1
|
Anjana K, Arunkumar K. Brown algae biomass for fucoxanthin, fucoidan and alginate; update review on structure, biosynthesis, biological activities and extraction valorisation. Int J Biol Macromol 2024; 280:135632. [PMID: 39299435 DOI: 10.1016/j.ijbiomac.2024.135632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Natural compounds promoting human health are the main focus of research nowadays. Fucoxanthin, fucoidan and alginate are such bioactive compounds that are extracted from marine brown algae. Extracting these 3 compounds through successive extraction enhances the commercial value of the brown algae biomass. There are studies on successive extraction of fucoidan and alginate but not with fucoxanthin which displays various biological bioactivities. Alginate, a polysaccharide presents 45 % in the cell wall of brown algae. Fucoidan, a sulphated polysaccharide proved showing various bioactivities. These bioproducts yield are vary depending on the species. Dictyota species recorded high fucoxanthin content of 7 %. Ascophyllum nodosum was found with high fucoidan of 16.08 % by direct extraction. Maximum alginate of 45.79 % was recorded from the brown alga Sargassum cymosum and by successive extraction 44 % was recorded from Ecklonia radiata. Fucoxanthin exits in two isomers as trans and cis forms. Based on linkage, fucoidan structure is found in 3 forms as 1,3- or 1,4- or alternating 1,3- and 1,4-linked fucose in the polysaccharide residues. Fucoidan composition varys depending on the degree of sulphation, composition of monosaccharides and location of collection. In alginate, its property relies on the mannuronic acid and guluronic acid composition. Biosynthesis of these 3 compounds is not much explored. Keeping this view which signify sequential extraction towards biomass valorisation, fucoxanthin, fucoidan and alginate extracted from the brown algae species focusing yield, extraction, characterisation, biosynthesis and biological activities were compiled and critically analysed and discussed in this review.
Collapse
Affiliation(s)
- K Anjana
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India
| | - K Arunkumar
- Phycoscience Lab, Department of Plant Science, Central University of Kerala, Periye 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
2
|
Guardado Yordi E, Pérez Martínez A, Radice M, Scalvenzi L, Abreu-Naranjo R, Uriarte E, Santana L, Matos MJ. Seaweeds as Source of Bioactive Pigments with Neuroprotective and/or Anti-Neurodegenerative Activities: Astaxanthin and Fucoxanthin. Mar Drugs 2024; 22:327. [PMID: 39057436 PMCID: PMC11277739 DOI: 10.3390/md22070327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.
Collapse
Affiliation(s)
- Estela Guardado Yordi
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Amaury Pérez Martínez
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Matteo Radice
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Laura Scalvenzi
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Reinier Abreu-Naranjo
- Universidad Estatal Amazónica, 160101 Puyo, Ecuador; (E.G.Y.); (A.P.M.); (M.R.); (L.S.); (R.A.-N.)
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| | - Maria Joao Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.U.); (L.S.)
| |
Collapse
|
3
|
Kuo MY, Dai WC, Chang JL, Chang JS, Lee TM, Chang CC. Fucoxanthin induces human melanoma cytotoxicity by thwarting the JAK2/STAT3/BCL-xL signaling axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3356-3366. [PMID: 38444163 DOI: 10.1002/tox.24193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 03/07/2024]
Abstract
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Li Chang
- Taichung Municipal Taichung First Senior High School, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Cunningham EM, O'Kane AP, Ford L, Sheldrake GN, Cuthbert RN, Dick JTA, Maggs CA, Walsh PJ. Temporal patterns of fucoxanthin in four species of European marine brown macroalgae. Sci Rep 2023; 13:22241. [PMID: 38097682 PMCID: PMC10721839 DOI: 10.1038/s41598-023-47274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Brown seaweeds are a rich source of carotenoids, particularly fucoxanthin, which has a wide range of potential health applications. Fucoxanthin fluctuates within and among seaweeds over time, frustrating efforts to utilise this resource. Thus, we require comprehensive analyses of long- and short-term concentrations across species in field conditions. Here, we used High Performance Liquid Chromatography to compare fucoxanthin content in four brown macroalgae, Ascophyllum nodosum, Fucus serratus, Fucus vesiculosus and Saccharina latissima, monthly for 1 year. F. serratus and F. vesiculosus had significantly higher fucoxanthin content (mg/g), which was highest in Spring (0.39 ± 0.04) and Autumn (0.45 ± 0.04) [mean (± SE)]. Two species, A. nodosum and F. serratus, were collected monthly at the same location for a further two non-consecutive years. For both A. nodosum and F. serratus, a significant interaction effect of seasons and years was identified, highlighting that there is variation in fucoxanthin content among and within species over time. We also show that fucoxanthin content differs significantly among months even within seasons. Therefore, it is not sufficient to assess fucoxanthin in single months to represent seasonality. We discuss how weather, nutrients and reproduction may have driven the seasonal variation, and reveal patterns of fucoxanthin concentration that can provide information concerning its availability for many important medical functions.
Collapse
Affiliation(s)
- Eoghan M Cunningham
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Aaron P O'Kane
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
| | - Lauren Ford
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| | - Gary N Sheldrake
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK
| | - Ross N Cuthbert
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jaimie T A Dick
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Christine A Maggs
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Pamela J Walsh
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5GA, Northern Ireland, UK.
- Queen's University Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| |
Collapse
|
5
|
Terasaki M, Tsuruoka K, Tanaka T, Maeda H, Shibata M, Miyashita K, Kanemitsu Y, Sekine S, Takahashi M, Yagishita S, Hamada A. Fucoxanthin Inhibits Development of Sigmoid Colorectal Cancer in a PDX Model With Alterations of Growth, Adhesion, and Cell Cycle Signals. Cancer Genomics Proteomics 2023; 20:686-705. [PMID: 38035706 PMCID: PMC10687734 DOI: 10.21873/cgp.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM Fucoxanthin (Fx), a dietary marine xanthophyll, exerts potent anticancer effects in various colorectal cancer (CRC) animal models. However, therapeutic effects of Fx in human cancer tissues remain unclear. A patient-derived xenograft (PDX) mouse model transplanted with cancer tissues from patients is widely accepted as the best preclinical model for evaluating the anticancer potential of drug candidates. MATERIALS AND METHODS Herein, we investigated the anticancer effects of Fx in PDX mice transplanted with cancer tissues derived from a patient with CRC (CRC-PDX) using LC-MS/MS- and western blot-based proteome analysis. RESULTS The tumor in the patient with CRC was a primary adenocarcinoma (T3N0M0, stage II) showing mutations of certain genes that were tumor protein p53 (TP53), AT-rich interaction domain 1A (ARID1A), neuroblastoma RAS viral oncogene homolog (NRAS), and PMS1 homolog 2 (PMS2). Administration of Fx significantly suppressed the tumor growth (0.6-fold) and tended to induce differentiation in CRC-PDX mice. Fx up-regulated glycanated-decorin (Gc-DCN) expression, and down-regulated Kinetochore-associated protein DSN1 homolog (DSN1), phospho(p) focal adhesion kinase (pFAK)(Tyr397), pPaxillin(Tyr31), and c-MYC involved in growth, adhesion, and/or cell cycle, in the tumors of CRC-PDX mice than in control mice. Alterations in the five proteins were consistent with those in human CRC HT-29 and HCT116 cells treated with fucoxanthinol (FxOH, a major metabolite of Fx). CONCLUSION Fx suppresses development of human-like CRC tissues, especially through growth, adhesion, and cell cycle signals.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kirara Tsuruoka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Masaki Shibata
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | | | - Yukihide Kanemitsu
- Colorectal Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, Tokyo, Japan
| | - Shigehiro Yagishita
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
6
|
Kee PE, Phang SM, Lan JCW, Tan JS, Khoo KS, Chang JS, Ng HS. Tropical Seaweeds as a Sustainable Resource Towards Circular Bioeconomy: Insights and Way Forward. Mol Biotechnol 2023:10.1007/s12033-023-00940-7. [PMID: 37938536 DOI: 10.1007/s12033-023-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 11/09/2023]
Abstract
Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Collapse
Affiliation(s)
- Phei Er Kee
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew Moi Phang
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
- Institute Ocean and Earth Sciences, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan, 32003, Taiwan.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan.
| | - Joo Shun Tan
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Pulau Pinang, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, 320, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
7
|
Bo Y, Wang S, Ma F, Yurevich Manyakhin A, Zhang G, Li X, Zhou C, Ge B, Yan X, Ruan R, Cheng P. The influence of spermidine on the build-up of fucoxanthin in Isochrysis sp. Acclimated to varying light intensities. BIORESOURCE TECHNOLOGY 2023; 387:129688. [PMID: 37595805 DOI: 10.1016/j.biortech.2023.129688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Spermidine is a type of important growth regulator, which involved in the biosynthesis of photosynthetic pigments, and has the function of promoting cell proliferation. In this study, Isochrysis sp. was selected as the research object to explore the effects of spermidine supplementation on the growth of algal cells and fucoxanthin synthesis under different light intensities. The results showed that the cell density (5.40 × 106 cells/mL) of algae were the highest at 11 days under the light intensity of 200 μmol·m-2·s-1 and spermidine content of 150 μM. The contents of diadinoxanthin (1.09 mg/g) and fucoxanthin (6.11 mg/g) were the highest when spermidine was added under low light intensity, and the growth of algal cells and fucoxanthin metabolism were the most significant. In the carotenoid synthesis pathway, PDS (phytoene desaturase) was up-regulated by 1.96 times and VDE (violaxanthin de-epoxidase) was down-regulated by 0.95 times, which may promote fucoxanthin accumulation.
Collapse
Affiliation(s)
- Yahui Bo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shanshan Wang
- The first affiliated hospital of Ningbo university, Ningbo, Zhejiang 315211, China
| | - Feifei Ma
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Artem Yurevich Manyakhin
- Far Eastern Branch, Russian Academy of Sciences, Federal Scientific Center of East Asian Terrestrial Biodiversity, 100-letiya Vladivostoka Prospect, 159, Vladivostok 690022, Russia
| | - Guilin Zhang
- Lianxi Ecological Environment Bureau of Jiujiang City, Jiujiang, Jiangxi 332005, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
8
|
Bernabeu M, Gharibzahedi SMT, Ganaie AA, Macha MA, Dar BN, Castagnini JM, Garcia-Bonillo C, Meléndez-Martínez AJ, Altintas Z, Barba FJ. The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Crit Rev Food Sci Nutr 2023:1-19. [PMID: 37691412 DOI: 10.1080/10408398.2023.2254383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gut microbiota plays a crucial role in regulating the response to immune checkpoint therapy, therefore modulation of the microbiome with bioactive molecules like carotenoids might be a very effective strategy to reduce the risk of chronic diseases. This review highlights the bio-functional effect of carotenoids on Gut Microbiota modulation based on a bibliographic search of the different databases. The methodology given in the preferred reporting items for systematic reviews and meta-analyses (PRISMA) has been employed for developing this review using papers published over two decades considering keywords related to carotenoids and gut microbiota. Moreover, studies related to the health-promoting properties of carotenoids and their utilization in the modulation of gut microbiota have been presented. Results showed that there can be quantitative changes in intestinal bacteria as a function of the type of carotenoid. Due to the dependency on several factors, gut microbiota continues to be a broad and complex study subject. Carotenoids are promising in the modulation of Gut Microbiota, which favored the appearance of beneficial bacteria, resulting in the protection of villi and intestinal permeability. In conclusion, it can be stated that carotenoids may help to protect the integrity of the intestinal epithelium from pathogens and activate immune cells.
Collapse
Affiliation(s)
- Manuel Bernabeu
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Seyed Mohammad Taghi Gharibzahedi
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Arsheed A Ganaie
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Muzafar A Macha
- Watson Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India
| | - Basharat N Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Juan M Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| | | | | | - Zeynep Altintas
- Faculty of Natural Sciences and Maths, Institute of Chemistry, Technical University of Berlin, Berlin, Germany
- Faculty of Engineering, Institute of Materials Science, Kiel University, Kiel, Germany
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Burjassot, Burjassot, València, Spain
| |
Collapse
|
9
|
Mannochio-Russo H, Swift SOI, Nakayama KK, Wall CB, Gentry EC, Panitchpakdi M, Caraballo-Rodriguez AM, Aron AT, Petras D, Dorrestein K, Dorrestein TK, Williams TM, Nalley EM, Altman-Kurosaki NT, Martinelli M, Kuwabara JY, Darcy JL, Bolzani VS, Wegley Kelly L, Mora C, Yew JY, Amend AS, McFall-Ngai M, Hynson NA, Dorrestein PC, Nelson CE. Microbiomes and metabolomes of dominant coral reef primary producers illustrate a potential role for immunolipids in marine symbioses. Commun Biol 2023; 6:896. [PMID: 37653089 PMCID: PMC10471604 DOI: 10.1038/s42003-023-05230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil.
| | - Sean O I Swift
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Christopher B Wall
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
- Ecology Behavior and Evolution Section, Department of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrés M Caraballo-Rodriguez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Kathleen Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Taylor M Williams
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Eileen M Nalley
- Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Noam T Altman-Kurosaki
- School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | | | - Jeff Y Kuwabara
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - John L Darcy
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Vanderlan S Bolzani
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, CA, USA
| | - Camilo Mora
- Geography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Anthony S Amend
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
10
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
11
|
Winarto J, Song DG, Pan CH. The Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24098203. [PMID: 37175909 PMCID: PMC10179653 DOI: 10.3390/ijms24098203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused 1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT), SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents non-alcoholic steatohepatitis (NASH) development.
Collapse
Affiliation(s)
- Jessica Winarto
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Dae-Geun Song
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
| | - Cheol-Ho Pan
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung 25451, Republic of Korea
- Microalgae Ask US Co., Ltd., Gangneung 25441, Republic of Korea
| |
Collapse
|
12
|
Střížek A, Přibyl P, Lukeš M, Grivalský T, Kopecký J, Galica T, Hrouzek P. Hibberdia magna (Chrysophyceae): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer. Microb Cell Fact 2023; 22:73. [PMID: 37076862 PMCID: PMC10116740 DOI: 10.1186/s12934-023-02061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Algae are prominent producers of carotenoids and polyunsaturated fatty acids which are greatly prized in the food and pharmaceutic industry. Fucoxanthin represents a notable high-value carotenoid produced exclusively by algae. Its benefits range far beyond just antioxidant activity and include cancer prevention, anti-diabetes, anti-obesity, and many other positive effects. Accordingly, large-scale microalgae cultivation to produce fucoxanthin and polyunsaturated fatty acids is still under intensive development in the commercial and academic sectors. Industrially exploitable strains are predominantly derived from marine species while comparable freshwater fucoxanthin producers have yet to be explored. RESULTS In this study, we searched for freshwater fucoxanthin producers among photoautotrophic flagellates including members of the class Chrysophyceae. The initial screening turned our attention to the chrysophyte alga Hibberdia magna. We performed a comprehensive cultivation experiments using a temperature × light cross-gradient to assess the impact of these conditions on the target compounds productivity. Here we present the observations that H. magna simultaneously produces fucoxanthin (max. 1.2% dry biomass) and polyunsaturated fatty acids (max. ~ 9.9% dry biomass) and is accessible to routine cultivation in lab-scale conditions. The highest biomass yields were 3.73 g L-1 accompanied by maximal volumetric productivity of 0.54 g L-1 d-1 which are comparable values to marine microalgae fucoxanthin producers in phototrophic mode. H. magna demonstrated different optimal conditions for biomass, fucoxanthin, and fatty acid accumulation. While maximal fucoxanthin productivities were obtained in dim light and moderate temperatures (23 °C× 80 µmol m-2 s-1), the highest PUFA and overall biomass productivities were found in low temperature and high light (17-20 °C × 320-480 µmol m-2 s-1). Thus, a smart biotechnology setup should be designed to fully utilize H. magna biotechnological potential. CONCLUSIONS Our research brings pioneer insight into the biotechnology potential of freshwater autotrophic flagellates and highlights their ability to produce high-value compounds. Freshwater fucoxanthin-producing species are of special importance as the use of sea-water-based media may increase cultivation costs and prohibits inland microalgae production.
Collapse
Affiliation(s)
- Antonín Střížek
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Trebon, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Přibyl
- Centre for Phycology, Institute of Botany of the Czech Academy of Sciences, Trebon, Czech Republic
| | - Martin Lukeš
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Tomáš Grivalský
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Jiří Kopecký
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Tomáš Galica
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic
| | - Pavel Hrouzek
- Laboratory of Algal Biotechnology, Institute of Microbiology of the Czech Academy of Sciences - Center Algatech, Trebon, Czech Republic.
| |
Collapse
|
13
|
Kurniawan R, Nurkolis F, Taslim NA, Subali D, Surya R, Gunawan WB, Alisaputra D, Mayulu N, Salindeho N, Kim B. Carotenoids Composition of Green Algae Caulerpa racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023; 28:molecules28073267. [PMID: 37050034 PMCID: PMC10096636 DOI: 10.3390/molecules28073267] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Green alga Caulerpa racemosa is an underexploited species of macroalgae, even though it is characterized by a green color that indicates an abundance of bioactive pigments, such as chlorophyll and possibly xanthophyll. Unlike chlorophyll, which has been well explored, the composition of the carotenoids of C. racemosa and its biological activities have not been reported. Therefore, this study aims to look at the carotenoid profile and composition of C. racemose and determine their biological activities, which include antidiabetic, anti-obesity, anti-oxidative, anti-inflammatory, and cytotoxicity in vitro. The detected carotenoids were all xanthophylls, which included fucoxanthin, lutein, astaxanthin, canthaxanthin, zeaxanthin, β-carotene, and β-cryptoxanthin based on orbitrap-mass spectrometry (MS) and a rapid ultra-high performance liquid chromatography (UHPLC) diode array detector. Of the seven carotenoids observed, it should be highlighted that β-carotene and canthaxanthin were the two most dominant carotenoids present in C. racemosa. Interestingly, the carotenoid extract of C. racemosa has good biological activity in inhibiting α-glucosidase, α-amylase, DPPH and ABTS, and the TNF-α and mTOR, as well as upregulating the AMPK, which makes it a drug candidate or functional antidiabetic food, a very promising anti-obesity and anti-inflammatory. More interestingly, the cytotoxicity value of the carotenoid extract of C. racemosa shows a level of safety in normal cells, which makes it a potential for the further development of nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Rudy Kurniawan
- Alumnus of Internal Medicine, Faculty of Medicine, University of Indonesia-Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - William Ben Gunawan
- Alumnus of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Darmawan Alisaputra
- Department of Chemistry, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Universitas Muhammadiyah Manado, Manado 95249, Indonesia
| | - Netty Salindeho
- Fishery Products Technology Study Program, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
14
|
Isolation and identification of progenitors, glycoconjugates of β‐damascenone precursors, in sweet potato (
Ipomoea batatas
). FLAVOUR FRAG J 2023. [DOI: 10.1002/ffj.3736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
15
|
Endo H, Moriyama H, Okumura Y. Photoinhibition and Photoprotective Responses of a Brown Marine Macroalga Acclimated to Different Light and Nutrient Regimes. Antioxidants (Basel) 2023; 12:antiox12020357. [PMID: 36829916 PMCID: PMC9952712 DOI: 10.3390/antiox12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Plants and brown algae avoid photoinhibition (decline in photosystem II efficiency, Fv/Fm) caused by excess light energy and oxidative stress through several photoprotective mechanisms, such as antioxidant xanthophyll production and heat dissipation. The heat dissipation can be measured as non-photochemical quenching (NPQ) and is strongly driven by de-epoxidation of xanthophyll cycle pigments (XCP). Although NPQ is known to increase under high light acclimation and nutrient-deficient conditions, a few studies have investigated the combined effects of the conditions on both NPQ and associated xanthophyll-to-chlorophyll (Chl) a ratio. The present study investigated the photosynthetic parameters of the brown alga Sargassum fusiforme acclimated to three irradiance levels combined with three nutrient levels. Elevated irradiance decreased Fv/Fm but increased NPQ, XCP/Chl a ratio, and fucoxanthin/Chl a ratio, suggesting the photoprotective role of antioxidant fucoxanthin in brown algae. Reduced nutrient availability increased NPQ but had no effect on the other variables, including XCP/Chl a ratio and its de-epoxidation state. The results indicate that NPQ can be used as a sensitive stress marker for nutrient deficiency, but cannot be used to estimate XCP pool size and state.
Collapse
Affiliation(s)
- Hikaru Endo
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0056, Japan
- Correspondence: ; Tel.: +81-99-286-4131
| | - Hikari Moriyama
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Yutaka Okumura
- Fisheries Resources Institute/Fisheries Technology Institute, National Research and Development Agency, Japan Fisheries Research and Education Agency, Shiogama 985-0001, Japan
| |
Collapse
|
16
|
Effects of Different Nitrogen Concentrations on Co-Production of Fucoxanthin and Fatty Acids in Conticribra weissflogii. Mar Drugs 2023; 21:md21020106. [PMID: 36827147 PMCID: PMC9967173 DOI: 10.3390/md21020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Fucoxanthin and fatty acids are active substances that are beneficial to the growth and immunity of humans and aquatic animals. However, relatively few species have been exploited for fucoxanthin and fatty acids in the industry. At the same time, due to its low extract content, poor stability, high production cost, and serious seasonal and regional limitations, the industry cannot normally meet the greater demand of the international market. Therefore, this experiment seeks to improve the fucoxanthin and fatty acid content of C. weissflogii by adjusting the nitrogen concentration in the culture medium. It was found that when the nitrogen concentration was 150 mg L-1, the cell number was 1.5 × 106 cell mL-1, and the average biomass was 0.75 g L-1. The mean value of carotenoid concentration was 2.179 mg L-1. The average concentration of fucoxanthin was 1.547 mg g-1. When the nitrogen concentration was 75 mg L-1, the fatty acid content reached its highest. By adjusting the concentration of nitrogen, the contents of fucoxanthin and fatty acids were increased. The results provided a theoretical basis for commercial extraction of fucoxanthin and fatty acids and further promoted the industrialization of fucoxanthin and fatty acids.
Collapse
|
17
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Ahmed SA, Mendonca P, Elhag R, Soliman KFA. Anticancer Effects of Fucoxanthin through Cell Cycle Arrest, Apoptosis Induction, Angiogenesis Inhibition, and Autophagy Modulation. Int J Mol Sci 2022; 23:16091. [PMID: 36555740 PMCID: PMC9785196 DOI: 10.3390/ijms232416091] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer accounts for one in seven deaths worldwide and is the second leading cause of death in the United States, after heart disease. One of the standard cancer treatments is chemotherapy which sometimes can lead to chemoresistance and treatment failure. Therefore, there is a great need for novel therapeutic approaches to treat these patients. Novel natural products have exhibited anticancer effects that may be beneficial in treating many kinds of cancer, having fewer side effects, low toxicity, and affordability. Numerous marine natural compounds have been found to inhibit molecular events and signaling pathways associated with various stages of cancer development. Fucoxanthin is a well-known marine carotenoid of the xanthophyll family with bioactive compounds. It is profusely found in brown seaweeds, providing more than 10% of the total creation of natural carotenoids. Fucoxanthin is found in edible brown seaweed macroalgae such as Undaria pinnatifida, Laminaria japonica, and Eisenia bicyclis. Many of fucoxanthin's pharmacological properties include antioxidant, anti-tumor, anti-inflammatory, antiobesity, anticancer, and antihypertensive effects. Fucoxanthin inhibits many cancer cell lines' proliferation, angiogenesis, migration, invasion, and metastasis. In addition, it modulates miRNA and induces cell cycle growth arrest, apoptosis, and autophagy. Moreover, the literature shows fucoxanthin's ability to inhibit cytokines and growth factors such as TNF-α and VEGF, which stimulates the activation of downstream signaling pathways such as PI3K/Akt autophagy, and pathways of apoptosis. This review highlights the different critical mechanisms by which fucoxanthin inhibits diverse cancer types, such as breast, prostate, gastric, lung, and bladder development and progression. Moreover, this article reviews the existing literature and provides critical supportive evidence for fucoxanthin's possible therapeutic use in cancer.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Rashid Elhag
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
19
|
Jin H, Guo Y, Li Y, Chen B, Ma H, Wang H, Wang L, Yuan D. Effective fucoxanthin production in the flagellate alga Poterioochromonas malhamensis by coupling heterotrophic high-cell-density fermentation with illumination. Front Bioeng Biotechnol 2022; 10:1074850. [DOI: 10.3389/fbioe.2022.1074850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
The unicellular flagellate algae Poterioochromonas malhamensis is a potential fucoxanthin-rich resource for sustainable and cost-effective fucoxanthin production. Light and nutrients are critical regulators for the accumulation of fucoxanthin in P. malhamensis. In this study, the maximum fucoxanthin yield of 50.5 mg L−1 and productivity of 6.31 mg L−1 d−1 were achieved by coupling high-cell-density fermentation with illumination. It was found that the combined use of organic and inorganic nitrogen (N) nutrition could improve the fucoxanthin yield as single inorganic or organic N had limitation to enhance cell growth and fucoxanthin accumulation. White light was the optimal light quality for fucoxanthin accumulation. Under white light and a moderate light intensity of 150 μmol m−2 s−1, the highest biomass concentration and fucoxanthin content reached 32.9 g L−1 and 1.56 mg g−1 of dry cell weight (DCW), respectively. This is the first study on effective fucoxanthin production in P. malhamensis by integrating illumination with high-cell-density fermentation, which paved the way for further development of P. malhamensis as a potential source for commercial fucoxanthin production.
Collapse
|
20
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Kurinjery A, Kulanthaiyesu A. Anti-hyaluronidase and cytotoxic activities of fucoxanthin cis/trans isomers extracted and characterized from 13 brown seaweeds. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Moheimanian N, Mirkhani H, Sohrabipour J, Jassbi AR. Inhibitory Potential of Six Brown Algae from the Persian Gulf on α-Glucosidase and In Vivo Antidiabetic Effect of Sirophysalis Trinodis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2022; 47:484-493. [PMID: 36117578 PMCID: PMC9445867 DOI: 10.30476/ijms.2021.91258.2245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/11/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Background Brown algae have gained worldwide attention due to their significant biological activities, such as antidiabetic properties. In the present study, the antidiabetic properties of six brown algae from the Persian Gulf were investigated. Methods An experimental study was conducted from 2017 to 2019 to examine the inhibitory effects of six brown algae against the α-glucosidase activity. Methanol (MeOH) and 80% MeOH extracts of Colpomenia sinuosa, Sargassum acinaciforme, Iyengaria stellata, Sirophysalis trinodis, and two accessions of Polycladia myrica were analyzed. The effect of 80% MeOH extracts of Sirophysalis trinodis on blood glucose levels in streptozotocin-induced diabetic rats was evaluated. Chemical constituents of brown algae were analyzed using thin-layer chromatography and liquid chromatography-mass spectrometry techniques. Data were analyzed using SPSS software, and P<0.05 was considered statistically significant. Results The 80% MeOH extracts of Iyengaria stellata (IC50=0.33±0.15 μg/mL) and Colpomenia sinuosa (IC50=3.50±0.75 μg/mL) as well as the MeOH extracts of Colpomenia sinuosa (IC50=3.31±0.44 μg/mL) exhibited stronger inhibitory effect on α-glucosidase than the acarbose (IC50=160.15±27.52 μg/mL, P<0.001). The 80% MeOH extracts of Sirophysalis trinodis reduced postprandial blood glucose levels in diabetic rats compared to the control group (P=0.037). Fucoxanthin was characterized as the major antidiabetic agent in most of the algal extracts. Conclusion Sirophysalis trinodis is recommended as a novel source for isolation and identification of potential antidiabetic compounds due to its high in vivo and in vitro antidiabetic effects.
Collapse
Affiliation(s)
- Nioofar Moheimanian
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Mirkhani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jelveh Sohrabipour
- Department of Natural Resources Researches, Agriculture and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Chen D, Yuan X, Zheng X, Fang J, Lin G, Li R, Chen J, He W, Huang Z, Fan W, Liang L, Lin C, Zhu J, Chen Y, Xue T. Multi-omics analyses provide insight into the biosynthesis pathways of fucoxanthin in Isochrysis galbana. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1138-1153. [PMID: 35970320 DOI: 10.1016/j.gpb.2022.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 11/24/2022]
Abstract
Isochrysis galbana is considered an ideal bait for functional foods and nutraceuticals of humans because of its high fucoxanthin (Fx) content. However, multi-omics analysis of the regulation networks for Fx biosynthesis in I. galbana has not been reported. In this study, we report a high-quality genome sequence of I. galbana LG007, which has a 92.73 Mb genome size, with a contig N50 of 6.99 Mb and 14,900 protein-coding genes. Phylogenomic inferences confirmed the monophyly of Haptophyta, with I. galbana sister to Emiliania huxleyi and Chrysochromulina tobinii. Evolutionary analysis revealed an estimated divergence time between I. galbana and E. huxleyi of ∼ 133 million years ago (Mya). Gene family analysis indicated that lipid metabolism-related genes exhibited significant expansion, including IgPLMT, IgOAR1, and IgDEGS1. Metabolome analysis showed that the content of carotenoids in I. galbana cultured under green light for 7 days was higher than that of white light, and β-carotene was the main carotenoid, accounting for 79.09% of the total carotenoids. Comprehensive analysis of multi-omics analysis revealed that β-carotene, antheraxanthin, zeaxanthin, and Fx content was increased by green light induction, which was significantly correlated with the expression of IgMYB98, IgZDS, IgPDS, IgLHCX2, IgZEP, IgLCYb, and IgNSY. These findings contribute to understanding Fx biosynthesis and its regulation, providing a valuable reference for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - XueHai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jingping Fang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Gang Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Rongmao Li
- Fujian Fishery Resources Monitoring Center, Fuzhou 350003, China
| | - Jiannan Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Chentao Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
24
|
Din NAS, Mohd Alayudin ‘AS, Sofian-Seng NS, Rahman HA, Mohd Razali NS, Lim SJ, Wan Mustapha WA. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022; 11:2235. [PMID: 35954003 PMCID: PMC9368577 DOI: 10.3390/foods11152235] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Fucoxanthin is an algae-specific xanthophyll of aquatic carotenoid. It is prevalent in brown seaweed because it functions as a light-harvesting complex for algal photosynthesis and photoprotection. Its exceptional chemical structure exhibits numerous biological activities that benefit human health. Due to these valuable properties, fucoxanthin's potential as a potent source for functional food, feed, and medicine is being explored extensively today. This article has thoroughly reviewed the availability and biosynthesis of fucoxanthin in the brown seaweed, as well as the mechanism behind it. We included the literature findings concerning the beneficial bioactivities of fucoxanthin such as antioxidant, anti-inflammatory, anti-obesity, antidiabetic, anticancer, and other potential activities. Last, an additional view on its potential as a functional food ingredient has been discussed to facilitate a broader application of fucoxanthin as a promising bioactive compound.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - ‘Ain Sajda Mohd Alayudin
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.S.D.); (‘A.S.M.A.); (N.-S.S.-S.); (H.A.R.); (N.S.M.R.); (S.J.L.)
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
25
|
New Insights into Xanthophylls and Lipidomic Profile Changes Induced by Glucose Supplementation in the Marine Diatom Nitzschia laevis. Mar Drugs 2022; 20:md20070456. [PMID: 35877749 PMCID: PMC9318829 DOI: 10.3390/md20070456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Nitzschia laevis is a candidate microorganism for bioactive compounds (fucoxanthin and eicosapentaenoic acid (EPA)) production. In this study, the impacts of glucose-induced trophic transition on biomass, photosynthesis, pigments, and lipid profiles were examined. The specific growth rate was increased under glucose addition, achieved at 0.47 day−1 (0.26 ± 0.01 day−1 for the group without glucose in medium). However, the photosynthetic parameters and pigments including chlorophylls, fucoxanthin, and diatoxanthin were reduced. The net yield of EPA doubled under glucose addition, reaching 20.36 ± 1.22 mg/L in 4 days. In addition, the alteration in detailed lipid molecular species was demonstrated with a focus on EPA-enriched lipids. The effects of 2-deoxyglucose (2DG) indicated that glucose phosphorylation was involved in glucose-induced regulation. These findings provide novel data for guiding the application of this diatom strain in the functional food industries.
Collapse
|
26
|
Ren T, Lin W, He S, Yang X, Xian M, Zhang Z, Luo W, Nie Q, Zhang X. Integrative Analysis of Metabolomic and Transcriptomic Data Reveals the Antioxidant Potential of Dietary Lutein in Chickens. Front Vet Sci 2022; 9:906853. [PMID: 35812876 PMCID: PMC9260106 DOI: 10.3389/fvets.2022.906853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Lutein can increase the body's skin color and has antioxidant potential. However, how it affects lipid metabolism and oxidative stress in chickens remains unknown. In this study, 74-day-old male chickens raised on feed supplemented with lutein had higher hip, back, breast, leg, shin and abdominal fat yellowness than the control group, and the livers of chickens in the lutein group had higher superoxide dismutase and glutathione peroxidase and lower malondialdehyde activities. To clarify the potential regulatory network regulated by lutein, we used RNA-seq and nontargeted metabolomics to detect changes in the male chicken liver and plasma, respectively. A total of 243 differentially expressed genes were significantly enriched in cytokine–cytokine receptor interaction signaling pathways, among others. A total of 237 significantly different metabolites were enriched in lysine biosynthesis and degradation and glycerophospholipid metabolism signaling pathways, among others. Finally, we comprehensively analyzed metabolome and transcriptome data and found that many differentially expressed genes and significantly different metabolites play crucial roles in lipid metabolism and oxidative stress. In summary, dietary lutein can improve male chicken skin yellowness and antioxidant indices and affect liver gene expression and plasma metabolites and may help improve the health of chickens.
Collapse
Affiliation(s)
- Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zihao Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
- *Correspondence: Xiquan Zhang
| |
Collapse
|
27
|
Stiefvatter L, Neumann U, Rings A, Frick K, Schmid-Staiger U, Bischoff SC. The Microalgae Phaeodactylum tricornutum Is Well Suited as a Food with Positive Effects on the Intestinal Microbiota and the Generation of SCFA: Results from a Pre-Clinical Study. Nutrients 2022; 14:2504. [PMID: 35745233 PMCID: PMC9229211 DOI: 10.3390/nu14122504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Microalgae such as Phaeodactylum tricornutum (PT) are a sustainable source of nutrients, especially eicosapentaenoic acid (EPA), fucoxanthin (Fx), and chrysolaminarin (Chrl), the concentrations of which can vary depending on the culture conditions. We generated three types of diets containing either an EPA- and Fx-rich (EPA/Fx) or Chrl-rich microalgae (with 5, 15, or 25% added to the diet) or an isocaloric control diet (CD). These diets were evaluated over 14 days in young C57BL/6J mice for safety and bioavailability, short-chain fatty acid (SCFA) production, and microbiome analysis. Both microalgae diets increased body weight gain dose-dependently compared to the CD. Microalgae-derived EPA was well absorbed, resulting in increased liver and fat tissue levels and a decrease in the n-6:n-3 ratio in liver tissue. Both microalgae diets increased the production of selected SCFA and decreased the Firmicutes/Bacteriodota ratio, whereas the Chrl-rich diet led to an increase in Akkermansia. Doses of up to 4621 mg Chrl, 920 mg EPA, and 231 mg Fx per kg body weight daily were tolerated without adverse effects. This pre-clinical study shows that PT is suitable for mouse feed, with positive effects on microbiota composition and SCFA production, suggesting beneficial effects on gut health.
Collapse
Affiliation(s)
- Lena Stiefvatter
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Ulrike Neumann
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Andreas Rings
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, 70569 Stuttgart, Germany;
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany;
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, 70569 Stuttgart, Germany;
| | - Stephan C. Bischoff
- Institute of Clinical Nutrition, University of Hohenheim, Fruwirthstr. 12, 70593 Stuttgart, Germany; (L.S.); (U.N.); (A.R.)
| |
Collapse
|
28
|
Terasaki M, Murase W, Kamakura Y, Kawakami S, Kubota A, Kojima H, Ohta T, Tanaka T, Maeda H, Miyashita K, Mutoh M. A Biscuit Containing Fucoxanthin Prevents Colorectal Carcinogenesis in Mice. Nutr Cancer 2022; 74:3651-3661. [PMID: 35695489 DOI: 10.1080/01635581.2022.2086703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fucoxanthin (Fx) is a critical pigment required for photosynthesis in brown algae and microalgae. Fx is also a dietary marine carotenoid that with potent anticancer activity in vitro and in vivo. Some popular light meals for increased satiety, such as biscuits, cereals, and crackers, are frequently fortified with micronutrients for human health benefits. However, data on the anticancer potential of Fx-supplemented light meals in humans and animal models remain limited. In the present study, we investigated the anticancer effects of a Fx-supplemented biscuit using a carcinogenic murine azoxymethane/dextran sodium sulfate (AOM/DSS) model. We observed that periodic administration of biscuits containing 0.3% Fx (Fx-biscuit) at an interval of 3 days (each 15 h) per week for 15 weeks significantly inhibited colorectal carcinogenesis in AOM/DSS mice. Comprehensive gene analysis demonstrated that the Fx-biscuit significantly altered the expression of 138 genes in the colorectal mucosal tissue of the mice. In particular, the expression of heat shock protein 70 (HSP70) genes, Hspa1b (-35.7-fold) and Hspa1a (-34.9-fold), was markedly downregulated. HSP70 is a polyfunctional chaperone protein that is involved in cancer development. Compared to the control-biscuit group, the number of cells with markedly high fluorescence for HSP70 protein (HSP70high) in colorectal mucosal crypts and adenocarcinomas significantly reduced by 0.3- and 0.2-fold, respectively, in the Fx-biscuit group. Our results suggested that Fx-biscuit possesses chemopreventive potential in the colorectal cancer of AOM/DSS mice via the downregulation of HSP70.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
A DUF4281 domain-containing protein (homologue of ABA4) of Phaeodactylum tricornutum regulates the biosynthesis of fucoxanthin. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Rapid Purification of Fucoxanthin from Phaeodactylum tricornutum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103189. [PMID: 35630664 PMCID: PMC9146544 DOI: 10.3390/molecules27103189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
Fucoxanthin is a natural marine xanthophyll and exhibits a broad range of biological activities. In the present study, a simple and efficient two-step method was used to purify fucoxanthin from the diatom, Phaeodactylum tricornutum. The crude pigment extract of fucoxanthin was separated by silica gel column chromatography (SGCC). Then, the fucoxanthin-rich fraction was purified using a hydrophile-lipophile balance (HLB) solid-phase extraction column. The identification and quantification of fucoxanthin were determined by high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). This two-step method can obtain 92.03% pure fucoxanthin and a 76.67% recovery rate. In addition, 1H and 13C NMR spectrums were adopted to confirm the identity of fucoxanthin. Finally, the purified fucoxanthin exhibited strong antioxidant properties in vitro with the effective concentration for 50% of maximal scavenging (EC50) of 1,1-Dihpenyl-2-picrylhydrazyl (DPPH) and 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free radicals being 0.14 mg·mL-1 and 0.05 mg·mL-1, respectively.
Collapse
|
31
|
Bae M, Kim MB, Lee JY. Fucoxanthin Attenuates the Reprogramming of Energy Metabolism during the Activation of Hepatic Stellate Cells. Nutrients 2022; 14:nu14091902. [PMID: 35565869 PMCID: PMC9103095 DOI: 10.3390/nu14091902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatic stellate cells (HSC) play a major role in developing liver fibrosis. Upon activation during liver injury, activated HSC (aHSC) increase cell proliferation, fibrogenesis, contractility, chemotaxis, and cytokine release. We previously showed that aHSC have increased mitochondrial respiration but decreased glycolysis compared to quiescent HSC (qHSC). We also demonstrated that fucoxanthin (FCX), a xanthophyll carotenoid, has an anti-fibrogenic effect in HSC. The objective of this study was to investigate whether FCX attenuates metabolic reprogramming occurring during HSC activation. Mouse primary HSC were activated in the presence or absence of FCX for seven days. aHSC displayed significantly decreased glycolysis and increased mitochondrial respiration compared to qHSC, which was ameliorated by FCX present during activation. In addition, FCX partially attenuated the changes in the expression of genes involved in glycolysis and mitochondrial respiration, including hexokinase 1 (Hk1), Hk2, peroxisome proliferator-activated receptor γ coactivator 1β, and pyruvate dehydrogenase kinase 3. Our data suggest that FCX may prevent HSC activation by modulating the expression of genes crucial for metabolic reprogramming in HSC.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Department of Food and Nutrition, Interdisciplinary Program in Senior Human Ecology, BK21 FOUR, College of Natural Sciences, Changwon National University, Changwon 51140, Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Correspondence: ; Tel.: +1-(860)-486-1827
| |
Collapse
|
32
|
Costa MM, Lopes PA, Assunção JMP, Alfaia CMRPM, Coelho DFM, Mourato MP, Pinto RMA, Lordelo MM, Prates JAM. Combined effects of dietary Laminaria digitata with alginate lyase on plasma metabolites and hepatic lipid, pigment and mineral composition of broilers. BMC Vet Res 2022; 18:153. [PMID: 35477456 PMCID: PMC9044652 DOI: 10.1186/s12917-022-03250-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/18/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Laminaria digitata is an abundant macroalga and a sustainable feedstock for poultry nutrition. L. digitata is a good source of essential amino acids, carbohydrates and vitamins, including A, D, E, and K, as well as triacylglycerols and minerals, in particular iron and calcium. However, the few studies available in the literature with broilers document the application of this macroalga as a dietary supplement rather than a feed ingredient. No study has addressed up until now the effects of a high-level incorporation (> 2% in the diet) of L. digitata on plasma biochemical markers and hepatic lipid composition, as well as minerals and pigments profile in the liver of broilers. Our experimental design included one hundred and twenty Ross 308 male birds contained in 40 wired-floor cages and distributed to the following diets at 22 days of age (n = 10) for 15 days: 1) a corn-soybean basal diet (Control); 2) the basal diet plus 15% of L. digitata (LA); 3) the basal diet plus 15% of L. digitata with 0.005% of Rovabio® Excel AP (LAR); and 4) the basal diet plus 15% of L. digitata with 0.01% of the recombinant CAZyme, alginate lyase (LAE). RESULTS L. digitata compromised birds' growth performance by causing a reduction in final body weight. It was found an increase in hepatic n-3 and n-6 fatty acids, in particular C18:2n-6, C18:3n-6, C20:4n-6, C20:5n-3, C22:5n-3 and C22:6n-3 with the addition of the macroalga, with or without feed enzymes, to the broiler diets. Also, the beneficial C18:3n-3 fatty acid was increased by combining L. digitata and commercial Rovabio® Excel AP compared to the control diet. The sum of SFA, MUFA and the n-6/n-3 PUFA ratio were decreased by L. digitata, regardless the addition of exogenous enzymes. β-carotene was enhanced by L. digitata, individually or combined with CAZymes, being also responsible for a positive increase in total pigments. Macrominerals, in particular phosphorous and sulphur, were increased in the liver of broilers fed L. digitata individually relative to the control. For microminerals, copper, iron and the correspondent sum were consistently elevated in the liver of broilers fed L. digitata, individually or combined with exogenous CAZymes. The powerful discriminant analysis tool based on the hepatic characterization revealed a good separation between the control group and L. digitata diets but failed to discriminate the addition of feed enzymes. CONCLUSIONS Overall, this study highlights the value of L. digitata as a feed ingredient for the poultry industry. Moreover, we can conclude that the effect of L. digitata overpowers the effect of feed enzymes, both the Rovabio® Excel AP and the alginate lyase. Having in mind the negative effects observed on birds' performance, our main recommendation at this stage is to restraint L. digitata incorporation level in forthcoming nutritional studies.
Collapse
Affiliation(s)
- Mónica Mendes Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Paula Alexandra Lopes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - José Miguel Pestana Assunção
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Cristina Maria Riscado Pereira Mateus Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Diogo Francisco Maurício Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Miguel Pedro Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Avenida General Norton de Matos, 1495-148 Miraflores, Algés, Portugal
| | - Maria Madalena Lordelo
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
33
|
Agung Wibowo A, Heriyanto, Shioi Y, Limantara L, Brotosudarmo THP. Simultaneous purification of fucoxanthin isomers from brown seaweeds by open-column and high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123166. [PMID: 35182858 DOI: 10.1016/j.jchromb.2022.123166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
Abstract
Simultaneous purification of fucoxanthin isomers from brown seaweeds by two steps of open-column chromatography (OCC) and reversed-phase (RP)-high-performance liquid chromatography (HPLC) is described. Analysis and identification of fucoxanthin isomers were performed by chromatographic and spectrophotometric properties such as retention time (tR), spectral shape, maximal absorption wavelength (λmax), Q-ratio, and mass spectrometry (MS) data including the ratio of fragment ions. The optimal conditions for a simultaneous separation and purification were examined by changing several parameters of HPLC, i.e., mobile phase composition, equilibration time, and column oven temperature. The purification procedure consisted of the following two steps: first, highly purified fucoxanthin fraction was obtained by a silica-gel OCC. Then, four major fucoxanthin isomers, all-trans, 13'-cis, 13-cis, and 9'-cis, were simultaneously separated and purified by RP-HPLC with an analytical C30 column and gradient elution in a mixture of water, methanol, and methyl tert-butyl ether. The purity of fucoxanthin isomers purified was >95% for all-trans and 9'-cis, 85% for 13'-cis, and >80% for 13-cis. A large-scale purification by RP-HPLC using a preparative C18 column was effective for the purification of all-trans and 9'-cis with a yield of 95%. This developed technique was fully applicable to analyze the enhanced production of fucoxanthin isomers by iodine-catalyzed stereomutation which composed of 9 isomer species including 9-cis.
Collapse
Affiliation(s)
- Arif Agung Wibowo
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Heriyanto
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Yuzo Shioi
- Department of Chemistry and Ma Chung Research Center for Photosynthetic Pigments (MRCPP), Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151, Indonesia
| | - Leenawaty Limantara
- Center for Urban Studies, Universitas Pembangunan Jaya, Jl. Cendrawasih Raya B7/P, South Tangerang 15413, Banten, Indonesia
| | | |
Collapse
|
34
|
He Y, Li M, Wang Y, Shen S. The R2R3-MYB transcription factor MYB44 modulates carotenoid biosynthesis in Ulva prolifera. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
36
|
Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, Čož-Rakovac R, Ivančić Šantek M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022; 27:molecules27041248. [PMID: 35209036 PMCID: PMC8875609 DOI: 10.3390/molecules27041248] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zrinka Čošić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
- Correspondence:
| |
Collapse
|
37
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
38
|
A simple and efficient strategy for fucoxanthin extraction from the microalga Phaeodactylum tricornutum. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Abd Manan TSB, Khan T, Wan Mohtar WHM, Mohd Hanafiah Z, Latip ASA, Mustafa SFZ, Leong SY, Shamsuddin AS, Isa MH, Hassan AKR, Ahmad A, Wan Rasdi N, Mohamad H. Algae in medicine and human health. ALGAL BIOTECHNOLOGY 2022:323-334. [DOI: 10.1016/b978-0-323-90476-6.00001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Zhang X, Zhao J, Zhang J, Su S, Huang L, Ye J. Kinetic modelling of microalgal growth and fucoxanthin synthesis in photobioreactor. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This paper presented a mathematical model to describe the production of fucoxanthin by alga Thalassiosira weissflogi ND-8 in photobioreactor. Our interest was focused on characterizing the effects of nitrogen and phosphorus on the growth of microalgae and on the synthesis of fucoxanthin. The rate equations of microalgal growth, fucoxanthin synthesis and substrate consumptions were formulated. Kinetic parameters of the model and their sensitivities with respect to model output were estimated. The predicted results were compared with experimental data, which showed that this model closely agrees with actual experiment and is able to reflect the growth and metabolism characteristics of microalgae. Our results also indicated that nitrogen plays a major role in the synthesis of fucoxanthin, and the synthesis of fucoxanthin is partially linearly related to the consumption of nitrogen. Phosphorus is primarily consumed in the growth and metabolism of microalgal cells, while excessive phosphorus concentration has an inhibitory effect on the growth of microalgae.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Mathematics and Statistics & FJKLMAA & Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University , Fuzhou 350117 , Fujian , China
| | - Junru Zhao
- School of Mathematics and Statistics & FJKLMAA & Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University , Fuzhou 350117 , Fujian , China
| | - Jie Zhang
- College of Life Sciences, Key Laboratory of Sustainable Utilization of Characteristic Marine Biological Resources of Fujian, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Fujian Normal University , Fuzhou 350117 , China
- Jiang Xi Institute for Food Control , Nanchang 330001 , China
| | - Shijing Su
- College of Life Sciences, Key Laboratory of Sustainable Utilization of Characteristic Marine Biological Resources of Fujian, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Fujian Normal University , Fuzhou 350117 , China
| | - Luqiang Huang
- College of Life Sciences, Key Laboratory of Sustainable Utilization of Characteristic Marine Biological Resources of Fujian, Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Fujian Normal University , Fuzhou 350117 , China
| | - Jianxiong Ye
- School of Mathematics and Statistics & FJKLMAA & Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University , Fuzhou 350117 , Fujian , China
| |
Collapse
|
41
|
Smaoui S, Barkallah M, Ben Hlima H, Fendri I, Mousavi Khaneghah A, Michaud P, Abdelkafi S. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development. Foods 2021; 10:2835. [PMID: 34829118 PMCID: PMC8623138 DOI: 10.3390/foods10112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
In the last 20 years, xanthophylls from microalgae have gained increased scientific and industrial interests. This review highlights the essential issues that concern this class of high value compounds. Firstly, their chemical diversity as the producer microorganisms was detailed. Then, the use of conventional and innovative extraction techniques was discussed. Upgraded knowledge on the biosynthetic pathway of the main xanthophylls produced by photosynthetic microorganisms was reviewed in depth, providing new insightful ideas, clarifying the function of these active biomolecules. In addition, the recent advances in encapsulation techniques of astaxanthin and fucoxanthin, such as spray and freeze drying, gelation, emulsification and coacervation were updated. Providing information about these topics and their applications and advances could be a help to students and young researchers who are interested in chemical and metabolic engineering, chemistry and natural products communities to approach the complex thematic of xanthophylls.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, Sfax 3018, Tunisia;
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologie Végétale Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil;
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.B.); (H.B.H.)
| |
Collapse
|
42
|
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, Prieto M, Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JAM. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr (Berl) 2021; 105:1075-1102. [PMID: 33660883 DOI: 10.1111/jpn.13509] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
The effects of dietary macroalgae, or seaweeds, on growth performance and meat quality of livestock animal species are here reviewed. Macroalgae are classified into Phaeophyceae (brown algae), Rhodophyceae (red algae) and Chlorophyceae (green algae). The most common macroalga genera used as livestock feedstuffs are: Ascophyllum, Laminaria and Undaria for brown algae; Ulva, Codium and Cladophora for green algae; and Pyropia, Chondrus and Palmaria for red algae. Macroalgae are rich in many nutrients, including bioactive compounds, such as soluble polysaccharides, with some species being good sources of n-3 and n-6 polyunsaturated fatty acids. To date, the incorporation of macroalgae in livestock animal diets was shown to improve growth and meat quality, depending on the alga species, dietary level and animal growth stage. Generally, Ascophyllum nodosum can increase average daily gain (ADG) in ruminant and pig mostly due to its prebiotic activity in animal's gut. A. nodosum also enhances marbling score, colour uniformity and redness, and can decrease saturated fatty acids in ruminant meats. Laminaria sp., mainly Laminaria digitata, increases ADG and feed efficiency, and improves the antioxidant potential of pork. Ulva sp., and its mixture with Codium sp., was shown to improve poultry growth at up to 10% feed. Therefore, seaweeds are promising sustainable alternatives to corn and soybean as feed ingredients, thus attenuating the current competition among food-feed-biofuel industries. In addition, macroalgae can hinder eutrophication and participate in bioremediation. However, some challenges need to be overcome, such as the development of large-scale and cost-effective algae production methods and the improvement of algae digestibility by monogastric animals. The dietary inclusion of Carbohydrate-Active enZymes (CAZymes) could allow for the degradation of recalcitrant macroalga cell walls, with an increase of nutrients bioavailability. Overall, the use of macroalgae as feedstuffs is a promising strategy for the development of a more sustainable livestock production.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
44
|
Paix B, Vieira C, Potin P, Leblanc C, De Clerck O, Briand JF, Culioli G. French Mediterranean and Atlantic populations of the brown algal genus Taonia (Dictyotales) display differences in phylogeny, surface metabolomes and epibacterial communities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Khaw YS, Yusoff FM, Tan HT, Noor Mazli NAI, Nazarudin MF, Shaharuddin NA, Omar AR. The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Mar Drugs 2021; 19:md19110606. [PMID: 34822476 PMCID: PMC8623609 DOI: 10.3390/md19110606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Fucoxanthin is a major carotenoid in brown macroalgae and diatoms that possesses a broad spectrum of health benefits. This review evaluated the research trends of the fucoxanthin field from 1928 to June 2021 using the bibliometric method. The present findings unraveled that the fucoxanthin field has grown quickly in recent years with a total of 2080 publications. Japan was the most active country in producing fucoxanthin publications. Three Japan institutes were listed in the top ten productive institutions, with Hokkaido University being the most prominent institutional contributor in publishing fucoxanthin articles. The most relevant subject area on fucoxanthin was the agricultural and biological sciences category, while most fucoxanthin articles were published in Marine Drugs. A total of four research concepts emerged based on the bibliometric keywords analysis: “bioactivities”, “photosynthesis”, “optimization of process’’, and “environment”. The “bioactivities” of fucoxanthin was identified as the priority in future research. The current analysis highlighted the importance of collaboration and suggested that global collaboration could be the key to valorizing and efficiently boosting the consumer acceptability of fucoxanthin. The present bibliometric analysis offers valuable insights into the research trends of fucoxanthin to construct a better future development of this treasurable carotenoid.
Collapse
Affiliation(s)
- Yam Sim Khaw
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Fatimah Md. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
- Correspondence: ; Tel.: +60-3-89408311
| | - Hui Teng Tan
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Nur Amirah Izyan Noor Mazli
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Muhammad Farhan Nazarudin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (Y.S.K.); (H.T.T.); (N.A.I.N.M.); (M.F.N.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Immunotherapeutic, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
46
|
Raj T, Hashim FH, Huddin AB, Hussain A, Ibrahim MF, Abdul PM. Classification of oil palm fresh fruit maturity based on carotene content from Raman spectra. Sci Rep 2021; 11:18315. [PMID: 34526627 PMCID: PMC8443547 DOI: 10.1038/s41598-021-97857-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
The oil yield, measured in oil extraction rate per hectare in the palm oil industry, is directly affected by the ripening levels of the oil palm fresh fruit bunches at the point of harvesting. A rapid, non-invasive and reliable method in assessing the maturity level of oil palm harvests will enable harvesting at an optimum time to increase oil yield. This study shows the potential of using Raman spectroscopy to assess the ripeness level of oil palm fruitlets. By characterizing the carotene components as useful ripeness features, an automated ripeness classification model has been created using machine learning. A total of 46 oil palm fruit spectra consisting of 3 ripeness categories; under ripe, ripe, and over ripe, were analyzed in this work. The extracted features were tested with 19 classification techniques to classify the oil palm fruits into the three ripeness categories. The Raman peak averaging at 1515 cm−1 is shown to be a significant molecular fingerprint for carotene levels, which can serve as a ripeness indicator in oil palm fruits. Further signal analysis on the Raman peak reveals 4 significant sub bands found to be lycopene (ν1a), β-carotene (ν1b), lutein (ν1c) and neoxanthin (ν1d) which originate from the C=C stretching vibration of carotenoid molecules found in the peel of the oil palm fruit. The fine KNN classifier is found to provide the highest overall accuracy of 100%. The classifier employs 6 features: peak intensities of bands ν1a to ν1d and peak positions of bands ν1c and ν1d as predictors. In conclusion, the Raman spectroscopy method has the potential to provide an accurate and effective way in determining the ripeness of oil palm fresh fruits.
Collapse
Affiliation(s)
- Thinal Raj
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia.
| | - Fazida Hanim Hashim
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia.
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia
| | - Aini Hussain
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia
| | - Mohd Faisal Ibrahim
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi Selangor, Malaysia
| |
Collapse
|
47
|
Khotimchenko R, Bryukhovetskiy I, Khotimchenko M, Khotimchenko Y. Bioactive Compounds with Antiglioma Activity from Marine Species. Biomedicines 2021; 9:biomedicines9080886. [PMID: 34440090 PMCID: PMC8389718 DOI: 10.3390/biomedicines9080886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The search for new chemical compounds with antitumor pharmacological activity is a necessary process for creating more effective drugs for each specific malignancy type. This review presents the outcomes of screening studies of natural compounds with high anti-glioma activity. Despite significant advances in cancer therapy, there are still some tumors currently considered completely incurable including brain gliomas. This review covers the main problems of the glioma chemotherapy including drug resistance, side effects of common anti-glioma drugs, and genetic diversity of brain tumors. The main emphasis is made on the characterization of natural compounds isolated from marine organisms because taxonomic diversity of organisms in seawaters significantly exceeds that of terrestrial species. Thus, we should expect greater chemical diversity of marine compounds and greater likelihood of finding effective molecules with antiglioma activity. The review covers at least 15 classes of organic compounds with their chemical formulas provided as well as semi-inhibitory concentrations, mechanisms of action, and pharmacokinetic profiles. In conclusion, the analysis of the taxonomic diversity of marine species containing bioactives with antiglioma activity is performed noting cytotoxicity indicators and to the tumor cells in comparison with similar indicators of antitumor agents approved for clinical use as antiglioblastoma chemotherapeutics.
Collapse
Affiliation(s)
- Rodion Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Igor Bryukhovetskiy
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Maksim Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 690090 Vladivostok, Russia; (R.K.); (I.B.); (M.K.)
- Laboratory of Pharmacology, A. V. Zhirmunsky National Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690950 Vladivostok, Russia
- Correspondence:
| |
Collapse
|
48
|
Obluchinskaya ED, Pozharitskaya ON, Zakharova LV, Daurtseva AV, Flisyuk EV, Shikov AN. Efficacy of Natural Deep Eutectic Solvents for Extraction of Hydrophilic and Lipophilic Compounds from Fucus vesiculosus. Molecules 2021; 26:4198. [PMID: 34299472 PMCID: PMC8304060 DOI: 10.3390/molecules26144198] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
The impact of the composition of natural deep eutectic solvents (NADES) and extraction conditions on the simultaneous extraction of hydrophilic ascorbic acid (AA), phlorotannins (TPhC), and lipophilic fucoxanthin (FX) from Fucus vesiculosus was investigated for the first time. In biological tests, the NADES extracts showed the promising ability to scavenge DPPH radicals. A positive correlation was observed between DPPH scavenging activity and AA, TPhC, and FX contents. We calculate the synergistic effect of antioxidants extracted by NADES from F. vesiculosus based on the mixture effect (ME). The addition of 30% water to the NADES and the prolongation of sonication time from 20 min up to 60 min were favorable for the ME. The ME for extracts with the NADES was increased by two folds (ME > 2). In contrast, conventional extraction by maceration with steering at 60 °C does not lead to the synergistic effect (ME = 1). It is notable that the NADES provides high stability and preserves the antioxidant activity of the extracts from F. vesiculosus during storage.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); or (O.N.P.); (L.V.Z.); (A.V.D.)
| | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); or (O.N.P.); (L.V.Z.); (A.V.D.)
| | - Lyubov V. Zakharova
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); or (O.N.P.); (L.V.Z.); (A.V.D.)
| | - Anna V. Daurtseva
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); or (O.N.P.); (L.V.Z.); (A.V.D.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia;
| | - Alexander N. Shikov
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; (E.D.O.); or (O.N.P.); (L.V.Z.); (A.V.D.)
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia;
| |
Collapse
|
49
|
Ye Y, Sun J, Wang L, Zhu J, Cui W, Hou H, Zhang J, Zhou C, Yan X. Isolation and Purification of Fucoxanthin from Brown Seaweed Sargassum horneri Using Open ODS Column Chromatography and Ethanol Precipitation. Molecules 2021; 26:3777. [PMID: 34206231 PMCID: PMC8270250 DOI: 10.3390/molecules26133777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022] Open
Abstract
As an abundant marine xanthophyll, fucoxanthin (FX) exhibits a broad range of biological activities. The preparation of high-purity FX is in great demand, however, most of the available methods require organic solvents which cannot meet the green chemistry standard. In the present study, a simple and efficient purification approach for the purification of FX from the brown seaweed Sargassum horneri was carried out. The FX-rich ethanol extract was isolated by octadecylsilyl (ODS) column chromatography using ethanol-water solvent as a gradient eluent. The overwhelming majority of FX was successfully eluted by the ethanol-water mixture (9:1, v/v), with a recovery rate of 95.36%. A parametric study was performed to optimize the aqueous ethanol precipitation process by investigating the effects on the purity and recovery of FX. Under the optimal conditions, the purity of FX was 91.07%, and the recovery rate was 74.98%. Collectively, the eco-friendly method was cost-efficient for the purification of FX. The developed method provides a potential approach for the large-scale production of fucoxanthin from the brown seaweed Sargassum horneri.
Collapse
Affiliation(s)
- Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Jingwen Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Liting Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Junwang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China;
| | - Hongyan Hou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (Y.Y.); (J.S.); (L.W.); (J.Z.); (H.H.)
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| |
Collapse
|
50
|
Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|