1
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Department of Pharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| |
Collapse
|
2
|
Drăgoi CM, Nicolae AC, Ungurianu A, Margină DM, Grădinaru D, Dumitrescu IB. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024; 13:138. [PMID: 38247830 PMCID: PMC10814043 DOI: 10.3390/cells13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A multitude of physiological processes, human behavioral patterns, and social interactions are intricately governed by the complex interplay between external circumstances and endogenous circadian rhythms. This multidimensional regulatory framework is susceptible to disruptions, and in contemporary society, there is a prevalent occurrence of misalignments between the circadian system and environmental cues, a phenomenon frequently associated with adverse health consequences. The onset of most prevalent current chronic diseases is intimately connected with alterations in human lifestyle practices under various facets, including the following: reduced physical activity, the exposure to artificial light, also acknowledged as light pollution, sedentary behavior coupled with consuming energy-dense nutriments, irregular eating frameworks, disruptions in sleep patterns (inadequate quality and duration), engagement in shift work, and the phenomenon known as social jetlag. The rapid evolution of contemporary life and domestic routines has significantly outpaced the rate of genetic adaptation. Consequently, the underlying circadian rhythms are exposed to multiple shifts, thereby elevating the susceptibility to disease predisposition. This comprehensive review endeavors to synthesize existing empirical evidence that substantiates the conceptual integration of the circadian clock, biochemical molecular homeostasis, oxidative stress, and the stimuli imparted by physical exercise, sleep, and nutrition.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Alina Crenguţa Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
3
|
Margină DM, Drăgoi CM. Intermittent Fasting on Human Health and Disease. Nutrients 2023; 15:4491. [PMID: 37960144 PMCID: PMC10649432 DOI: 10.3390/nu15214491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic non-communicable diseases (NCDs) are the leading cause of morbidity and mortality worldwide, but most of all in industrialized countries, and are fundamentally correlated to improper nutrition and impaired lifestyle behaviours [...].
Collapse
Affiliation(s)
- Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
4
|
Ungurianu A, Zanfirescu A, Grădinaru D, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R, Margină D. Interleukins and redox impairment in type 2 diabetes mellitus: mini-review and pilot study. Curr Med Res Opin 2022; 38:511-522. [PMID: 35067142 DOI: 10.1080/03007995.2022.2033049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) represents a leading cause of morbidity and premature mortality, low-grade inflammation being acknowledged as a key contributor to its development and progression. A tailored therapeutic approach, based on sensitive and specific biomarkers, could allow a more accurate analysis of disease susceptibility/prognostic and of the response to treatment. OBJECTIVES This mini-review and pilot study had two main goals: (1) reviewing the most recent literature encompassing the use of interleukins as inflammatory markers influenced by the redox imbalances in T2DM and (2) assessing parameters that conjunctly evaluate the redox impairment and inflammatory burden of T2DM patients, taking into consideration smoking status, as such group-specific biomarkers are scarcely reported in literature. METHODS Firstly, PubMed database was surveyed to select and review the relevant studies employing interleukins as T2DM biomarkers and to assess if studies using combined inflammatory-redox indices were reported. Then, routine biochemical parameters were assessed in a pilot study -T2DM patients with 3 subgroups: non-smokers, smokers and ex-smokers, were compared to a control group of non-diabetic, apparently healthy non-smokers. Protein (AOPPs, AGEs), lipid/HDL (Amplex Red-based method) oxidative damage and inflammatory status (CRP, IL-1β, IL-6, IL-10) biomarkers were assessed. Cytokine ratios and 2 oxidative-inflammatory status indices were developed (IH1 and IH2) and evaluated. RESULTS We observed significant differences in terms of serum redox and inflammatory status (AOPPs, AGEs, CRP, CRP/HDL, CRP/IL-6, IL-10/IL-6, IH1) between T2DM patients compared to control and, moreover, between the subgroups formed considering smoking status (CRP, CRP/HDL, IH1). Glycemic control strongly influenced inflammatory status biomarkers: glycemia was positively correlated with the inflammatory parameters (CRP/IL-10) and inversely with the anti-inflammatory ones (IL-10, IL-10/IL-1β ratio). CONCLUSIONS Several of the assessed parameters may possess prognostic value for diabetics, especially when comparing subgroups with a different smoking history and could prove useful in clinical practice for assessing disease progress and therapeutic efficacy.
Collapse
Affiliation(s)
- Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Zanfirescu
- Department of Pharmacology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Rucsandra Dănciulescu Miulescu
- N. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest, Romania
- Department of Department of Endocrinology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Santos L. The impact of nutrition and lifestyle modification on health. Eur J Intern Med 2022; 97:18-25. [PMID: 34670680 DOI: 10.1016/j.ejim.2021.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The main recommendations from public health entities include healthy diets and physical activity as the main lifestyle factors impacting the development of chronic diseases such as cardiovascular and metabolic diseases, cancer, and even neurological diseases. Randomized clinical trials have been designed to demonstrate those lifestyle modifications can change the pattern of chronic diseases development and progression. Among these, nutrition is one of the most impacting factors. Therefore, nutrition and diets were also included in different randomized clinical trials, and most of them showed a favorable impact of nutrition modification on the participant's health. Nevertheless, study designs were considerably different, and future studies are needed to support nutrition modifications further. The choice of a healthy considered diet, like the Mediterranean diet, was shown to impact chronic diseases, cardiovascular risk, and adult life expectancy mainly due to its anti-inflammatory and antioxidant properties. Furthermore, a high intake of fibers, fruits, and vegetables together with a low intake of fat and energy-dense, processed foods contribute to an inflammation reduction and a more robust immune system leading. Besides these well-known properties, all lifestyle modifications must be personalized according to the availability of foods, geographic localizations, and the healthy status of the patient.
Collapse
Affiliation(s)
- Lèlita Santos
- Internal Medicine Service, Coimbra Hospital and University Centre, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal; CIMAGO Research Centre, Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
6
|
Grădinaru D, Margină D, Ungurianu A, Nițulescu G, Pena CM, Ionescu-Tîrgoviște C, Dănciulescu Miulescu R. Zinc status, insulin resistance and glycoxidative stress in elderly subjects with type 2 diabetes mellitus. Exp Ther Med 2021; 22:1393. [PMID: 34650641 DOI: 10.3892/etm.2021.10829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/06/2021] [Indexed: 11/06/2022] Open
Abstract
Zinc deficiencies have been reported in numerous pathologies, such as diabetes mellitus, but also in the physiological process of ageing. Similarly, the end products of glycoxidation processes, advanced glycation end products (AGEs), are damaging compounds, a myriad of reports linking them to the development and progression of several age-associated chronic diseases. The aim of the present study was to analyze the relationships between zinc status, glycoxidative stress and insulin resistance (IR) in elderly subjects with type 2 diabetes mellitus (T2DM). A group of 52 non-smoking subjects (9 men and 43 women, aged 65-83 years) were enrolled in this cross-sectional study: 27 patients with T2DM, and 25 apparently healthy control subjects. Serum zinc (Zn) levels were assessed using a commercial kit based on an end-point colorimetric method, and serum AGEs were evaluated with a fluorimetric analytic procedure. The calculated glucose-to-zinc ratio (Gly/Zn), insulin-to-zinc ratio (Ins/Zn) and insulin-zinc resistance index (HOMA-IR/Zn) were further used to study the associations between serum Zn levels, secretory function of β-pancreatic cells and AGEs. T2DM patients presented significantly higher serum insulin and Zn levels, as compared to the controls. We found a significant inverse correlation between Zn and AGEs, and a strong positive correlation between AGEs and the Gly/Zn ratio, suggesting that both Zn and AGEs are biomarkers that could reflect the persistence of hyperglycemia. We identified new surrogate biomarkers useful for the assessment of glycemic control with great potential for the development of preventive and therapeutic strategies for elderly diabetics, based on the evaluation of serum Zn levels.
Collapse
Affiliation(s)
- Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Georgiana Nițulescu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Cătălina Monica Pena
- Biology of Aging Department, 'Ana Aslan' National Institute of Gerontology and Geriatrics, 011241 Bucharest, Romania
| | - Constantin Ionescu-Tîrgoviște
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| | - Rucsandra Dănciulescu Miulescu
- Clinical Department, 'Nicolae Paulescu' Institute of Diabetes, Metabolic and Nutrition Diseases, 020475 Bucharest, Romania
| |
Collapse
|
7
|
Hydrolysable tannins change physicochemical parameters of lipid nano-vesicles and reduce DPPH radical - Experimental studies and quantum chemical analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183778. [PMID: 34537215 DOI: 10.1016/j.bbamem.2021.183778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022]
Abstract
Tannins belong to plant secondary metabolites exhibiting a wide range of biological activity. One of the important aspects of the realization of the biological effects of tannins is the interaction with lipids of cell membranes. In this work we studied the interaction of two hydrolysable tannins: 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and 1,2-di-O-galloyl-4,6-valoneoyl-β-d-glucose (T1) which had the same number of both aromatic rings (5) and hydroxyl groups (15) but differing in flexibility due to the presence of valoneoyl group in the T1 molecule with DMPC (dimyristoylphosphatidylcholine) lipid nano-vesicles (liposomes). Tannins-liposomes interactions were investigated using fluorescence spectroscopy, differential scanning calorimetry, laser Doppler velocimetry, dynamic light scattering and Fourier Transform Infra-Red spectroscopy. It was shown that more flexible PGG molecules stronger decreased the microviscosity of the liposomal membranes and increased the values of negative zeta potential in comparison with the more rigid T1. Both compounds diminished the phase transition temperature of DMPC membranes, interacted with liposomes via PO groups of head of phospholipids and their hydrophobic regions. These tannins neutralized DPPH free radicals with the stoichiometry of the reaction equal 1:1. The effects of the studied compounds on liposomes were discussed in relation to tannin quantum chemical parameters calculated by molecular modeling.
Collapse
|
8
|
Giordano R, Saii Z, Fredsgaard M, Hulkko LSS, Poulsen TBG, Thomsen ME, Henneberg N, Zucolotto SM, Arendt-Nielsen L, Papenbrock J, Thomsen MH, Stensballe A. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021; 26:3140. [PMID: 34073962 PMCID: PMC8197292 DOI: 10.3390/molecules26113140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological activities in bioactive plant extracts play an increasing role in sustainable resources for valorization and biomedical applications. Bioactive phytochemicals, including natural compounds, secondary metabolites and their derivatives, have attracted significant attention for use in both medicinal products and cosmetic products. Our review highlights the pharmacological mode-of-action and current biomedical applications of key bioactive compounds applied as anti-inflammatory, bactericidal with antibiotics effects, and pain relief purposes in controlled clinical studies or preclinical studies. In this systematic review, the availability of bioactive compounds from several salt-tolerant plant species, mainly focusing on the three promising species Aster tripolium, Crithmum maritimum and Salicornia europaea, are summarized and discussed. All three of them have been widely used in natural folk medicines and are now in the focus for future nutraceutical and pharmacological applications.
Collapse
Affiliation(s)
- Rocco Giordano
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Zeinab Saii
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Malthe Fredsgaard
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Laura Sini Sofia Hulkko
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Thomas Bouet Guldbæk Poulsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Mikkel Eggert Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Nanna Henneberg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Silvana Maria Zucolotto
- Center of Health Sciences, Department of Pharmaceutical Science, Federal University of Santa Catarina, Campus Universitário, Trindade, 88040–970 Florianópolis, Brazil;
| | - Lars Arendt-Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, D-30419 Hannover, Germany;
| | - Mette Hedegaard Thomsen
- Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark; (M.F.); (L.S.S.H.); (M.H.T.)
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark; (R.G.); (Z.S.); (T.B.G.P.); (M.E.T.); (N.H.); (L.A.-N.)
| |
Collapse
|
9
|
V M, M J. Total accepted phenolic, tannin, triterpenoid, flavonoid and sterol contents, anti-diabetic, anti-inflammatory and cytotoxic activities of Tectaria paradoxa (Fee.) Sledge. Toxicol Rep 2020; 7:1465-1468. [PMID: 33194558 PMCID: PMC7645413 DOI: 10.1016/j.toxrep.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The present study was aimed to reveal the phytochemical composition and bio potentials of Tectaria paradoxa (Fee.) Sledge. The total phenolic, tannin, flavonoid, terpenoids, sterols content were determined. RBC membrane stabilization against heat induced haemolysis, In-vitro Alpha-amylase inhibitory assay and Brine Shrimp lethality bioassay was performed to determine the anti-inflammatory, anti-diabetic and cytotoxic activity. Among the tested extracts, methanolic extracts of T. paradoxa showed high amount of phenolics 351.43 ± 14.5 mg GAE/g, tannin 34.38 ± 1.02 mg GAE/g, flavonoids 1384.44 ± 50.92 mg QE/g, triterpenoids 130.5 ± 2.77 mg/g and acetone extracts of T. paradoxa displayed maximum amount of sterols 3.2 ± 0.2 mg/g. The extracts of T. paradoxa demonstrated dose dependent anti-inflammatory, anti-diabetic and cytotoxic activities. The anti-inflammatory activity of the T. paradoxa were as follows methanol > chloroform > acetone > petroleum ether. The anti-diabetic properties of the T. paradoxa were as follows methanol > acetone > chloroform > petroleum ether. The cytotoxicity of the T. paradoxa were as follows chloroform (LC50 = 25.52 μg/mL) > petroleum ether (LC50 = 36.99 μg/mL) > methanol (LC50 = 44.26 μg/mL) > acetone (LC50 = 55.9 μg/mL). The existence of phenolics, tannin, flavonoids, sterols and triterpenoids may be responsible for the observed biological activities. The results of the present study identified the pool of medicinal properties existence in T. paradoxa. Further studies on the isolation of active principles may bring out an alternative source for anti-inflammatory and anti-cancer drugs from T. paradoxa.
Collapse
Affiliation(s)
- Manivannan V
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), (Affiliated to Manonmanaim Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India), Palayamkottai 627 002, Tamil Nadu, India
| | - Johnson M
- Centre for Plant Biotechnology, Department of Botany, St. Xavier’s College (Autonomous), (Affiliated to Manonmanaim Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India), Palayamkottai 627 002, Tamil Nadu, India
| |
Collapse
|
10
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
11
|
Petrakis D, Margină D, Tsarouhas K, Tekos F, Stan M, Nikitovic D, Kouretas D, Spandidos DA, Tsatsakis A. Obesity ‑ a risk factor for increased COVID‑19 prevalence, severity and lethality (Review). Mol Med Rep 2020; 22:9-19. [PMID: 32377709 PMCID: PMC7248467 DOI: 10.3892/mmr.2020.11127] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are a group of viruses that cause infections in the human respiratory tract, which can be characterized clinically from mild to fatal. The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is the virus responsible. The global spread of COVID‑19 can be described as the worst pandemic in humanity in the last century. To date, COVID‑19 has infected more than 3,000,000 people worldwide and killed more than 200,000 people. All age groups can be infected from the virus, but more serious symptoms that can possibly result in death are observed in older people and those with underlying medical conditions such as cardiovascular and pulmonary disease. Novel data report more severe symptoms and even a negative prognosis for the obese patients. A growing body of evidence connects obesity with COVID‑19 and a number of mechanisms from immune system activity attenuation to chronic inflammation are implicated. Lipid peroxidation creates reactive lipid aldehydes which in a patient with metabolic disorder and COVID‑19 will affect its prognosis. Finally, pregnancy‑associated obesity needs to be studied further in connection to COVID‑19 as this infection could pose high risk both to pregnant women and the fetus.
Collapse
Affiliation(s)
- Demetrios Petrakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Denisa Margină
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, 020956 Bucharest, Romania
| | | | - Fotios Tekos
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Miriana Stan
- ‘Carol Davila’ University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, 020956 Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71409 Heraklion, Greece
| |
Collapse
|
12
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
13
|
Ghoshal K, Chakraborty S, Das C, Chattopadhyay S, Chowdhury S, Bhattacharyya M. Dielectric properties of plasma membrane: A signature for dyslipidemia in diabetes mellitus. Arch Biochem Biophys 2017; 635:27-36. [PMID: 29029878 DOI: 10.1016/j.abb.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
Dielectric properties of a living biological membrane play crucial role indicating the status of the cell in pathogenic or healthy condition. A distinct variation in membrane capacitance and impedance was observed for peripheral blood mononuclear cell (PBMC) suspensions for diabetic and diabetic-dyslipidemic subjects compared to healthy control. Low frequency region were explicitly considered in electrical analysis to address complex membrane dielectric factors that alter the system capacitance of a PBMC suspension. Such variation was marked in size, morphology and membrane function of PBMCs for control and diseased cases. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies reveal significant alteration in surface morphology of PBMCs in diseased condition. Side scatter of flow cytometry reveals complexity of PBMCs in diseased condition. Changes in size between groups were not found by SEM and forward scatter. Functional alteration in PBMCs was manifested by significant changes in cell membrane properties like Na+, K+ ATPase and Ca2+, Mg2+ ATPase activity, reduced plasma membrane fluidity and changes in intracellular Ca2+ content, which bear significant correlation in diabetic and diabetic dyslipidemic subjects. Therefore, dielectric parameters of PBMCs in diabetic-dyslipidemic challenges may led to interesting correlation opening the possibility of identifying crucial signature biomarkers.
Collapse
Affiliation(s)
- Kakali Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subhadip Chakraborty
- Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Kolkata 700009, India
| | - Chirantan Das
- Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Kolkata 700009, India
| | - Sanatan Chattopadhyay
- Department of Electronic Science, University of Calcutta, 92, Acharya Prafulla Chandra Rd, Kolkata 700009, India
| | - Subhankar Chowdhury
- Institute of Postgraduate Medical Education and Research, Government of West Bengal, 224, Acharyya Jagadish Chandra Bose Road, Kolkata 700020, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
14
|
Biophysical Approach to Mechanisms of Cancer Prevention and Treatment with Green Tea Catechins. Molecules 2016; 21:molecules21111566. [PMID: 27869750 PMCID: PMC6273158 DOI: 10.3390/molecules21111566] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/26/2016] [Accepted: 11/09/2016] [Indexed: 01/25/2023] Open
Abstract
Green tea catechin and green tea extract are now recognized as non-toxic cancer preventives for humans. We first review our brief historical development of green tea cancer prevention. Based on exciting evidence that green tea catechin, (−)-epigallocatechin gallate (EGCG) in drinking water inhibited lung metastasis of B16 melanoma cells, we and other researchers have studied the inhibitory mechanisms of metastasis with green tea catechins using biomechanical tools, atomic force microscopy (AFM) and microfluidic optical stretcher. Specifically, determination of biophysical properties of cancer cells, low cell stiffness, and high deformability in relation to migration, along with biophysical effects, were studied by treatment with green tea catechins. The study with AFM revealed that low average values of Young’s moduli, indicating low cell stiffness, are closely associated with strong potential of cell migration and metastasis for various cancer cells. It is important to note that treatments with EGCG and green tea extract elevated the average values of Young’s moduli resulting in increased stiffness (large elasticity) of melanomas and various cancer cells. We discuss here the biophysical basis of multifunctions of green tea catechins and green tea extract leading to beneficial effects for cancer prevention and treatment.
Collapse
|
15
|
Yuan W, Cheng X, Wang P, Jia Y, Liu Q, Tang W, Wang X. Polytrichum commune L.ex Hedw ethyl acetate extract-triggered perturbations in intracellular Ca²⁺ homeostasis regulates mitochondrial-dependent apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:410-420. [PMID: 26151243 DOI: 10.1016/j.jep.2015.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/14/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polytrichum commune L.ex Hedw (PCLH), a moss of Bryopsida, has been used as a traditional Chinese medicine and shown to possess anticancer activities. Previous studies have indicated its anti-leukemia effect but the potential mechanisms have not been fully explained. AIM OF THE STUDY The present study aimed to further investigate the efficacy of PCLH ethyl acetate fraction (PC-EEF) and the associated mechanisms in human leukemia cells. MATERIALS AND METHODS Phytochemical analysis of PC-EEF was performed by spectrophotometry and HPLC. MTT analysis and trypan blue exclusion assay were adopted to examine its cytotoxicity on a panel of leukemia cells (K562, U937, HL-60 and K562/DOX cells) and non-cancerous cells (human PBMCs). Anti-proliferative effect was monitored by colony formation assay and EdU incorporation assay. Ultrastructural alterations on K562 cell membrane surface were observed by scanning electron microscopy. Changes on plasma membrane integrity, cell membrane potential, mitochondrial membrane potential and apoptosis were analyzed by flow cytometry. Fluorescence microscope was performed to assess [Ca(2+)]i level, mitochondrial injury and cytochrome c release. Apoptosis-associated protein expression was analyzed by western blot. The role of Ca(2+) in PC-EEF-induced cell death was investigated by Ca(2+) chelating reagent BAPTA-AM. RESULTS PC-EEF possessed relatively high flavonoid content (about 88.84 ± 0.89%) and showed significant cytotoxicity to human leukemia cells. PC-EEF could cause obvious cell morphological deformation, membrane integrity loss and membrane depolarization. Meanwhile, PC-EEF treatment could dramatically potentiate perturbations in cellular Ca(2+) homeostasis. Subsequently, mitochondrial membrane potential (MMP) collapse, cytochrome c release and Bcl-2/Bax down-regulation were all observed. Consistent with these results, PC-EEF treatment resulted in significant activation of caspase 3, poly (ADP-ribose) polymerase (PARP) degradation and apoptosis. Moreover, PC-EEF-caused cytotoxicity, membrane damage, mitochondrial injury and apoptosis were remarkably reversed by BAPTA-AM. CONCLUSIONS PC-EEF damaged the membrane system and triggered Ca(2+)-dependent mitochondrial apoptosis, which may provide some new insights into its efficacy against human leukemia cells.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaoxia Cheng
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yali Jia
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wei Tang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, China.
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
16
|
|
17
|
Zbikowska HM, Antosik A, Szejk M, Bijak M, Olejnik AK, Saluk J, Nowak P. Does quercetin protect human red blood cell membranes against γ-irradiation? Redox Rep 2013; 19:65-71. [PMID: 24257622 DOI: 10.1179/1351000213y.0000000074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVES Radioprotective potential of quercetin, a powerful free radical scavenger, was investigated in human red blood cells (RBCs) and in isolated RBC membranes exposed to γ-irradiation-induced oxidative stress. METHODS RBCs and RBC membrane suspensions were irradiated (50 Gy) in the presence of quercetin (2-50 µM). Oxidative damage of the membranes was analysed by protein carbonyl measurement (enzyme-linked immunosorbent assay). In RBCs, the concentration of glutathione (GSH) was determined. Lipid peroxidation in RBCs, and for comparison in plasma and peripheral lymphocytes, was quantified by the amount of thiobarbituric acid-reactive substances (TBARS). Radiation-induced damage of the RBC membrane integrity was evaluated by the degree of haemolysis. RESULTS Quercetin (50 µM) brought back the level of carbonyls to normal in γ-irradiated RBC membrane proteins and inhibited radiation-induced lipid peroxidation in plasma and lymphocytes, by 75 and 96%, respectively. However, it moderately decreased reduced/oxidized glutathione (GSH/GSSG) ratio and significantly increased TBARS concentrations, by 60 and 28% in irradiated and non-irradiated RBCs, respectively. Haemolysis rate was much higher in RBCs irradiated in the presence of quercetin vs. non antioxidant. DISCUSSION In non-cellular systems (RBC membranes or plasma) and in lymphocytes, quercetin shows antioxidative/radioprotective activity but in whole RBCs it acts as a pro-oxidant and a cytotoxic substance. The possible mechanisms of such action are discussed.
Collapse
|
18
|
Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol. Food Chem Toxicol 2013; 61:94-100. [DOI: 10.1016/j.fct.2013.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 01/09/2023]
|
19
|
Membranar effects exerted in vitro by polyphenols - quercetin, epigallocatechin gallate and curcumin - on HUVEC and Jurkat cells, relevant for diabetes mellitus. Food Chem Toxicol 2013; 61:86-93. [PMID: 23466460 DOI: 10.1016/j.fct.2013.02.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 01/09/2023]
Abstract
Polyphenols are largely studied for their beneficial action in various pathologies, but the correlation with their effects on cell membranes is still elusive. In the present study we assessed the effects exerted in vitro by quercetin, epigallocatechin gallate and curcumin on membrane fluidity and transmembrane potential of human umbilical vein endothelial cells and Jurkat T lymphoblasts, in experimental conditions mimicking diabetes mellitus, i.e. high glucose conditions or increased concentration of advanced glycation end products. Results showed that the investigated polyphenols had beneficial effects on cell membranes altered in diabetic conditions, by restoring transmembrane potential and by membrane "stiffening". Moreover, they limited the release of pro-inflammatory factors, like monocyte chemotactic protein-1. These effects were more obvious for cells exposed to advanced glycation end products specific for the late stages of diabetes. Apparently, the inhibitory action of polyphenols on lipid peroxidation was associated with a decrease of membrane fluidity. Concluding, our in vitro study highlighted the potential beneficial action of polyphenols mainly in the late stages of diabetes, exerted at the level of membrane fluidity and transmembrane potential, accompanied by an anti-inflammatory effect on endothelial and immune cells.
Collapse
|