymethyl-lysine (CML, a major RAGE ligand), and their ratios were measured in 99 Blacks and 454 Whites. RESULTS Blacks had a more adverse cardiovascular risk profile, as well as lower median levels of total sRAGE (972 vs. 1564pg/ml) and esRAGE (474 vs. 710pg/ml) compared to Whites (p<0.0001). In addition, the proportion of esRAGE was higher in Blacks (47% vs. 44%, p=0.02), as were the CML/total sRAGE (0.89 vs. 0.56ng/pg) and CML/esRAGE (1.72 vs. 1.20ng/pg) ratios (p<0.0001). Racial differences persisted after adjustment for key covariates including age, gender, tobacco use, comorbidities, BMI, blood pressure, glucose, insulin, triglycerides, C-reactive protein, and renal function (p<0.05). Race alone accounted for nearly half of the variability in total sRAGE levels (10.6%; model explained 23.9%). In stratified analyses, gender and heart rate were independently associated with total sRAGE and esRAGE in Whites, while CML and C-reactive protein were associated with total sRAGE in Blacks. CONCLUSIONS We identified several independent predictors of sRAGE biomarkers. Notably, Black race was associated with an adverse AGE/RAGE profile, including lower sRAGE and higher CML/sRAGE ratios.
Collapse
Affiliation(s)
- Tina E Brinkley
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC.
| | - Xiaoyan Leng
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Barbara J Nicklas
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jingzhong Ding
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Dalane W Kitzman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC
| | - W Gregory Hundley
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
21
|
Viana SD, Pita IR, Lemos C, Rial D, Couceiro P, Rodrigues-Santos P, Caramelo F, Carvalho F, Ali SF, Prediger RD, Fontes Ribeiro CA, Pereira FC. The effects of physical exercise on nonmotor symptoms and on neuroimmune RAGE network in experimental parkinsonism. J Appl Physiol (1985) 2017; 123:161-171. [PMID: 28385921 DOI: 10.1152/japplphysiol.01120.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) prodromal stages comprise neuropsychiatric perturbations that critically compromise a patient's quality of life. These nonmotor symptoms (NMS) are associated with exacerbated innate immunity, a hallmark of overt PD. Physical exercise (PE) has the potential to improve neuropsychiatric deficits and to modulate immune network including receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) in distinct pathological settings. Accordingly, the present study aimed to test the hypothesis that PE 1) alleviates PD NMS and 2) modulates neuroimmune RAGE network in experimental PD. Adult Wistar rats subjected to long-term mild treadmill were administered intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probed for PD NMS before the onset of motor abnormalities. Twelve days after MPTP, neuroimmune RAGE network transcriptomics (real-time quantitative PCR) was analyzed in frontal cortex, hippocampus, and striatum. Untrained MPTP animals displayed habit-learning and motivational deficits without gross motor impairments (cued version of water-maze, splash, and open-field tests, respectively). A suppression of RAGE and neuroimmune-related genes was observed in frontal cortex on chemical and physical stressors (untrained MPTP: RAGE, TLR5 and -7, and p22 NADPH oxidase; saline-trained animals: RAGE, TLR1 and -5 to -11, TNF-α, IL-1β, and p22 NADPH oxidase), suggesting the recruitment of compensatory mechanisms to restrain innate inflammation. Notably, trained MPTP animals displayed normal cognitive/motivational performances. Additionally, these animals showed normal RAGE expression and neuroprotective PD-related DJ-1 gene upregulation in frontal cortex when compared with untrained MPTP animals. These findings corroborate PE efficacy in improving PD NMS and newly identify RAGE network as a neural substrate for exercise intervention. Additional research is warranted to unveil functional consequences of PE-induced modulation of RAGE/DJ-1 transcriptomics in PD premotor stages.NEW & NOTEWORTHY This study newly shows that physical exercise (PE) corrects nonmotor symptoms of the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of experimental parkinsonism. Additionally, we show that suppression of neuroimmune receptor for advanced glycation end products (RAGE) network occurs in frontal cortex on chemical (MPTP) and physical (PE) interventions. Finally, PE normalizes frontal cortical RAGE transcriptomics and upregulates the neuroprotective DJ-1 gene in the intranasal MPTP model of experimental parkinsonism.
Collapse
Affiliation(s)
- Sofia D Viana
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Escola Superior de Tecnologia da Saúde de Coimbra-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Inês R Pita
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Cristina Lemos
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel Rial
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Patrícia Couceiro
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute of Immunology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Félix Carvalho
- Research Unit on Applied Molecular Biosciences, Rede de Química e Tecnologia, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; and
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center of Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| | - Rui D Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carlos A Fontes Ribeiro
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Frederico C Pereira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; .,Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Antidepressant-Like Effect of Lipid Extract of Channa striatus in Chronic Unpredictable Mild Stress Model of Depression in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2986090. [PMID: 28074100 PMCID: PMC5203926 DOI: 10.1155/2016/2986090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/16/2016] [Indexed: 01/18/2023]
Abstract
This study evaluated the antidepressant-like effect of lipid extract of C. striatus in chronic unpredictable mild stress (CUMS) model of depression in male rats and its mechanism of action. The animals were subjected to CUMS for six weeks by using variety of stressors. At the end of CUMS protocol, animals were subjected to forced swimming test (FST) and open field test followed by biochemical assay. The CUMS protocol produced depressive-like behavior in rats by decreasing the body weight, decreasing the sucrose preference, and increasing the duration of immobility in FST. The CUMS protocol increased plasma corticosterone and decreased hippocampal and prefrontal cortex levels of monoamines (serotonin, noradrenaline, and dopamine) and brain-derived neurotrophic factor. Further, the CUMS protocol increased interleukin-6 (in hippocampus and prefrontal cortex) and nuclear factor-kappa B (in prefrontal cortex but not in hippocampus). The lipid extract of C. striatus (125, 250, and 500 mg/kg) significantly (p < 0.05) reversed all the above parameters in rats subjected to CUMS, thus exhibiting antidepressant-like effect. The mechanism was found to be mediated through decrease in plasma corticosterone, increase in serotonin levels in prefrontal cortex, increase in dopamine and noradrenaline levels in hippocampus and prefrontal cortex, increase in BDNF in hippocampus and prefrontal cortex, and decrease in IL-6 and NF-κB in prefrontal cortex.
Collapse
|
23
|
Bender CL, Calfa GD, Molina VA. Astrocyte plasticity induced by emotional stress: A new partner in psychiatric physiopathology? Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:68-77. [PMID: 26320029 DOI: 10.1016/j.pnpbp.2015.08.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 01/18/2023]
Abstract
A growing body of evidence has demonstrated that astrocytes play a pivotal role in the normal functioning of the nervous system. This new conceptual framework has set the groundwork to be able to hypothesize that astrocytes could underlie signs and symptoms of mental diseases. Stress is a major risk factor in the etiology of several psychiatric diseases, such as anxiety disorders and depression. Hence, understanding the effects of stress on astrocytes and how these changes contribute to the development of psychiatric endophenotypes is crucial for both a better comprehension of mental illness and for potential targeted treatment of stress-related mental disorders. Here, we describe the currently used approaches and recent evidence showing astrocyte alterations induced by chronic and acute stress in animals. In addition, the relevance of these changes in stress-induced behavioral sequelae and human data linking astrocytes with neuropsychiatric disorders related to stress are also discussed. All together, the data indicate that astrocytes are also an important target of stress, with both chronic and acute stressors being able to alter the morphology or the expression of several astrocyte specific proteins in brain areas that are known to play a critical role in emotional processing, such as the prefrontal cortex, hippocampus and amygdala. Furthermore, different lines of evidences suggest that these changes may contribute, at less in part, to the behavioral consequences of stress.
Collapse
Affiliation(s)
- Crhistian L Bender
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, (5000) Córdoba, Argentina.
| | - Gaston D Calfa
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, (5000) Córdoba, Argentina
| | - Victor A Molina
- IFEC-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, (5000) Córdoba, Argentina
| |
Collapse
|
24
|
Antidepressant Effects of Ketamine Are Not Related to 18F-FDG Metabolism or Tyrosine Hydroxylase Immunoreactivity in the Ventral Tegmental Area of Wistar Rats. Neurochem Res 2015; 40:1153-64. [DOI: 10.1007/s11064-015-1576-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/16/2015] [Accepted: 04/06/2015] [Indexed: 12/28/2022]
|
25
|
Cagatay Kaya B, Karadag H, Oner O, Kart A, Turkcapar MH. Serum S100B Protein Levels in Patients with Panic Disorder: Effect of Treatment with Selective Serotonine Reuptake Inhibitors. Psychiatry Investig 2015; 12:260-2. [PMID: 25866528 PMCID: PMC4390598 DOI: 10.4306/pi.2015.12.2.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Altered serum S100B protein levels have been shown in several psychiatric disorders. Our aim was to investigate whether plasma S100B is different in patients with panic disorder (PD) when compared with controls. Our second aim was to investigate whether treatment with SSRIs have an effect on S100B levels in patients with PD. METHODS The sample included 32 patients diagnosed with PD (21 women, 11 men) per DSM-IV criteria and 21 healthy controls (11 women, 10 men). S100B levels were measured with BioVendor Human S100B ELISA (Enzyme Linked Immunosorbent Assay) kit. RESULTS 14 patients were not on drug treatment (43.8%) while 18 patients were taking various SSRIs. Median S100B value was 151.7 pg/mL (minimum-maximum: 120.4-164.7 pg/mL) in the control group, 147.4 pg/mL (minimum-maximum: 138.8-154.1 pg/mL) in the drug free group and 153.0 pg/mL (minimum-maximum: 137.9-164.7 pg/mL) in the treatment group. Kruskal-Wallis analysis showed a significant diffrerence among the three groups (z=9.9, df=2, p=0.007). Follow up Mann-Whitney-U tests indicated that while the control and the patients with treatment were not significantly different (z=-0.05, p=0.96), there were significant differences between the control group and untreated patients (z=-2.6, p=0.009) and treated and untreated patients (z=-3.0, p=0.003). CONCLUSION Our results suggested that, serum S100B protein level might be decreased in untreated PD patients and that patients who were treated with SSRIs had similar S100B level to healthy controls.
Collapse
Affiliation(s)
- Berna Cagatay Kaya
- Zonguldak Ataturk Government Hospital, Psychiatry Department, Zonguldak, Turkey
| | - Hasan Karadag
- Yıldırım Beyazit Diskapi Training and Research Hospital, Psychiatry Department, Ankara, Turkey
| | - Ozgur Oner
- Ankara University School of Medicine, Child and Adolescent Psychiatry, Ankara, Turkey
| | - Aysegul Kart
- Nevsehir Government Hospital, Psychiatry Department, Nevsehir, Turkey
| | | |
Collapse
|
26
|
Schmidt FM, Mergl R, Stach B, Jahn I, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry 2015; 16:106-13. [PMID: 25264292 DOI: 10.3109/15622975.2014.952776] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Alterations in neuronal and glial integrity are considered to be of pathogenic impact on major depressive disorder (MDD). For MDD, data on cerebrospinal fluid (CSF) levels of neuron-specific enolase (NSE) are lacking and scarce for glial protein S100B. METHODS We measured CSF levels of NSE and S100B in 31 patients with MDD and 32 mentally healthy controls using electrochemiluminescence immunoassays (ECLIA). RESULTS Adjusted means of NSE were significantly elevated in the MDD patients (11.73 ng/ml (9.95-13.52 95% CI) compared to the controls (6.17 ng/ml (4.55-7.78), F = 9.037, P = 0.004. Effect size for adjusted mean group difference of 5.57 ng/ml was found invariably high (Cohen's d = 1.23). Differentiating MDD from controls, a NSE cut-off of 7.94 ng/ml showed sensitivity of 81% (95% CI 63.7-90.8) and specificity of 75% (95% CI 57.9-86.7). Adjusted levels of S100B did not differ significantly between the two groups (1.12 ng/ml (0.77-1.48) in MDD, 0.97 ng/ml (0.64-1.30) in controls). CONCLUSIONS Our results of elevated CSF-NSE levels support neuronal pathology in MDD and the potential use of CSF-NSE as marker in clinical diagnostics. Missing group differences in S100B do not promote a specific glial pathology in depressive disorders.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig , Leipzig , Germany
| | | | | | | | | |
Collapse
|
27
|
Borsoi M, Antonio CB, Müller LG, Viana AF, Hertzfeldt V, Lunardi PS, Zanotto C, Nardin P, Ravazzolo AP, Rates SMK, Gonçalves CA. Repeated forced swimming impairs prepulse inhibition and alters brain-derived neurotrophic factor and astroglial parameters in rats. Pharmacol Biochem Behav 2015; 128:50-61. [DOI: 10.1016/j.pbb.2014.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/12/2014] [Accepted: 11/15/2014] [Indexed: 11/26/2022]
|
28
|
Sternberg Z, Sternberg D, Drake A, Chichelli T, Yu J, Hojnacki D. Disease modifying drugs modulate endogenous secretory receptor for advanced glycation end-products, a new biomarker of clinical relapse in multiple sclerosis. J Neuroimmunol 2014; 274:197-201. [DOI: 10.1016/j.jneuroim.2014.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022]
|
29
|
Schroeter ML, Steiner J, Schönknecht P, Mueller K. Further evidence for a role of S100B in mood disorders: a human gene expression mega-analysis. J Psychiatr Res 2014; 53:84-6. [PMID: 24629352 DOI: 10.1016/j.jpsychires.2014.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany; Day Clinic of Cognitive Neurology, University of Leipzig, Leipzig, Germany; LIFE - Leipzig Research Center for Civilization Diseases, University of Leipzig, Germany.
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Germany
| | | | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany
| |
Collapse
|
30
|
Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets 2014; 14:1237-48. [PMID: 23701298 PMCID: PMC3821390 DOI: 10.2174/13894501113149990014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 05/17/2013] [Indexed: 01/11/2023]
Abstract
Recently, mood disorders have been discussed to be characterized by glial pathology. The protein S100B, a growth and differentiation factor, is located in, and may actively be released by astro- and oligodendrocytes. This protein is easily assessed in human serum and provides a useful parameter for glial activation or injury. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Consistent with the glial hypothesis of mood disorders, serum S100B levels interact with age with higher levels in elderly depressed subjects. Successful antidepressive treatment has been associated with serum S100B reduction in major depression, whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered in mood disorders. Recently, serum S100B has been linked to specific imaging parameters in the human white matter suggesting a role for S100B as an oligodendrocytic marker protein. In sum, serum S100B can be regarded as a promising in vivo biomarker for mood disorders deepening the understanding of the pathogenesis and plasticity-changes in these disorders. Future longitudinal studies combining serum S100B with other cell-specific serum parameters and multimodal imaging are warranted to further explore this serum protein in the development, monitoring and treatment of mood disorders.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
31
|
Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, Bogerts B, Steiner J. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res 2013; 47:1694-9. [PMID: 23896207 DOI: 10.1016/j.jpsychires.2013.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/13/2013] [Accepted: 07/05/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have suggested that affective disorders are characterized by glial pathology. In this context, it has been hypothesized that elevated S100B serum and cerebrospinal fluid levels may represent a suitable surrogate marker. However, brain studies on the cellular distribution pattern of S100B in depressed patients are lacking so far. Such analyses are crucial, since S100B has been detected in various other cell types, even outside the central nervous system. METHODS Therefore, we performed a first postmortem analysis on this topic in the hippocampus--which is of major importance for emotional and cognitive aspects of affective disorders. S100B-immunopositive astrocytes and oligodendrocytes were evaluated in the alveus and the CA1 pyramidal layer of patients with major depressive disorder (MDD) or bipolar I disorder (BD) compared to controls. RESULTS As revealed by the optical disector cell-counting method, the numerical density of S100B-immunopositive astrocytes was bilaterally decreased in the CA1 pyramidal layer of MDD and BD patients compared to controls, whereas only the bipolar group showed a decreased density of S100B-immunopositive oligodendrocytes in the left alveus. These results were not confounded by gender, age, duration of disease, medication dosage, or autolysis time. CONCLUSIONS Confirming the idea of previous S100B serum and cerebrospinal fluid studies, our data suggest that S100B-immunopositive glia is dysregulated in the brains of depressed patients. These findings are in accordance with animal experiments in rodents showing a reduced astrocytic S100B-immunoreactivity in the hippocampus after pharmacological serotonin depletion (modeling depression).
Collapse
Affiliation(s)
- Tomasz Gos
- Department of Psychiatry, University of Magdeburg, Germany; Institute of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Effects of restraint stress on glial activity in the rostral ventromedial medulla. Neuroscience 2013; 241:10-21. [DOI: 10.1016/j.neuroscience.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 12/24/2022]
|
33
|
Uher T, Bob P. Cerebrospinal fluid S100B levels reflect symptoms of depression in patients with non-inflammatory neurological disorders. Neurosci Lett 2012; 529:139-43. [PMID: 22982200 DOI: 10.1016/j.neulet.2012.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/11/2022]
Abstract
Recent findings document numerous interactions between neuronal and glial systems that likely play a role in the pathophysiology of depression. These findings suggest that glia-derived neurotrophic protein S100B may play a significant role in developing depression. To test the relationship between S100B and depressive symptoms we designed cross-sectional clinical study including S100B serum and CSF levels in neurological patients with non-inflammatory disorders (NIND), who undergone cerebrospinal fluid assessment for diagnostic purposes. The present study was focused on psychometric testing of depression (BDI-II), anxiety (SAS) and alexithymia (TAS-20), and neurochemical measure of cerebrospinal fluid (CSF) and serum levels of S100B in 40 NIND inpatients [mean age 41.67]. The main result shows that S100B in CSF is significantly negatively correlated with BDI-II (Spearman R=-0.51, p<0.0009) but not with SAS and TAS-20. The finding indicates that decreased level of S100B in CSF is related to increased symptoms of depression in the NIND patients.
Collapse
Affiliation(s)
- Tomas Uher
- Center for Neuropsychiatric Research of Traumatic Stress, Department of Psychiatry & UHSL, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|