1
|
Alotaibi B, El-Masry TA, Negm WA, Saleh A, Alotaibi KN, Alosaimi ME, Elekhnawy E. In Vivo and in Vitro Mitigation of Salmonella Typhimurium Isolates by Fortunella Japonica Fruit Extract. Curr Microbiol 2024; 81:262. [PMID: 38981879 DOI: 10.1007/s00284-024-03770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
The vast dissemination of resistance to different antibiotics among bacterial pathogens, especially foodborne pathogens, has drawn major research attention. Thus, many attempts have been made to reveal novel alternatives to the current antibiotics. Due to their variable pharmacologically active phytochemicals, plants represent a good solution for this issue. This study investigated the antibacterial potential of Kumquat or Fortunella japonica methanol extract (FJME) against Salmonella typhimurium clinical isolates. Gas chromatography coupled with mass spectrometry (GC/MS) characterized 39 compounds in FJME. Palmitic acid (15.386%) and cis-vaccenic acid (15.012%) are the major active constituents detected by GC/MS. Remarkably, FJME had minimum inhibitory concentrations from 128 to 512 µg/mL in vitro. In addition, a systemic infection model revealed the in vivo antibacterial action of FJME. The antibacterial therapeutic activity of FJME was noticed by improving the histological features of the liver and spleen. Moreover, there was a perceptible lessening (p < 0.05) of the levels of the oxidative stress markers (nitric oxide and malondialdehyde) using ELISA. In addition, the gene expression of the proinflammatory cytokine (interleukin 6) was downregulated. On the other hand, there was an upregulation of the anti-inflammatory cytokine (interleukin 10). Accordingly, future clinical investigations should be done to reveal the potential antibacterial action of FJME on other food pathogens.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | | | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, 84428, Riyadh, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
Wei L, Hu Q, He L, Li G, Zhang J, Chen Y. Diversity in storage age enables discrepancy in quality attributes and metabolic profile of Citrus grandis "Tomentosa" in China. J Food Sci 2024; 89:1454-1472. [PMID: 38258880 DOI: 10.1111/1750-3841.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
The folk proverb "the older, the better" is usually used to describe the quality of Citrus grandis "Tomentosa" (CGT) in China. In this study, CGT aged for 6-, 12-, 16-, and 19-years were collected for the investigation of infusion color, main bioactive components, antioxidant activity, metabolic composition, and pathway. The results found that infusion color, the total phenolic and flavonoid, and antioxidant activity of CGT were obviously changed by aging process. Through untargeted metabolomics, 55 critical metabolites were identified to in discrimination of CGT with different storage ages, mainly including phenylpropanoids, lipids, and organic oxygen compounds. Twenty compounds that showed good linear relationships with storage ages could be used for year prediction of CGT. Kyoto encyclopedia of genes and genomes enrichment pathway analysis uncovered important metabolic pathways related to the accumulation of naringin, kaempferol, and choline as well as the degradation of benzenoids, thus supporting that aged CGT might be more beneficial to health. Correlation analysis provided that some key metabolites with bitter taste and biological activity were involved in the darkening and reddening of CGT infusion during aging, and total phenolic and flavonoid were more strongly associated with the antioxidant activity of CGT. This study systematically revealed the quality changes and key metabolic pathways during CGT aging at first time. PRACTICAL APPLICATION: This study reveals the differences in quality attributes and metabolic profile between CGT with different storage ages, providing guidance for consumers' consumption, and also providing more scientific basis for the quality evaluation and improvement of CGT.
Collapse
Affiliation(s)
- Liyang Wei
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
- School of Biotechnology and Food Engineering, Anhui Polytechnic University, Wuhu, People's Republic of China
| | - Qian Hu
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Guoping Li
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, People's Republic of China
| |
Collapse
|
3
|
Brah AS, Armah FA, Obuah C, Akwetey SA, Adokoh CK. Toxicity and therapeutic applications of citrus essential oils (CEOs): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2158864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Augustine S. Brah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Francis A. Armah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Collins Obuah
- Department of Chemistry, University of Ghana, Legon, Ghana
| | - Samuel A. Akwetey
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Clinical Microbiology, School of Medicine, University for Development Studies, Tamale
| | - Christian K. Adokoh
- Department of Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
4
|
Shalaby AS, Eid HH, El-Shiekh RA, Youssef FS, Al-Karmalawy AA, Farag NA, Sleem AA, Morsy FA, Ibrahim KM, Tadros SH. A Comparative GC/MS Analysis of Citrus Essential Oils: Unveiling the Potential Benefits of Herb-Drug Interactions in Preventing Paracetamol-Induced Hepatotoxicity. Chem Biodivers 2023; 20:e202300778. [PMID: 37599265 DOI: 10.1002/cbdv.202300778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Our study aimed to test the potential of Citrus oils in protecting against paracetamol (PAR)-induced hepatotoxicity. The essential oils of Pineapple sweet orange (OO), Murcott mandarin (MO), Red grapefruit (GO), and Oval kumquat (KO) were investigated using gas chromatography coupled with mass spectrometry (GC/MS). Twenty-seven compounds were identified, with monoterpene hydrocarbons being abundant class. d-Limonene had the highest percentage (92.98 %, 92.82 %, 89.75 %, and 94.46 % in OO, MO, GO, and KO, respectively). Hierarchical cluster analysis (HCA) and principal components analysis (PCA) revealed that octanal, linalool, germacrene D, and d-limonene were the principal discriminatory metabolites that segregated the samples into three distinct clusters. In vitro antioxidant capacities were ranged from 1.2-12.27, 1.79-5.91, and 235.05-585.28 μM Trolox eq/mg oil for 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic (ABTS), ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC), respectively. In vivo, citrus oils exhibited a significant reduction in alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and nitric oxide (NO). Additionally, there was an increase in glutathione reductase (GSH), and the liver architecture was nearly normal. Molecular docking revealed that d-limonene exhibited a good inhibitory interaction with cytochrome P450 (CYP450) isoforms 1A2, 3A4, and 2E1, with binding energies of -6.17, -4.51, and -5.61 kcal/mol, respectively.
Collapse
Affiliation(s)
- Aya S Shalaby
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanaa H Eid
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Riham A El-Shiekh
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo, 11566, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Nahla A Farag
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Amany A Sleem
- Pharmacology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Fatma Adly Morsy
- Pathology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Khaled M Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Soad H Tadros
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
5
|
Abdel Samad R, El Darra N, Al Khatib A, Chacra HA, Jammoul A, Raafat K. Novel dual-function GC/MS aided ultrasound-assisted hydrodistillation for the valorization of Citrus sinensis by-products: phytochemical analysis and anti-bacterial activities. Sci Rep 2023; 13:12547. [PMID: 37532740 PMCID: PMC10397203 DOI: 10.1038/s41598-023-38130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
A huge-amount of citrus by-products is being wasted every-year. There is a high-need to utilize these by-products with high-efficiency. This study focuses on the essential oil (EO) isolation from the zest of Citrus sinensis (CS) by-products, using a novel dual-function gas-chromatography mass-spectrometry optimized ultrasound-assisted hydrodistillation-prototype (DF-GC/MS-HUS). The CS-EO was GC-analyzed by MS-detector (GC/MS) and optimized by flame-ionization detector (GC/FID). Ultrasound-assisted hydrodistillation (HUS) had a dual-function in CS-EO isolation by utilizing an adequate-energy to break-open the oil-containing glands, and by functioning-as a dispersing-agent to emulsify the organic-phase. The most effective DF-GC/MS-HUS optimized-conditions were isolation under 38 °C and 10 min of 28.9 Hz sonication. The main-components of CS-EO were limonene, β-myrcene, and α-pinene (81.32%, 7.55%, and 4.20%) in prototype, compared to (60.23%, 5.33%, and 2.10%) in the conventional-method, respectively. The prototype CS-EO showed natural antibacterial-potentials, and inhibited the bio-film formation by Staphylococcus aureus, Listeria monocytogenes, and E. coli more-potent than the conventional-method. Compared to conventional-method, the prototype-method decreased the isolation-time by 83.3%, lowered energy-consumption, without carbon-dioxide production, by reducing isolation-temperatures by more-than half, which protected the thermolabile-components, and increased the quantity by 2514-folds, and improved the quality of CE-EO composition and its antibacterial-potentials. Therefore, the DF-GC/MS-HUS prototype method is considered a novel green-technique that minimized the energy-utilization with higher-efficiency.
Collapse
Affiliation(s)
- Roudaina Abdel Samad
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Nada El Darra
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Alissar Al Khatib
- Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box: 115020, Beirut, 1107 2809, Lebanon
| | - Hadi Abou Chacra
- Department of Industrial Engineering and Engineering Management, Faculty of Engineering, Beirut Arab University, Riad El Solh, P.O. Box 11-5020, Beirut, Lebanon
| | - Adla Jammoul
- Food Department, Lebanese Agricultural Research Institute, P.O. Box 2611, Fanar, Beirut, 1107 2809, Lebanon
- Phytopharmacy Laboratory, Ministry of Agriculture of Lebanon, Kfarchima, Lebanon
| | - Karim Raafat
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| |
Collapse
|
6
|
Zhao Q, Ge Q, Shang Y, Zheng M, Sun X, Bao S, Fang Y, Zhang Z, Ma T. Eating with peel or not: Investigation of the peel consumption situation and its nutrition, risk analysis, and dietary advice in China. Food Res Int 2023; 170:112972. [PMID: 37316012 DOI: 10.1016/j.foodres.2023.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
Nutritious, balanced, tasty and easy to eat, fruit is an indispensable health food for consumers. With consumers' increasing respect for the concept of health, green and nutrition, the peel, which has higher nutritional value compared to the pulp, is gradually being emphasized in the consumption process. The suitability of fruit peels for consumption is influenced by various factors, such as the amount of pesticide residues, nutrient content, ease of peeling, and fruit texture, but there is a lack of relevant studies to guide consumers' scientific intake of fruit peels. This review first investigated chineses consumers consumption of common fruits with peels, especially eight fruits that are controversial in terms of whether to consume them with peels, and the results showed that whether people consume peels depends mainly on their nutritional value and pesticide residues. Based on this, the paper discusses the common methods of pesticide detection and removal from fruit peels, as well as the nutrients contained in different fruit peels and their physiological activities, if the peels usually have stronger antioxidant, anti-inflammatory and anti-tumor activities than the pulp. Finally, reasonable dietary recommendations are made on whether fruits should be consumed with their peels, with a view to guiding chineses consumers towards scientific consumption and provide theoretical basis for relevant research in other countries.
Collapse
Affiliation(s)
- Qinyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China; Quality Standards and Testing Institute of Agricultural Technology, Ningxia Academy of Agricultural Sciences, Yinchuan 750002, China
| | - Yi Shang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Mingyuan Zheng
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Xiangyu Sun
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China
| | - Zhenwen Zhang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Eastern Foot of Helan Mountain Wine Station, Northwest A&F University, Yangling 712100, China.
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
7
|
Lakache Z, Hacib H, Aliboudhar H, Toumi M, Mahdid M, Lamrani N, Tounssi H, Kameli A. Chemical composition, antidiabetic, anti-inflammatory, antioxidant and toxicityactivities, of the essential oil of <em>Fortunella margarita</em> peels. JOURNAL OF BIOLOGICAL RESEARCH - BOLLETTINO DELLA SOCIETÀ ITALIANA DI BIOLOGIA SPERIMENTALE 2022. [DOI: 10.4081/jbr.2022.10641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to identify the principal components of the essential oil extracted from Fortunella margarita peels via hydrodistillation and to evaluate in vitro its anti-diabetic, anti-inflammatory, antioxidant, and toxicity properties. Among the detected compounds were limonene, D-germacrene, β-myrcene, and α-pinene. Method of inhibiting the denaturation of Bovine Serum Albumin (BSA) was utilized to assess the anti-inflammatory properties of Fortunella margarita. At a concentration of 400g/mL, a high anti-inflammatory effect was observed. The percentage of BSA protection against heat increased with increasing concentration. Also, the evaluation of antidiabetic activity by glucose uptake by yeast cells revealed that Fortunella margarita was more effective than the standard drug novoformine in the presence of 5 mM glucose. The antioxidant potential of the essential oil was evaluated using the DPPH free radical scavenging, reducing power and β-carotene/linoleic acid tests, where the essential oil had much lower antioxidant activity. A bioassay on the lethality of brine shrimp was conducted to determine the toxicity of the essential oil. The study reveals that the essential oil is a possible source of important bioactive compounds and that its constituents may exhibit synergistic effects. Our findings suggest that the essential oil from Fortunella margarita could be used in the future as a substitute for synthetic anti-diabetic, anti-inflammatory, and antioxidant agents with potential applications in the food and pharmaceutical industries.
Collapse
|
8
|
Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the use of antimicrobial natural agents as alternative food preservatives represents an intriguing case. The purpose of this study was to investigate possible antimicrobial activity of Pistacia lentiscus and Fortunella margarita essential oils (EOs) and to evaluate their commercial potential in the food industry. The main constituents identified by GC/MS in Pistacia lentiscus EO were a-pinene (67.7%), myrcene (18.8%), and β-pinene (3.0%), whereas limonene (93.8%) and myrcene (2.7%) were the dominant compounds in Fortunella margarita EO. The antimicrobial properties were initially assayed and the minimum inhibitory, non-inhibitory, and minimum lethal concentration values against the Escherichiacoli, Listeria monocytogenes, Pseudomonas fragi, Aspergillus niger, and Saccharomyces cerevisiae were determined using a previously published model, combining absorbance measurements with the common dilution method and non-linear regression analysis to fit the data. Their efficiency was further validated in ice cream containing 0.2% (w/w) Pistacia lentiscus, 0.006% (w/w) Fortunella margarita EOs and 2% (w/w) aqueous residue of F. margarita EO deliberately inoculated with 4 logcfu/g Escherichiacoli, Listeria monocytogenes or Pseudomonas fragi, separately. Similarly, the activity of the oils was monitored in fruit juice (lemon, apple, and blackcurrant) containing 0.2% (w/w) Pistacia lentiscus, 0.006% (w/w) Fortunella margarita EOs and 2% (w/w) aqueous residue of F. margarita EO deliberately spiked with 100 spores/mL of Aspergillus niger or 4 logcfu/mL of Saccharomyces cerevisiae, separately. The results showed that microbial viable counts in the supplemented products ranged at significantly lower levels compared to the control samples during storage. Overall, the data indicated that both EOs constitute effective antimicrobial sources with many potent applications in the food industry.
Collapse
|
9
|
Synergistic Role of Plant Extracts and Essential Oils against Multidrug Resistance and Gram-Negative Bacterial Strains Producing Extended-Spectrum β-Lactamases. Antibiotics (Basel) 2022; 11:antibiotics11070855. [PMID: 35884109 PMCID: PMC9312036 DOI: 10.3390/antibiotics11070855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Plants, being the significant and natural source of medication for humankind against several ailments with characteristic substances hidden on them, have been recognized for many centuries. Accessibility of various methodologies for the revelation of therapeutically characteristic items has opened new avenues to redefine plants as the best reservoirs of new structural types. The role of plant metabolites to hinder the development and movement of pathogenic microbes is cherished. Production of extended-spectrum β-lactamases is an amazing tolerance mechanism that hinders the antibacterial treatment of infections caused by Gram-negative bacteria and is a serious problem for the current antimicrobial compounds. The exploration of the invention from sources of plant metabolites gives sustenance against the concern of the development of resistant pathogens. Essential oils are volatile, natural, complex compounds described by a solid odor and are framed by aromatic plants as secondary metabolites. The bioactive properties of essential oils are commonly controlled by the characteristic compounds present in them. They have been commonly utilized for bactericidal, virucidal, fungicidal, antiparasitic, insecticidal, medicinal, and antioxidant applications. Alkaloids are plant secondary metabolites that have appeared to have strong pharmacological properties. The impact of alkaloids from Callistemon citrinus and Vernonia adoensis leaves on bacterial development and efflux pump activity was assessed on Pseudomonas aeruginosa. Plant-derived chemicals may have direct antibacterial activity and/or indirect antibacterial activity as antibiotic resistance modifying agents, increasing the efficiency of antibiotics when used in combination. The thorough screening of plant-derived bioactive chemicals as resistance-modifying agents, including those that can act synergistically with antibiotics, is a viable method to overcome bacterial resistance. The synergistic assessment studies with the plant extract/essential oil and the antibiotic compounds is essential with a target for achieving a redesigned model with sustainable effects which are appreciably noticeable in specific sites of the plants compared to the entirety of their individual parts.
Collapse
|
10
|
Li K, Chen W, Deng P, Luo X, Xiong Z, Li Z, Ning Y, Liu Y, Chen A. Dissipation, residues and risk assessment of lufenuron during kumquat growing and processing. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094495] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chemical compounds from plants have been used as a medicinal source for various diseases. Aromachology is a unique field that studies the olfactory effects after inhaling aromatic compounds. Aromatherapy is a complementary treatment methodology involving the use of essential oils containing phytoncides and other volatile organic compounds for various physical and mental illnesses. Phytoncides possess an inherent medicinal property. Their health benefits range from treating stress, immunosuppression, blood pressure, respiratory diseases, anxiety, and pain to anti-microbial, anti-larvicidal, anti-septic, anti-cancer effects, etc. Recent advancements in aromatherapy include forest bathing or forest therapy. The inhalation of phytoncide-rich forest air has been proven to reduce stress-induced immunosuppression, normalize immune function and neuroendocrine hormone levels, and, thus, restore physiological and psychological health. The intricate mechanisms related to how aroma converts into olfactory signals and how the olfactory signals relieve physical and mental illness still pose enormous questions and are the subject of ongoing research. Aromatherapy using the aroma of essential oils/phytoncides could be more innovative and attractive to patients. Moreover, with fewer side effects, this field might be recognized as a new field of complementary medicine in alleviating some forms of physical and mental distress. Essential oils are important assets in aromatherapy, cosmetics, and food preservatives. The use of essential oils as an aromatherapeutic agent is widespread. Detailed reports on the effects of EOs in aromatherapy and their pharmacological effects are required to uncover its complete biological mechanism. This review is about the evolution of research related to phytoncides containing EOs in treating various ailments and provides comprehensive details from complementary medicine.
Collapse
|
12
|
Zhao XJ, Guo PM, Pang WH, Tan T, Zhang YH, Jiao BN. Screening and quantitative analysis of characteristic secondary metabolites in Jindou kumquat (Fortunella hindsii var.chintou Swingle) among Fortunella fruits. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wan N, Xie H, Yu F, Li Y, Zheng Q, Wu Z. Extraction of essential oils from Kumquat peel using ultrasound‐assisted vacuum hydrodistillation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Na Wan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
| | - Hao Xie
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
| | - Fen Yu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
| | - Yuanhui Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education Jiangxi University of Chinese Medicine Nanchang PR China
- State Key Laboratory of innovative medicine and high efficiency and energy saving pharmaceutical equipment Nanchang PR China
| |
Collapse
|
14
|
Soni S, Parekh MY, Jacob JA, Mack JP, Lobo DE. Kumquat essential oil decreases proliferation and activates JNK signaling and apoptosis in HT-1080 fibrosarcoma cells. Mol Cell Biochem 2021; 477:445-453. [PMID: 34783965 DOI: 10.1007/s11010-021-04291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Kumquats are small citrus fruits produced by the Fortunella japonica tree. In addition to its aroma, kumquat essential oil may have antiproliferative effects; however, research on the effects of kumquat essential oil on human cell lines is limited. This study investigated the effects of kumquat essential oil on the proliferation of three human cell lines (HT-1080 fibrosarcoma cells, HeLa cervical adenocarcinoma cells, and CUA-4 normal human fibroblasts). As the concentration of kumquat essential oil increased, cell proliferation and viability, as measured by MTT activity assays, decreased in all three cell lines. Compared to untreated cells, HT-1080 fibrosarcoma cells exposed to kumquat essential oil exhibited an increased presence of phosphorylated JNK. Apoptosis was also stimulated, as PARP cleavage of treated HT-1080 fibrosarcoma cells was detected. Use of a JNK inhibitor resulted in decreased PARP cleavage in HT-1080 cells following treatment with kumquat EO, suggesting that activity of JNK is implicated in the stress response. The kumquat essential oil constituents limonene and myrcene both independently led to decreased proliferation and apoptosis.
Collapse
Affiliation(s)
- Subah Soni
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Mruga Y Parekh
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Jive A Jacob
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - James P Mack
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA
| | - Dorothy E Lobo
- Department of Biology, Monmouth University, West Long Branch, NJ, 07764, USA.
| |
Collapse
|
15
|
Al-Sayed HMA, Abdelaleem MA, Shawky HA. Physiochemical and nutritional evaluation of whole kumquat fruits powder and its protective effect on thyroid hormones and blood sugar levels in diabetic rats. BRAZ J BIOL 2021; 83:e247071. [PMID: 34431915 DOI: 10.1590/1519-6984.247071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/09/2021] [Indexed: 10/05/2024] Open
Abstract
The present study was conducted to evaluate the chemical composition, antioxidant activity and hypoglycemic effects of whole kumquat (Ku) powder in diabetic rats fed a high-fat-high-cholesterol (HFHC) diet. The antioxidant activities were evaluated using stable 1,1-diphenyl 2-picrylhydrazyl (DPPH) free radical scavenging method, 2,2´-azinobis (3-ethyl benzo thiazoline-6-sulphonic acid) radical cation (ABTS) and Ferric reducing antioxidant power (FRAP). Total phenolic content was (51.85 mg GAE/g) and total flavonoid content was (0.24 mg Cateachin Equivalent, CE/g). DPPH and ABTS values were 3.32 and 3.98 mg Trolox equivalent (TE)/g where FRAP value was 3.00 mM Fe2+/kg dry material. A total of 90 albino rats were used in the present study. Rats group were as follows: normal diet; normal treated (2, 4, and 6% Ku.), diabetic rats (non-treated), diabetic + HFHC diet (non-treated), HFHC (non-treated), Diabetic (treated), HFHC (treated) and Diabetic + HFHC (treated). The diets were followed for 8 weeks. Blood samples were collected at the end of the experiment. Serum glucose was recorded and thyroid hormones (T4, Thyroxine and T3, Triiodothyronine) were conducted. Diet supplemented with Kumquat at different concentrations have a hypoglycemic effect and improve the thyroid hormones of both diabetic rats and HFHC diabetic rats.
Collapse
Affiliation(s)
- H M A Al-Sayed
- Ain Shams University, Faculty of Agriculture, Food Science Department, Cairo, Egypt.,Tabuk University, Faculty of Home Economics, Nutrition and Food Science Department, Tabuk, Saudi Arabia
| | - M A Abdelaleem
- Egyptian Atomic Energy Authority, Nuclear Research Center, Plant Research Department, Cairo, Egypt
| | - H A Shawky
- Egyptian Atomic Energy Authority, Nuclear Research Center, Plant Research Department, Cairo, Egypt
| |
Collapse
|
16
|
Effect of kumquat (Fortunella margarita) powders dried by different methods on some physical and chemical properties of cake. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01112-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Lin X, Cao S, Sun J, Lu D, Zhong B, Chun J. The Chemical Compositions, and Antibacterial and Antioxidant Activities of Four Types of Citrus Essential Oils. Molecules 2021; 26:molecules26113412. [PMID: 34199966 PMCID: PMC8200181 DOI: 10.3390/molecules26113412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 11/16/2022] Open
Abstract
Nanfeng mandarins (Citrus reticulata Blanco cv. Kinokuni), Xunwu mandarins (Citrus reticulata Blanco), Yangshuo kumquats (Citrus japonica Thunb) and physiologically dropped navel oranges (Citrus sinensis Osbeck cv. Newhall) were used as materials to extract peel essential oils (EOs) via hydrodistillation. The chemical composition, and antibacterial and antioxidant activities of the EOs were investigated. GC-MS analysis showed that monoterpene hydrocarbons were the major components and limonene was the predominate compound for all citrus EOs. The antibacterial testing of EOs against five different bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhimurium) was carried out using the filter paper method and the broth microdilution method. Kumquat EO had the best inhibitory effect on B. subtilis, E. coli and S. typhimurium with MIC (minimum inhibitory concentration) values of 1.56, 1.56 and 6.25 µL/mL, respectively. All citrus EOs showed the antioxidant activity of scavenging DPPH and ABTS free radicals in a dose-dependent manner. Nanfeng mandarin EO presented the best antioxidant activity, with IC50 values of 15.20 mg/mL for the DPPH assay and 0.80 mg/mL for the ABTS assay. The results also showed that the antibacterial activities of EOs might not be related to their antioxidant activities.
Collapse
Affiliation(s)
- Xiaocai Lin
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Shan Cao
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Jingyu Sun
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Dongliang Lu
- College of Chemistry, Gannan Normal University, Ganzhou 341000, China;
| | - Balian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
| | - Jiong Chun
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (X.L.); (S.C.); (J.S.); (B.Z.)
- Correspondence: ; Tel.: +86-797-839-3608
| |
Collapse
|
18
|
Pawełczyk A, Żwawiak J, Zaprutko L. Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
19
|
Kitagawa T, Matsumoto T, Imahori D, Kobayashi M, Okayama M, Ohta T, Yoshida T, Watanabe T. Limonoids isolated from the Fortunella crassifolia and the Citrus junos with their cell death-inducing activity on Adriamycin-treated cancer cell. J Nat Med 2021; 75:998-1004. [PMID: 33991286 DOI: 10.1007/s11418-021-01528-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 01/26/2023]
Abstract
From the fruits of Fortunella crassifolia and the peels of Citrus junos, two new limonoids, fortunellone and junosol were isolated together with three known compounds including nomilin. The chemical structures of the new compounds were elucidated based on chemical/physicochemical evidence. For fortunellone, the absolute configuration was established by comparison of experimental and predicted electronic circular dichroism (ECD) data. Fortunellon and nomilin significantly increased the number of dead cells on adriamycin (ADR)-treated human cervical cancer cells (HeLa). On the other hand, fortunellon and nomilin did not affects the number of dead cells alone. These results suggested that fortunellone and nomilin may have the potency as the chemotherapy enhancement agents.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| | - Daisuke Imahori
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Mayuka Kobayashi
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masaya Okayama
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, 859-3298, Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
20
|
Yu F, Wan N, Zheng Q, Li Y, Yang M, Wu Z. Effects of ultrasound and microwave pretreatments on hydrodistillation extraction of essential oils from Kumquat peel. Food Sci Nutr 2021; 9:2372-2380. [PMID: 34026056 PMCID: PMC8116871 DOI: 10.1002/fsn3.2073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Main objectives of this work were to investigate the influences of ultrasound pretreatment (UP) and microwave pretreatment (MP) on extraction kinetics, chemical composition, and antioxidant activity of Kumquat peel essential oil (EO) obtained by hydrodistillation extraction (HDE). The effects of ultrasound power and processing time, and microwave power and processing time were evaluated. As compared with HDE individually, UP and MP decreased the extraction time, increased the yield and DPPH radical-scavenging activity but did not noticeably affect chemical composition of the EO. For UP and MP, the highest EO yield was obtained when the ultrasonic power and processing time, and microwave power and processing time were 210 W and 30 min, 300 W and 6 min, respectively. In comparison with MP, UP gave a higher yield and DPPH radical-scavenging activity of the EO. Overall, UP and MP are promising techniques for HDE of EO from kumquat peel.
Collapse
Affiliation(s)
- Fen Yu
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Na Wan
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Yuanhui Li
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCMMinistry of EducationJiangxi University of Traditional Chinese MedicineNanchangChina
| |
Collapse
|
21
|
Giovanelli S, Ciccarelli D, Giusti G, Mancianti F, Nardoni S, Pistelli L. Comparative assessment of volatiles in juices and essential oils from minor
Citrus
fruits (Rutaceae). FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | | | - Giulia Giusti
- Dipartimento di Farmacia Università di Pisa Pisa Italy
| | - Francesca Mancianti
- Dipartimento di Scienze Veterinarie Università di Pisa Pisa Italy
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute ‘NUTRAFOOD’ Università di Pisa Pisa Italy
| | - Simona Nardoni
- Dipartimento di Scienze Veterinarie Università di Pisa Pisa Italy
| | - Luisa Pistelli
- Dipartimento di Farmacia Università di Pisa Pisa Italy
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute ‘NUTRAFOOD’ Università di Pisa Pisa Italy
| |
Collapse
|
22
|
Wu JW, Liu F, Tian N, Liu JP, Shi XB, Bei XJ, Cheng CZ. Characterisation of the complete chloroplast genome of Fortunella Crassifolia Swingle and phylogenetic relationships. Mitochondrial DNA B Resour 2019; 4:3538-3539. [PMID: 33366075 PMCID: PMC7707195 DOI: 10.1080/23802359.2019.1675554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we reported the complete chloroplast genome of Fortunella crassifolia Swingle using the HiSeq-4000 sequencing. The chloroplast genome size is 160,229 bp, which consists of a large single-copy region (87,774 bp), a small single-copy region (18,721 bp), and a pair of IR regions (26,867 bp). The chloroplast genome contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs, and 4 rRNAs. Phylogenetic maximum likelihood analysis showed that F. crassifolia was closest to Hongkong kumquat (F. hindsii). The complete chloroplast genome would be subsequently used for citrus species researches.
Collapse
Affiliation(s)
- Jun-Wei Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Fan Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Na Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Jia-Peng Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xiao-Bao Shi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Xue-Jun Bei
- College of Biology and Pharmacy, Yulin Normal University, Yulin, PR China
| | - Chun-Zhen Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
23
|
Mohamed DA, Fouda K, Hamed IM, Abdelgayed SS. Protective effect of Kumquat fruits and carrot seeds extracts against brain aging in rats. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction: Protection of brain against accelerated aging helps avoiding the occurrence of neurodegenerative diseases. So, the current work was conducted to evaluate the rescuing role of kumquat fruits crude ethanol extract, carrot seeds ethanol and petroleum ether extracts against the brain aging induced by D-galactose in rats. Methods: Forty male Sprague Dawley rats were divided equally into five groups. Group I was served as normal control, rats of group II were daily injected intraperitoneally (i.p.) with 150 mg/kg BW of D-galactose. Rats of group III, IV and V were daily injected i.p. with the same dose of D-galactose and administered orally with 250 mg/kg BW/day of kumquat fruits crude ethanol extract, carrot seeds ethanol extract and carrot seeds petroleum ether extract, respectively. After 6 weeks the rats were scarified, brain tissues were analyzed for malondialdehyde (MDA), catalase (CAT) as well as histological examination. Also, the plasma was analyzed for MDA, tumor necrosis factor-α (TNF-α), creatinine and urea levels, as well as CAT, butyrylcholinesterase (BChE), aspartate transaminase (AST) and alanine transaminase (ALT) activities. Results: From the results, it was elucidated that the tested extracts suppressed both the reduction in CAT and the elevation in MDA either in brain or plasma and the increase in plasma TNF-α, BChE as well as liver and kidney parameters. Conclusion: The tested extracts can be served as potent protective agents against the accelerated aging parameters which may be due to anti-oxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Doha Abdou Mohamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Karem Fouda
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ibrahim Mohamed Hamed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherein s. Abdelgayed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry. Molecules 2019; 24:molecules24173053. [PMID: 31443455 PMCID: PMC6749507 DOI: 10.3390/molecules24173053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
The effects of two different processing methods on the volatile components of candied kumquats were investigated via headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). The characteristic volatile fingerprints of fresh kumquats (FKs), vacuum sugaring osmosis combined with hot-air drying kumquats (VS-ADKs), and atmospheric pressure sugaring osmosis combined with hot-air drying kumquats (AS-ADKs) were established using 3D topographic plots. From the fingerprints, 40 signal peaks for 22 compounds were confirmed and quantified in all types of kumquats, namely, two terpenes, four esters, seven aldehydes, three ketones, and six alcohols. 3-Pentanone was identified as the major component of FKs; followed by 1-hexanol and the Z-3-hexen-1-ol dimer. The hexanal dimer, 2-hexen-1-ol, and the ethyl acetate dimer were the major markers of VS-ADKs. Benzaldehyde and furfurol were the prominent constituent parts of AS-ADKs. Compared with that in FKs, the pentanal and dimethyl ketone contents of VS-ADKs and AS-ADKs exhibited a dramatic increase (p < 0.05). By contrast, the change in ethanol dimer tended to decrease (p < 0.05). Principal component analysis (PCA) clearly showed that the samples, which were distributed in a separate space could be well-distinguished. Furthermore, the similarity of different processed kumquats and their corresponding volatile components was demonstrated via heat map clustering analysis. The results confirmed the potential of HS-GC-IMS-based approaches to evaluate processed kumquats with various volatile profiles.
Collapse
|
25
|
Comparative analysis of the antibacterial and drug-modulatory effect of d-limonene alone and complexed with β-cyclodextrin. Eur J Pharm Sci 2019; 128:158-161. [DOI: 10.1016/j.ejps.2018.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 11/23/2022]
|
26
|
Terao R, Murata A, Sugamoto K, Watanabe T, Nagahama K, Nakahara K, Kondo T, Murakami N, Fukui K, Hattori H, Eto N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin andR-limonene. Food Funct 2019; 10:38-48. [DOI: 10.1039/c8fo01971a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The active constituents of kumquat in NK cell activation and anti-stress effects are β-cryptoxanthin andR-limonene.
Collapse
Affiliation(s)
- Rina Terao
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Akira Murata
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Kazuhiro Sugamoto
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | | | - Kiyoko Nagahama
- Interdisciplinary Graduate School of Agriculture and Engineering
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiko Nakahara
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Tomomi Kondo
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Noboru Murakami
- Department of Veterinary Physiology
- Faculty of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
| | - Keiichi Fukui
- Miyazaki JA Food Research & Development Inc
- Miyazaki
- Japan
| | - Hidemi Hattori
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| | - Nozomu Eto
- Graduate School of Agriculture
- University of Miyazaki
- Miyazaki
- Japan
- Interdisciplinary Graduate School of Agriculture and Engineering
| |
Collapse
|
27
|
Effect of Natural Compounds on NK Cell Activation. J Immunol Res 2018; 2018:4868417. [PMID: 30671486 PMCID: PMC6323526 DOI: 10.1155/2018/4868417] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system that survey the body for stressed and abnormal cells. The integration of signals that they receive through various inhibitory and activating cell surface receptors controls their activation and ability to kill target cells and produce cytokines. In this manner, phenotypically and functionally distinct subsets of NK cells help protect against microbial infections and cancer and shape the adaptive immune response. NK cells can use two different mechanisms to kill their targets, either by cytotoxic granule exocytosis or by induction of death receptor-mediated apoptosis. Death ligands belong to the tumor necrosis factor (TNF) family of ligands. Upon release in close proximity to a cell slated for killing, perforin forms pores in the cell membrane of the target cell through which granzymes and associated molecules can enter and induce apoptosis. NK cells are also involved in antibody-dependent cellular toxicity via the CD16 receptor. In addition to target recognition, NK cells can be also activated by treatment with multiple compounds with stimulatory properties. Apart from interleukins, which belong to the best characterized group of NK cell-stimulating compounds, vitamins and constituents extracted from plants also display the ability to activate NK cells. The current review characterizes several groups of NK cell-activating compounds: vitamins belonging to classes A, B, C, D, and E, polysaccharides, lectins, and a number of phytochemicals used in cancer research, exhibiting stimulatory properties when applied to NK cells. Although in most cases the exact mechanism of action is not known, constituents described in this review seem to be promising candidates for NK cell-stimulating drugs.
Collapse
|
28
|
Dosoky NS, Setzer WN. Biological Activities and Safety of Citrus spp. Essential Oils. Int J Mol Sci 2018; 19:E1966. [PMID: 29976894 PMCID: PMC6073409 DOI: 10.3390/ijms19071966] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/01/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Citrus fruits have been a commercially important crop for thousands of years. In addition, Citrus essential oils are valuable in the perfume, food, and beverage industries, and have also enjoyed use as aromatherapy and medicinal agents. This review summarizes the important biological activities and safety considerations of the essential oils of sweet orange (Citrus sinensis), bitter orange (Citrus aurantium), neroli (Citrus aurantium), orange petitgrain (Citrus aurantium), mandarin (Citrus reticulata), lemon (Citrus limon), lime (Citrus aurantifolia), grapefruit (Citrus × paradisi), bergamot (Citrus bergamia), Yuzu (Citrus junos), and kumquat (Citrus japonica).
Collapse
Affiliation(s)
- Noura S Dosoky
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA.
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
29
|
Pérez Zamora CM, Torres CA, Nuñez MB. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America. Molecules 2018; 23:molecules23030544. [PMID: 29494478 PMCID: PMC6017629 DOI: 10.3390/molecules23030544] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022] Open
Abstract
The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia, Lantana, Lippia, Phyla, and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.
Collapse
Affiliation(s)
- Cristina M Pérez Zamora
- National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina.
- Pharmaceutical Technology Laboratory, Department of Basic and Applied Science, National University of Chaco Austral, Comandante Fernández 755, Presidencia Roque Sáenz Peña, Chaco 3700, Argentina.
| | - Carola A Torres
- National Council for Scientific and Technical Research (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina.
- Laboratory of Microbiology, Department of Basic and Applied Science, National University of Chaco Austral, Comandante Fernández 755, Presidencia Roque Sáenz Peña, Chaco 3700, Argentina.
| | - María B Nuñez
- Pharmaceutical Technology Laboratory, Department of Basic and Applied Science, National University of Chaco Austral, Comandante Fernández 755, Presidencia Roque Sáenz Peña, Chaco 3700, Argentina.
| |
Collapse
|
30
|
Traditional Small-Size Citrus from Taiwan: Essential Oils, Bioactive Compounds and Antioxidant Capacity. MEDICINES 2017; 4:medicines4020028. [PMID: 28930243 PMCID: PMC5590064 DOI: 10.3390/medicines4020028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Background: The calamondin (Citrus microcarpa Bunge) and the kumquat (Fortunella crassifolia Swingle) are two small-size citrus fruits that have traditionally been consumed in Taiwan; however, there has been a lack of scientific research regarding the active compounds and functionalities of these fruits. Methods: Analysis of volatile composition of essential oil and phytosterol was carried out using Gas Chromatography–Mass Spectrometry (GC-MS). Flavonoid and limonoid were analyzed by High Performance Liquid Chromatography (HPLC). Moreover, antioxidant capacity from their essential oils and extracts were assessed in vitro. Results: The compositions of the essential oils of both fruits were identified, with the results showing that the calamondin and kumquat contain identified 43 and 44 volatile compounds, respectively. In addition, oxygenated compounds of volatiles accounted for 4.25% and 2.04%, respectively, consistent with the fact that oxygenated compounds are generally found in high content in citrus fruits. In terms of flavonoids, the calamondin exhibited higher content than the kumquat, with disomin-based flavonoids being predominant; on the other hand, phytosterol content of kumquat was higher than that of calamondin, with amyrin being the dominant phytosterol. Both of them contain high amounts of limonoids. The ethanol extracts and essential oils of small-sized citrus fruits have been shown to have antioxidant effects, with those effects being closely related to the flavonoid content of the fruit in question. Conclusions: The present study also reviewed antioxidant activity in terms of specific bioactive compounds in order to find the underlying biological activity of both fruits. The calamondin and kumquat have antioxidant effects, which are in turn very important for the prevention of chronic diseases.
Collapse
|
31
|
Kalita S, Kandimalla R, Devi B, Kalita B, Kalita K, Deka M, Chandra Kataki A, Sharma A, Kotoky J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Adv 2017. [DOI: 10.1039/c6ra26561h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel feasible nano capsular approach through co-encapsulation of chloramphenicol and lemon-grass essential oil to combat chronic burn wound infections.
Collapse
Affiliation(s)
- Sanjeeb Kalita
- Drug Discovery Lab
- Institute of Advanced Study in Science and Technology
- Guwahati – 781035
- India
| | - Raghuram Kandimalla
- Drug Discovery Lab
- Institute of Advanced Study in Science and Technology
- Guwahati – 781035
- India
| | - Banasmita Devi
- Drug Discovery Lab
- Institute of Advanced Study in Science and Technology
- Guwahati – 781035
- India
| | - Bhupalee Kalita
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bengaluru
- India
| | | | - Manab Deka
- Department of Bioengineering and Technology
- Gauhati University
- Guwahati – 781014
- India
| | | | - Arup Sharma
- College of Veterinary Science
- Assam Agriculture University
- Guwahati – 781022
- India
| | - Jibon Kotoky
- Drug Discovery Lab
- Institute of Advanced Study in Science and Technology
- Guwahati – 781035
- India
| |
Collapse
|
32
|
Lou SN, Ho CT. Phenolic compounds and biological activities of small-size citrus: Kumquat and calamondin. J Food Drug Anal 2016; 25:162-175. [PMID: 28911534 PMCID: PMC9333435 DOI: 10.1016/j.jfda.2016.10.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 12/15/2022] Open
Abstract
Kumquat and calamondin are two small-size citrus fruits. Owing to their health benefits, they are traditionally used as folk medicine in Asian countries. However, the research on flavonoids and biological activities of kumquat and calamondin have received less attention. This review summarizes the reported quantitative and qualitative data of phenolic compositions in these two fruits. Effects of maturity, harvest time, various solvent extractions and heat treatment of phenolic compositions, and bioactivities were discussed; distributions of the forms of phenolic compounds existing in kumquat and calamondin were also summarized. Furthermore, biological activities, including antioxidant, anti-tyrosinase, antimicrobial, antitumor, and antimetabolic disorder effects, have also been discussed. Effective phenolic components were proposed for a certain bioactivity. It was found that C-glycoside flavonoids are dominant phenolic compounds in kumquat and calamondin, unlike in other citrus fruits. Up to now, biological activities and chemical characteristics of C-glycoside flavonoids in kumquat and calamondin are largely unknown.
Collapse
Affiliation(s)
- Shyi-Neng Lou
- Department of Food Science, National Ilan University, Ilan, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
33
|
Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016; 21:molecules21081069. [PMID: 27537869 PMCID: PMC6274325 DOI: 10.3390/molecules21081069] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Natural products, known for their medicinal properties since antiquity, are continuously being studied for their biological properties. In the present study, we analyzed the composition of the volatile preparations of essential oils of the Greek plants Ocimum basilicum (sweet basil), Mentha spicata (spearmint), Pimpinella anisum (anise) and Fortunella margarita (kumquat). GC/MS analyses revealed that the major components in the essential oil fractions, were carvone (85.4%) in spearmint, methyl chavicol (74.9%) in sweet basil, trans-anethole (88.1%) in anise, and limonene (93.8%) in kumquat. We further explored their biological potential by studying their antimicrobial, antioxidant and antiproliferative activities. Only the essential oils from spearmint and sweet basil demonstrated cytotoxicity against common foodborne bacteria, while all preparations were active against the fungi Saccharomyces cerevisiae and Aspergillus niger. Antioxidant evaluation by DPPH and ABTS radical scavenging activity assays revealed a variable degree of antioxidant potency. Finally, their antiproliferative potential was tested against a panel of human cancer cell lines and evaluated by using the sulforhodamine B (SRB) assay. All essential oil preparations exhibited a variable degree of antiproliferative activity, depending on the cancer model used, with the most potent one being sweet basil against an in vitro model of human colon carcinoma.
Collapse
|
34
|
Chen W, Liu Y, Jiao B. Dissipation behavior of five organophosphorus pesticides in kumquat sample during honeyed kumquat candied fruit processing. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Tan S, Zhao X, Yang Y, Ke Z, Zhou Z. Chemical Profiling Using Uplc Q-Tof/Ms and Antioxidant Activities ofFortunellaFruits. J Food Sci 2016; 81:C1646-53. [DOI: 10.1111/1750-3841.13352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/27/2016] [Accepted: 05/01/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Si Tan
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Ying Yang
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Zunli Ke
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture; Southwest Univ; Chongqing 400716 China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions; Ministry of Education; Chongqing 400715 China
| |
Collapse
|
36
|
Sutour S, Luro F, Bradesi P, Casanova J, Tomi F. Chemical Composition of the Fruit Oils of Five Fortunella Species Grown in the Same Pedoclimatic Conditions in Corsica (France). Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fruit oil from five species of kumquat ( Fortunella japonica, F. margarita, F. crassifolia, F. obovata, and F. hindsii) grown in the same pedoclimatic conditions have been analyzed by a combination of chromatographic and spectroscopic techniques. The compositions of the five fruit oils were strongly dominated by limonene (84.2–96.3%). Other components present with appreciable contents were myrcene (1.3–12.9%) and germacrene D (0.3–2.4%).
Collapse
Affiliation(s)
- Sylvain Sutour
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France
| | | | - Pascale Bradesi
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France
| | - Joseph Casanova
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France
| | - Félix Tomi
- Université de Corse-CNRS, UMR 6134 SPE, Equipe Chimie et Biomasse, Route des Sanguinaires, 20000 Ajaccio, France
| |
Collapse
|
37
|
Nouri A, Shafaghatlonbar A. Chemical constituents and antioxidant activity of essential oil and organic extract from the peel and kernel parts of Citrus japonica Thunb. (kumquat) from Iran. Nat Prod Res 2015; 30:1093-7. [PMID: 26500054 DOI: 10.1080/14786419.2015.1101692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The constituents of essential oils and organic extracts from peel and kernels of Citrus japonica were analysed by GC and GC/MS. The content of essential oil in peel and kernel was 1.1 and 0.8% based on dry weight. The essential oil of C. japonica peel and kernel was characterised by a higher amount of limonene (51.0 and 47.1%) and germacrene D (12.1 and 6.3%), and the hexane extracts of its peel and kernel were characterised by a higher amount of dodecanol-1(12.9 and 20.8%) and linolenic acid (13.1 and 16.3%), respectively. The antioxidant activities of oils were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The results indicate that both oils from different parts of C. japonica possess considerable antioxidant activity. The fruit peel and kernel essential oil could thus be useful in the industries, chiefly in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amrah Nouri
- a Department of Phytochemistry, Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
| | - Ali Shafaghatlonbar
- b Department of Chemistry, Khalkhal Branch , Islamic Azad University , Khalkhal , Iran
| |
Collapse
|
38
|
Nagahama K, Eto N, Shimojo T, Kondoh T, Nakahara K, Sakakibara Y, Fukui K, Suiko M. Effect of kumquat (Fortunella crassifolia) pericarp on natural killer cell activity in vitro and in vivo. Biosci Biotechnol Biochem 2015; 79:1327-36. [PMID: 25849817 DOI: 10.1080/09168451.2015.1025033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Natural killer (NK) cells play a key role in innate immune defense against infectious disease and cancer. A reduction of NK activity is likely to be associated with increased risk of these types of disease. In this study, we investigate the activation potential of kumquat pericarp acetone fraction (KP-AF) on NK cells. It is shown to significantly increase IFN-γ production and NK cytotoxic activity in human KHYG-1 NK cells. Moreover, oral administration of KP-AF significantly improves both suppressed plasma IFN-γ levels and NK cytotoxic activity per splenocyte in restraint-stressed mice. These results indicate that raw kumquat pericarp activates NK cells in vitro and in vivo. To identify the active constituents, we also examined IFN-γ production on KHYG-1 cells by the predicted active components. Only β-cryptoxanthin increased IFN-γ production, suggesting that NK cell activation effects of KP-AF may be caused by carotenoids such as β-cryptoxanthin.
Collapse
Affiliation(s)
- Kiyoko Nagahama
- a Interdisciplinary Graduate School of Agriculture and Engineering , University of Miyazaki , Miyazaki , Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ahn J, Almario JA, Salaheen S, Biswas D. Physicochemical, mechanical, and molecular properties of nonlysogenic and p22-lysogenic Salmonella typhimurium treated with citrus oil. J Food Prot 2014; 77:758-64. [PMID: 24780330 DOI: 10.4315/0362-028x.jfp-13-449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate the phenotypic and genotypic properties of nonlysogenic Salmonella Typhimurium (ST(P22-)) and lysogenic Salmonella Typhimurium (ST(P22+)) in the presence of sublethal concentrations (SLC2D) of citrus essential oils (CEOs), which were used to evaluate antimicrobial susceptibility, cell surface hydrophobicity, autoaggregation ability, bacterial motility, lysogenic conversion, gene expression patterns, and antibiofilm formation. The SLC2D values of non-heat-treated (N-CEO) and heat-treated (H-CEO) CEO in an autoclave at 121°C for 20 min were 2.0 to 2.1 mg/ml against ST(P22-) and 1.7 to 1.9 mg/ml against STP(22+). The rates of injured ST(P22-) and ST(P22+) cells treated with SLC2D of N-CEO and H-CEO ranged from 67 to 83%. The hydrophobicity and autoaggregation were decreased to 2.5 and 19.5% for ST(P22-) and 4.7 and 21.7% for ST(P22+), respectively, in the presence of N-CEO. A noticeable reduction in the swarming motility was observed in ST(P22-) with N-CEO (14.5%) and H-CEO (13.3%). The numbers of CEO-induced P22 were 5.40 log PFU/ml for N-CEO and 5.65 log PFU/ml for H-CEO. The relative expression of hilA, hilC, hilD, invA, invC, invE, invF, sirA, and sirB was down-regulated in ST(P22-) and ST(P22+) with N-CEO and H-CEO. The numbers of adherent ST(P22-) and ST(P22+) were effectively reduced by more than 1 log in the presence of CEO. These results suggest that CEO has potential to be used to control bacterial attachment, colonization, and invasion.
Collapse
Affiliation(s)
- Juhee Ahn
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Gangwon 200-701, Republic of Korea.
| | - Jose Alejandro Almario
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Serajus Salaheen
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
40
|
Tan S, Li M, Ding X, Fan S, Guo L, Gu M, Zhang Y, Feng L, Jiang D, Li Y, Xi W, Huang C, Zhou Z. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice. PLoS One 2014; 9:e93510. [PMID: 24705395 PMCID: PMC3976270 DOI: 10.1371/journal.pone.0093510] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/06/2014] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. METHODS The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.
Collapse
Affiliation(s)
- Si Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Mingxia Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiaobo Ding
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Shengjie Fan
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Guo
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Gu
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Feng
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Jiang
- Citrus Research Institute, Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Yiming Li
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Cheng Huang
- Drug Discovery Lab, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (ZZ); (CH)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- * E-mail: (ZZ); (CH)
| |
Collapse
|
41
|
Yap PSX, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SHE. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J Appl Microbiol 2014; 116:1119-28. [PMID: 24779580 DOI: 10.1111/jam.12444] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin. METHOD AND RESULTS In the time-kill analysis, a complete killing of bacteria was observed based on colony counts within 4 h when LV was combined with piperacillin during exposure at determined FIC concentrations. Analysis of the membrane permeabilizing effects of LV on treated cultures through their stability against sodium dodecyl sulphate revealed that the LV played a role in disrupting the bacterial cell membrane. The finding is further supported by scanning electron microscopy analysis and zeta potential measurement. In addition, reduction in light production expression of E. coli [pSB1075] by the LV showed the presence of potential quorum sensing (QS) inhibitors. CONCLUSIONS These results indicated that the LV has the potential to reverse bacterial resistance to piperacillin in E. coli J53 R1. It may operate via two mechanisms: alteration of outer membrane permeability and inhibition of bacterial QS. SIGNIFICANCE AND IMPACT OF THE STUDY These findings offer a novel approach to develop a new option of phytopharmaceuticals against multi-drug-resistant E. coli.
Collapse
Affiliation(s)
- P S X Yap
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
42
|
Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 2014; 8:6-14. [PMID: 24627729 PMCID: PMC3950955 DOI: 10.2174/1874285801408010006] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/24/2013] [Accepted: 12/26/2013] [Indexed: 02/01/2023] Open
Abstract
For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hu Cai Ping
- School of Health Sciences, Department of Chinese Medicine, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
|
44
|
Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules 2012; 17:9728-40. [PMID: 22893019 PMCID: PMC6268019 DOI: 10.3390/molecules17089728] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/20/2022] Open
Abstract
The chemical composition of the volatile oils from five Anacardiaceae species and their activities against Gram positive and negative bacteria were assessed. The peroxidative damage within bacterial cell membranes was determined through the breakdown product malondialdehyde (MDA). The major constituents in Anacardiumhumile leaves oil were (E)-caryophyllene (31.0%) and α-pinene (22.0%), and in Anacardium occidentale oil they were (E)-caryophyllene (15.4%) and germacrene-D (11.5%). Volatile oil from Astronium fraxinifolium leaves were dominated by (E)-β-ocimene (44.1%) and α-terpinolene (15.2%), whilst the oil from Myracrodruon urundeuva contained an abundance of δ-3-carene (78.8%). However, Schinus terebinthifolius leaves oil collected in March and July presented different chemical compositions. The oils from all species, except the one from A. occidentale, exhibited varying levels of antibacterial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli. Oil extracted in July from S. terebinthifolius was more active against all bacterial strains than the corresponding oil extracted in March. The high antibacterial activity of the M. urundeuva oil could be ascribed to its high δ-3-carene content. The amounts of MDA generated within bacterial cells indicate that the volatile oils induce lipid peroxidation. The results suggest that one putative mechanism of antibacterial action of these volatile oils is pro-oxidant damage within bacterial cell membrane explaining in part their preservative properties.
Collapse
|