1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Catalano F, Santorelli D, Astegno A, Favretto F, D'Abramo M, Del Giudice A, De Sciscio ML, Troilo F, Giardina G, Di Matteo A, Travaglini-Allocatelli C. Conformational and dynamic properties of the KH1 domain of FMRP and its fragile X syndrome linked G266E variant. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141019. [PMID: 38641086 DOI: 10.1016/j.bbapap.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The Fragile X messenger ribonucleoprotein (FMRP) is a multi-domain protein involved in interactions with various macromolecules, including proteins and coding/non-coding RNAs. The three KH domains (KH0, KH1 and KH2) within FMRP are recognized for their roles in mRNA binding. In the context of Fragile X syndrome (FXS), over-and-above CGG triplet repeats expansion, three specific point mutations have been identified, each affecting one of the three KH domains (R138QKH0, G266EKH1, and I304NKH2) resulting in the expression of non-functional FMRP. This study aims to elucidate the molecular mechanism underlying the loss of function associated with the G266EKH1 pathological variant. We investigate the conformational and dynamic properties of the isolated KH1 domain and the two KH1 site-directed mutants G266EKH1 and G266AKH1. Employing a combined in vitro and in silico approach, we reveal that the G266EKH1 variant lacks the characteristic features of a folded domain. This observation provides an explanation for functional impairment observed in FMRP carrying the G266E mutation within the KH1 domain, as it renders the domain unable to fold properly. Molecular Dynamics simulations suggest a pivotal role for residue 266 in regulating the structural stability of the KH domains, primarily through stabilizing the α-helices of the domain. Overall, these findings enhance our comprehension of the molecular basis for the dysfunction associated with the G266EKH1 variant in FMRP.
Collapse
Affiliation(s)
- Flavia Catalano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Daniele Santorelli
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Filippo Favretto
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| | - Marco D'Abramo
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Maria Laura De Sciscio
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Francesca Troilo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, Rome 00185, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Adele Di Matteo
- CNR Institute of Molecular Biology and Pathology, P.le Aldo Moro 5, Rome 00185, Italy.
| | | |
Collapse
|
3
|
Maroni P, Pesce NA, Lombardi G. RNA-binding proteins in bone pathophysiology. Front Cell Dev Biol 2024; 12:1412268. [PMID: 38966428 PMCID: PMC11222650 DOI: 10.3389/fcell.2024.1412268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Bone remodelling is a highly regulated process that maintains mineral homeostasis and preserves bone integrity. During this process, intricate communication among all bone cells is required. Indeed, adapt to changing functional situations in the bone, the resorption activity of osteoclasts is tightly balanced with the bone formation activity of osteoblasts. Recent studies have reported that RNA Binding Proteins (RBPs) are involved in bone cell activity regulation. RBPs are critical effectors of gene expression and essential regulators of cell fate decision, due to their ability to bind and regulate the activity of cellular RNAs. Thus, a better understanding of these regulation mechanisms at molecular and cellular levels could generate new knowledge on the pathophysiologic conditions of bone. In this Review, we provide an overview of the basic properties and functions of selected RBPs, focusing on their physiological and pathological roles in the bone.
Collapse
Affiliation(s)
- Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Noemi Anna Pesce
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
4
|
da Silva AM, Yevdokimova V, Benoit YD. Sam68 is a druggable vulnerability point in cancer stem cells. Cancer Metastasis Rev 2024; 43:441-456. [PMID: 37792222 PMCID: PMC11016129 DOI: 10.1007/s10555-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/β-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.
Collapse
Affiliation(s)
- Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
6
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
7
|
Darwish M, Ito M, Iijima Y, Takase A, Ayukawa N, Suzuki S, Tanaka M, Komori K, Kaida D, Iijima T. Neuronal SAM68 differentially regulates alternative last exon splicing and ensures proper synapse development and function. J Biol Chem 2023; 299:105168. [PMID: 37595869 PMCID: PMC10562862 DOI: 10.1016/j.jbc.2023.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
Alternative splicing in the 3'UTR of mammalian genes plays a crucial role in diverse biological processes, including cell differentiation and development. SAM68 is a key splicing regulator that controls the diversity of 3'UTR isoforms through alternative last exon (ALE) selection. However, the tissue/cell type-specific mechanisms underlying the splicing control at the 3' end and its functional significance remain unclear. Here, we show that SAM68 regulates ALE splicing in a dose-dependent manner and the neuronal splicing is differentially regulated depending on the characteristics of the target transcript. Specifically, we found that SAM68 regulates interleukin-1 receptor-associated protein splicing through the interaction with U1 small nuclear ribonucleoprotein. In contrast, the ALE splicing of protocadherin-15 (Pcdh15), a gene implicated in several neuropsychiatric disorders, is independent of U1 small nuclear ribonucleoprotein but modulated by the calcium/calmodulin-dependent protein kinase signaling pathway. We found that the aberrant ALE selection of Pcdh15 led to a conversion from a membrane-bound to a soluble isoform and consequently disrupted its localization into excitatory and inhibitory synapses. Notably, the neuronal expression of the soluble form of PCDH15 preferentially affected the number of inhibitory synapses. Moreover, the soluble form of PCDH15 interacted physically with α-neurexins and further disrupted neuroligin-2-induced inhibitory synapses in artificial synapse formation assays. Our findings provide novel insights into the role of neuron-specific alternative 3'UTR isoform selections in synapse development.
Collapse
Affiliation(s)
- Mohamed Darwish
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Masatoshi Ito
- The Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Yoko Iijima
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Akinori Takase
- The Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Noriko Ayukawa
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Satoko Suzuki
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Masami Tanaka
- Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan
| | - Kanae Komori
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Kaida
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takatoshi Iijima
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, School of Medicine, Tokai University, Kanagawa, Japan; Tokai University Institute of Innovative Science and Technology, Isehara, Kanagawa, Japan.
| |
Collapse
|
8
|
Rekad Z, Ruff M, Radwanska A, Grall D, Ciais D, Van Obberghen-Schilling E. Coalescent RNA-localizing and transcriptional activities of SAM68 modulate adhesion and subendothelial basement membrane assembly. eLife 2023; 12:e85165. [PMID: 37585334 PMCID: PMC10431919 DOI: 10.7554/elife.85165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
Endothelial cell interactions with their extracellular matrix are essential for vascular homeostasis and expansion. Large-scale proteomic analyses aimed at identifying components of integrin adhesion complexes have revealed the presence of several RNA binding proteins (RBPs) of which the functions at these sites remain poorly understood. Here, we explored the role of the RBP SAM68 (Src associated in mitosis, of 68 kDa) in endothelial cells. We found that SAM68 is transiently localized at the edge of spreading cells where it participates in membrane protrusive activity and the conversion of nascent adhesions to mechanically loaded focal adhesions by modulation of integrin signaling and local delivery of β-actin mRNA. Furthermore, SAM68 depletion impacts cell-matrix interactions and motility through induction of key matrix genes involved in vascular matrix assembly. In a 3D environment SAM68-dependent functions in both tip and stalk cells contribute to the process of sprouting angiogenesis. Altogether, our results identify the RBP SAM68 as a novel actor in the dynamic regulation of blood vessel networks.
Collapse
Affiliation(s)
- Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBVNiceFrance
| | | | | | | | | |
Collapse
|
9
|
Zafarullah M, Li J, Tseng E, Tassone F. Structure and Alternative Splicing of the Antisense FMR1 (ASFMR1) Gene. Mol Neurobiol 2023; 60:2051-2061. [PMID: 36598648 PMCID: PMC10461537 DOI: 10.1007/s12035-022-03176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by an expansion of 55-200 CGG repeats (premutation) in the 5'-UTR of the FMR1 gene. Bidirectional transcription at FMR1 locus has been demonstrated and specific alternative splicing of the Antisense FMR1 (ASFMR1) gene has been proposed to have a contributing role in the pathogenesis of FXTAS. The structure of ASFMR1 gene is still uncharacterized and it is currently unknown how many isoforms of the gene are expressed and at what level in premutation carriers (PM) and if they may contribute to the premutation pathology. In this study, we characterized the ASFMR1 gene structure and the transcriptional landscape by using PacBio SMRT sequencing with target enrichment (IDT customized probe panel). We identified 45 ASFMR1 isoforms ranging in sizes from 523 bp to 6 Kb, spanning approximately 59 kb of genomic DNA. Multiplexing and sequencing of six human brain samples from PM samples and normal control (HC) were carried out on the PacBio Sequel platform. We validated the presence of these isoforms by qRT-PCR and Sanger sequencing and characterized the acceptor and donor splicing site consensus sequences. Consistent with previous studies conducted in other tissue types, we found a high expression of ASFMR1 isoform Iso131bp in brain samples of PM as compared to HC, while no differences in expression levels were observed for the newly identified isoforms IsoAS1 and IsoAS2. We investigated the role of the splicing regulatory protein Sam68 which we did not observe in the alternative splicing of the ASFMR1 gene. Our study provides a useful insight into the structure of ASFMR1 gene and transcriptional landscape along with the expression pattern of various newly identified novel isoforms and on their potential role in premutation pathology.
Collapse
Affiliation(s)
- Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jie Li
- Bioinformatics Core, Genome Center, University of California Davis, Davis, CA, 95616, USA
| | | | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
- MIND Institute, University of California Davis Medical Center, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Yu X, Kang W, Zhang J, Chen C, Liu Y. Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res 2022; 14:6574-6585. [PMID: 36247240 PMCID: PMC9556470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
The shortening of the 3' untranslated regions (3'UTRs) due to alternative polyadenylation (APA) has become an important characteristic of cancer. However, the function of APA-induced 3'UTR shortening in gastric cancer (GC) remains unclear. KHDRBS1 (sam68), as an RNA-binding protein (RBP), is significantly upregulated in GC. In this study, we found that the 3'UTR of KHDRBS1 is generally shortened in GC tissues compared to paracancer tissues. Moreover, KHDRBS1 mRNA with a shortened 3'UTR can escape the inhibitory effect of miRNAs, resulting in its increased expression in GC. Overexpression of KHDRBS1, especially KHDRBS1 with a shortened 3'UTR, promotes the growth and metastasis of GC in vivo and in vitro. In conclusion, the experimental results show that shortening of the KHDRBS1 mRNA 3'UTR can mediate the overexpression of KHDRBS1 in GC cells and promote the progression of GC.
Collapse
Affiliation(s)
- Xin Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Weibiao Kang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Jiajia Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| | - Yi Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University 218 Jixi Avenue, Hefei 230022, Anhui, China
| |
Collapse
|
11
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
12
|
Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, Chen GF, Chen JN, Shao CK. ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett 2022; 535:215646. [PMID: 35304258 DOI: 10.1016/j.canlet.2022.215646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) is a tumor virus that is associated with a variety of neoplasms, including EBV-associated gastric carcinoma (EBVaGC). Recently, EBV was reported to generate various circular RNAs (circRNAs). CircRNAs are important regulators of tumorigenesis by modulating the malignant behaviors of tumor cells. However, to date, the functions of ebv-circRNAs in EBVaGC remain poorly understood. In the present study, we observed high ebv-circRPMS1 expression in EBVaGC and showed that ebv-circRPMS1 promoted the proliferation, migration, and invasion and inhibited the apoptosis of EBVaGC cells. In addition, METTL3 was upregulated in GC cells overexpressing ebv-circRPMS1. Mechanistically, ebv-circRPMS1 bound to Sam68 to facilitate its physical interaction with the METTL3 promotor, resulting in the transactivation of METTL3 and cancer progression. In clinical EBVaGC samples, ebv-circRPMS1 was associated with distant metastasis and a poor prognosis. Based on these findings, ebv-circRPMS1 contributed to EBVaGC progression by recruiting Sam68 to the METTL3 promoter to induce METTL3 expression. ebv-circRPMS1, Sam68, and METTL3 might serve as therapeutic targets for EBVaGC.
Collapse
Affiliation(s)
- Jing-Yue Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu Du
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Gong
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yi-Ting Shao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Li-Jie Pan
- Vaccine Research of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhi-Ying Feng
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu-Hang Pan
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun-Ting Huang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Jing-Yun Wen
- Department of Medical Oncology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Li-Ping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Gao-Feng Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jian-Ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Genome-Wide Characterization and Expression Analysis of KH Family Genes Response to ABA and SA in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms23010511. [PMID: 35008936 PMCID: PMC8745409 DOI: 10.3390/ijms23010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
K-homologous (KH) family is a type of nucleic acid-binding protein containing the KH domain and has been found to affect splicing and transcriptional regulation. However, KH family genes haven’t been investigated in plant species systematically. In this study, we identified 30 genes that belonged to the KH family based on HMM of the KH domain in Arabidopsis thaliana. Phylogenetic tree analysis showed that the KH family is grouped into three subgroups. Synteny analysis showed that AtKH9 and AtKH29 have the conserved synteny relationship between A. thaliana and the other five species. The AtKH9 and AtKH29 were located in the cytoplasm and nucleus. The seed germination rates of the mutants atkh9 and atkh29 were higher than wild-type after abscisic acid (ABA) and salicylic acid (SA) treatments. In addition, the expression of ABA-related genes, such as ABRE-binding factor 2 (ABF2), ABRE-binding factor 4 (ABF4), and delta 1-pyrroline-5-carboxylate synthase (P5CS), and an SA-related gene pathogenesis-related proteins b (PR1b) were downregulated after ABA and SA treatments, respectively. These results suggested that atkh9 and atkh29 mutants inhibit the effect of ABA and SA on seed germination. In conclusion, our results provide valuable information for further exploration of the function of KH family genes and propose directions and ideas for the identification and characterization of KH family genes in other plants.
Collapse
|
14
|
Qiao A, Zhou J, Xu S, Ma W, Boriboun C, Kim T, Yan B, Deng J, Yang L, Zhang E, Song Y, Ma YC, Richard S, Zhang C, Qiu H, Habegger KM, Zhang J, Qin G. Sam68 promotes hepatic gluconeogenesis via CRTC2. Nat Commun 2021; 12:3340. [PMID: 34099657 PMCID: PMC8185084 DOI: 10.1038/s41467-021-23624-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic gluconeogenesis is essential for glucose homeostasis and also a therapeutic target for type 2 diabetes, but its mechanism is incompletely understood. Here, we report that Sam68, an RNA-binding adaptor protein and Src kinase substrate, is a novel regulator of hepatic gluconeogenesis. Both global and hepatic deletions of Sam68 significantly reduce blood glucose levels and the glucagon-induced expression of gluconeogenic genes. Protein, but not mRNA, levels of CRTC2, a crucial transcriptional regulator of gluconeogenesis, are >50% lower in Sam68-deficient hepatocytes than in wild-type hepatocytes. Sam68 interacts with CRTC2 and reduces CRTC2 ubiquitination. However, truncated mutants of Sam68 that lack the C- (Sam68ΔC) or N-terminal (Sam68ΔN) domains fails to bind CRTC2 or to stabilize CRTC2 protein, respectively, and transgenic Sam68ΔN mice recapitulate the blood-glucose and gluconeogenesis profile of Sam68-deficient mice. Hepatic Sam68 expression is also upregulated in patients with diabetes and in two diabetic mouse models, while hepatocyte-specific Sam68 deficiencies alleviate diabetic hyperglycemia and improves insulin sensitivity in mice. Thus, our results identify a role for Sam68 in hepatic gluconeogenesis, and Sam68 may represent a therapeutic target for diabetes. Hepatic gluconeogenesis is important for glucose homeostasis and a therapeutic target for type 2 diabetes. Here, the authors show that the RNA-binding adaptor protein Sam68 promotes the expression level of gluconeogenic genes and increases blood glucose levels by stabilizing the transcriptional coactivator CRTC2, while hepatic Sam68 deletion alleviates hyperglycemia in mice.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Junlan Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shiyue Xu
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Wenxia Ma
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Chan Boriboun
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Teayoun Kim
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Baolong Yan
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Jianxin Deng
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Liu Yang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Eric Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yuhua Song
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Yongchao C Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Stephane Richard
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science Georgia State University, Atlanta, GA, USA
| | - Kirk M Habegger
- Department of Medicine - Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL, USA
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL, USA. .,Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
15
|
Pouladi N, Abdolahi S. Investigating the ACE2 polymorphisms in COVID-19 susceptibility: An in silico analysis. Mol Genet Genomic Med 2021; 9:e1672. [PMID: 33818000 PMCID: PMC8222831 DOI: 10.1002/mgg3.1672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023] Open
Abstract
Background Novel coronavirus (SARS‐CoV‐2) became an epidemic disease and lead to a pneumonia outbreak first in December 2019 in Wuhan, China. The symptoms related to coronavirus disease‐19 (COVID‐19) were different ranging from mild to severe lung injury and multi‐organ failure symptoms, eventually leading to death, especially in older patients with other co‐morbidities. The receptor of this virus in the human cell is angiotensin‐converting enzyme 2 (ACE2). Methods In this paper, we aimed to perform an in silico analysis of the frequently studied variants of the ACE2 gene and determine the effects of the variants in mRNA secondary structure and binding affinity of cellular factors. Fourteen single‐nucleotide polymorphisms were selected based on previous studies and investigated. Results All of the variants were analyzed in the RNAsnp database and three revealed a significant p‐value. The spliceAid2 database prediction showed that 7 out of 14 SNPs caused an alteration in a way that only the wild or mutated form was able to bind to proteins. The latter database also reported that three SNPs produces a dual form in which different specific proteins can bind to the sequence in a specific form (either wild or mutated form). Conclusion Altogether, these estimations revealed the potential of variants in manipulation of the final stable form of ACE2 that can lead to different COVID‐19 susceptibility.
Collapse
Affiliation(s)
- Nasser Pouladi
- Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran.,Department of Molecular Biology and Cancer Research, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Sepehr Abdolahi
- Department of Molecular Biology and Cancer Research, Azarbaijan Shahid Madani University, Tabriz, Iran.,Department of Biology, Faculty of Basic Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
16
|
Yadav M, Singh RS, Hogan D, Vidhyasagar V, Yang S, Chung IYW, Kusalik A, Dmitriev OY, Cygler M, Wu Y. The KH domain facilitates the substrate specificity and unwinding processivity of DDX43 helicase. J Biol Chem 2021; 296:100085. [PMID: 33199368 PMCID: PMC7949032 DOI: 10.1074/jbc.ra120.015824] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 01/21/2023] Open
Abstract
The K-homology (KH) domain is a nucleic acid-binding domain present in many proteins. Recently, we found that the DEAD-box helicase DDX43 contains a KH domain in its N-terminus; however, its function remains unknown. Here, we purified recombinant DDX43 KH domain protein and found that it prefers binding ssDNA and ssRNA. Electrophoretic mobility shift assay and NMR revealed that the KH domain favors pyrimidines over purines. Mutational analysis showed that the GXXG loop in the KH domain is involved in pyrimidine binding. Moreover, we found that an alanine residue adjacent to the GXXG loop is critical for binding. Systematic evolution of ligands by exponential enrichment, chromatin immunoprecipitation-seq, and cross-linking immunoprecipitation-seq showed that the KH domain binds C-/T-rich DNA and U-rich RNA. Bioinformatics analysis suggested that the KH domain prefers to bind promoters. Using 15N-heteronuclear single quantum coherence NMR, the optimal binding sequence was identified as TTGT. Finally, we found that the full-length DDX43 helicase prefers DNA or RNA substrates with TTGT or UUGU single-stranded tails and that the KH domain is critically important for sequence specificity and unwinding processivity. Collectively, our results demonstrated that the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Shizhuo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ivy Yeuk Wah Chung
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
17
|
Awe O, Sinkway JM, Chow RP, Wagener Q, Schulz EV, Yu JY, Nietert PJ, Wagner CL, Lee KH. Differential regulation of a placental SAM68 and sFLT1 gene pathway and the relevance to maternal vitamin D sufficiency. Pregnancy Hypertens 2020; 22:196-203. [PMID: 33068876 PMCID: PMC7688503 DOI: 10.1016/j.preghy.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The goal of this study was to determine if an axis of placental gene expression associated with early onset and severe preeclampsia (EOSPE) was operative in term pregnancy and correlated with vitamin D sufficiency. METHODS qPCR analysis of NKX2-5, SAM68, sFLT1 and membrane bound VEGFR1/FLT1 mRNA expression was conducted in placentas from 43 subjects enrolled in a vitamin D3 pregnancy supplementation trial. Pair-wise rank order correlations between patient-specific gene expression levels were calculated, and their relationship to maternal 25(OH)D status was assessed by a two-sample Wilcoxon test. Additionally, we probed the mechanistic link between SAM68 and sFLT1 using siRNA depletion in a human trophoblast cell line model. RESULTS Positive and highly significant correlations were found between SAM68 vs. sFLT1 and SAM68 vs. FLT1 expression levels, as were significant and differential correlations between the expression of these genes and perinatal 25(OH)D status. The variability when stratified by race/ethnicity was qualitatively distinct from those previously observed in EOSPE. Mechanistic studies confirmed a functional role for SAM68 protein in the regulation of sFLT1 expression. NKX2-5 expression was not significantly correlated with sFLT1 or SAM68 expression in these samples, suggesting that its expression may be significant at earlier stages of pregnancy or be restricted to pathological settings. CONCLUSIONS These data further support our overarching hypothesis that SAM68 expression is a key determinant of VEGFR1 isoform expression in the placenta, and provide additional insights into how this gene pathway may be differentially deployed or modified in normal and pathological pregnancies.
Collapse
Affiliation(s)
- Oyindamola Awe
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - James M Sinkway
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Rebecca P Chow
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Quentell Wagener
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Elizabeth V Schulz
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Jeremy Y Yu
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Carol L Wagner
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Kyu-Ho Lee
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States; Regenerative Medicine and Cell Biology Department, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
18
|
Pankivskyi S, Pastré D, Steiner E, Joshi V, Rynditch A, Hamon L. ITSN1 regulates SAM68 solubility through SH3 domain interactions with SAM68 proline-rich motifs. Cell Mol Life Sci 2020; 78:1745-1763. [PMID: 32780150 PMCID: PMC7904728 DOI: 10.1007/s00018-020-03610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
SAM68 is an mRNA-binding protein involved in mRNA processing in the nucleus that forms membraneless compartments called SAM68 Nuclear Bodies (SNBs). We found that intersectin 1 (ITSN1), a multidomain scaffold protein harboring five soluble SH3 domains, interacts with SAM68 proline-rich motifs (PRMs) surrounded by self-adhesive low complexity domains. While SAM68 is poorly soluble in vitro, the interaction of ITSN1 SH3 domains and mRNA with SAM68 enhances its solubility. In HeLa cells, the interaction between the first ITSN1 SH3 domain (SH3A) and P0, the N-terminal PRM of SAM68, induces the dissociation of SNBs. In addition, we reveal the ability of another SH3 domain (SH3D) of ITSN1 to bind to mRNAs. ITSN1 and mRNA may thus act in concert to promote SAM68 solubilization, consistent with the absence of mRNA in SNBs in cells. Together, these results support the notion of a specific chaperoning of PRM-rich SAM68 within nuclear ribonucleoprotein complexes by ITSN1 that may regulate the processing of a fraction of nuclear mRNAs, notably SAM68-controlled splicing events related to higher neuronal functions or cancer progression. This observation may also serve as a putative model of the interaction between other PRM-rich RBPs and signaling proteins harboring SH3 domains.
Collapse
Affiliation(s)
- S Pankivskyi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.,Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine
| | - D Pastré
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - E Steiner
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - V Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France
| | - A Rynditch
- Institute of Molecular Biology and Genetics, The National Academy of Sciences, 150 Zabolotnogo Street, Kyiv, 03680, Ukraine.
| | - L Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025, Evry, France.
| |
Collapse
|
19
|
Sumithra B, Jayanthi VSPKSA, Manne HC, Gunda R, Saxena U, Das AB. Antibody-based biosensor to detect oncogenic splicing factor Sam68 for the diagnosis of lung cancer. Biotechnol Lett 2020; 42:2501-2509. [PMID: 32648188 DOI: 10.1007/s10529-020-02951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/28/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The present work aimed to investigate the potential utility of Sam68 protein as a prognostic marker in lung cancer. Then an electrochemical immunosensor is fabricated that is sufficiently sensitive to detect Sam68. RESULTS Analysis of stage-specific Lung cancer microarray data shows that differential expression of Sam68 is associated with cancer stage and monotonically increases from early tumor stage to advanced metastatic stage. Moreover, the higher expression of Sam68 results in reduced survival of lung cancer patients. Based on these observations, an electrochemical immunosensor was developed for the quantification of Sam68 protein. The target protein was captured by the Anti-Sam68 antibody that was immobilized on the modified Glassy carbon electrode. The stepwise assembly process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. This fabricated immunosensor displayed good analytical performance in comparison to commercial ELISA kit with good sensitivity, lower detection limit (LOD) of 10.5 pg mL-1, and wide linear detection range from 1 to 5 μg mL-1. This method was validated with satisfactory detection of Sam68 protein in lung adenocarcinoma cell line, NCI-H23. Besides, spike and recovery assay reconfirm that the sensor can precisely quantify Sam68 protein in a complex physiological sample. CONCLUSION We conclude Sam68 as a valuable prognostic biomarker for early detection of lung cancer. Moreover, we report the first study on the development of an electrochemical immunosensor for the detection of Sam68. The fabricated immunosensor exhibit excellent analytical performance, which can accurately predict the lung cancer patient pathological state.
Collapse
Affiliation(s)
- B Sumithra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | | | - Hari Chandana Manne
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Rashmika Gunda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Urmila Saxena
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| | - Asim Bikas Das
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
20
|
Vilariño-García T, Pérez-Pérez A, Santamaría-López E, Prados N, Fernández-Sánchez M, Sánchez-Margalet V. Sam68 mediates leptin signaling and action in human granulosa cells: possible role in leptin resistance in PCOS. Endocr Connect 2020; 9:479-488. [PMID: 32375121 PMCID: PMC7354740 DOI: 10.1530/ec-20-0062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a complex metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, obesity, and insulin resistance, that leads to subfertility. Sam68 is an RNA-binding protein with signaling functions that is ubiquitously expressed, including gonads. Sam68 is recruited to leptin signaling, mediating different leptin actions. OBJECTIVE We aimed to investigate the role of Sam68 in leptin signaling, mediating the effect on aromatase expression in granulosa cells and the posible implication of Sam68 in the leptin resistance in PCOS. MATERIALS AND METHODS Granulosa cells were from healthy donors (n = 25) and women with PCOS (n = 25), within the age range of 20 to 40 years, from Valencian Infertility Institute (IVI), Seville, Spain. Sam68 expression was inhibited by siRNA method and overexpressed by expression vector. Expression level was analysed by qPCR and immunoblot. Statistical significance was assessed by ANOVA followed by different post-hoc tests. A P value of <0.05 was considered statistically significant. RESULTS We have found that leptin stimulation increases phosphorylation and expression level of Sam68 and aromatase in granulosa cells from normal donors. Downregulation of Sam68 expression resulted in a lower activation of MAPK and PI3K pathways in response to leptin, whereas overexpression of Sam68 increased leptin stimulation of signaling, enhancing aromatase expression. Granulosa cells from women with PCOS presented lower expression of Sam68 and were resistant to the leptin effect on aromatase expression. CONCLUSIONS These results suggest the participation of Sam68 in leptin receptor signaling, mediating the leptin effect on aromatase expression in granulosa cells, and point to a new target in leptin resistance in PCOS.
Collapse
Affiliation(s)
- Teresa Vilariño-García
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | | | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology. Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Correspondence should be addressed to V Sánchez-Margalet:
| |
Collapse
|
21
|
Xu C, Ke D, Zou L, Li N, Wang Y, Fan X, Zhu C, Xia W. Cold-induced RNA-binding protein (CIRBP) regulates the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) during heat stress-induced testicular injury. Reprod Fertil Dev 2020; 32:1357-1364. [DOI: 10.1071/rd20253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
In this study, the ability of cold-induced RNA-binding protein (CIRBP) to regulate the expression of Src-associated during mitosis of 68 kDa (Sam68) and extracellular signal-regulated kinases (ERK) in the mouse testis and mouse primary spermatocytes (GC-2spd cell line) before and after heat stress was examined to explore the molecular mechanism by which CIRBP decreases testicular injury. A mouse testicular hyperthermia model, a mouse primary spermatocyte hyperthermia model and a low CIRBP gene-expression cell model were constructed and their relevant parameters were analysed. The mRNA and protein levels of CIRBP and Sam68 were significantly decreased in the 3-h and 12-h testicular heat-stress groups, extracellular signal-regulated kinase 1/2 (ERK1/2) protein expression was not significantly affected but phospho-ERK1/2 protein levels were significantly decreased. GC-2spd cellular heat-stress results showed that the mRNA and protein concentrations of CIRBP and Sam68 were reduced 48h after heat stress. In the low CIRBP gene-expression cell model, CIRBP protein expression was significantly decreased. Sam68 mRNA expression was significantly decreased only at the maximum transfection concentration of 50nM and Sam68 protein expression was not significantly affected. These findings suggest that CIRBP may regulate the expression of Sam68 at the transcriptional level and the expression of phospho-ERK1/2 protein, both of which protect against heat-stress-induced testicular injury in mice.
Collapse
|
22
|
Iijima Y, Tanaka M, Suzuki S, Hauser D, Tanaka M, Okada C, Ito M, Ayukawa N, Sato Y, Ohtsuka M, Scheiffele P, Iijima T. SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3' UTR Isoforms in the Nervous System. iScience 2019; 22:318-335. [PMID: 31805436 PMCID: PMC6909182 DOI: 10.1016/j.isci.2019.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Neuronal alternative splicing is a core mechanism for functional diversification. We previously found that STAR family proteins (SAM68, SLM1, SLM2) regulate spatiotemporal alternative splicing in the nervous system. However, the whole aspect of alternative splicing programs by STARs remains unclear. Here, we performed a transcriptomic analysis using SAM68 knockout and SAM68/SLM1 double-knockout midbrains. We revealed different alternative splicing activity between SAM68 and SLM1; SAM68 preferentially targets alternative 3′ UTR exons. SAM68 knockout causes a long-to-short isoform switch of a number of neuronal targets through the alteration in alternative last exon (ALE) selection or alternative polyadenylation. The altered ALE usage of a novel target, interleukin 1 receptor accessory protein (Il1rap), results in remarkable conversion from a membrane-bound type to a secreted type in Sam68KO brains. Proper ALE selection is necessary for IL1RAP neuronal function. Thus the SAM68-specific splicing program provides a mechanism for neuronal selection of alternative 3′ UTR isoforms. SAM68 and the related protein SLM1 exhibit distinct alternative splicing activity SAM68 specifically controls 3′ UTR selection of multiple neuronal genes Proper 3′ UTR selection is necessary for IL1RAP neuronal function Neuronal expression of SAM68 requires proper 3′ UTR selection in the nervous system
Collapse
Affiliation(s)
- Yoko Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masami Tanaka
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Satoko Suzuki
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - David Hauser
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Masayuki Tanaka
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Chisa Okada
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Masatoshi Ito
- The Support Center for Medical Research and Education, Tokai University, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Noriko Ayukawa
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan
| | - Yuji Sato
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Peter Scheiffele
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, Basel 4056, Switzerland
| | - Takatoshi Iijima
- Tokai University Institute of Innovative Science and Technology, 143 Shimokasuya, Isehara City, Kanagawa 259-1193, Japan; Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, 143, Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| |
Collapse
|
23
|
Chen Y, Zhang L, Liu S, Yao B, Zhang H, Liang S, Ma J, Liang X, Shi W. Sam68 mediates high glucose‑induced podocyte apoptosis through modulation of Bax/Bcl‑2. Mol Med Rep 2019; 20:3728-3734. [PMID: 31485651 PMCID: PMC6755155 DOI: 10.3892/mmr.2019.10601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperglycemia promotes podocyte apoptosis and contributes to the pathogenesis of diabetic nephropathy (DN). However, the mechanisms of hyperglycemia-induced podocyte apoptosis remain unknown. Recent studies have implicated Src-associated substrate during mitosis of 68 kDa (Sam68) in various cellular processes including RNA metabolism, apoptosis, signal transduction. This study sought to examine the effect of Sam68 on high glucose (HG)-induced podocytes apoptosis, and the mechanism underlying this effect. Immortalized mouse podocytes were exposed to medium containing normal glucose, or HG and Sam68 siRNA, respectively. The expression of Sam68 in podocytes was determined by fluorescence quantitative PCR (qPCR), immunofluorescence and immunoblotting. The role of Sam68 in HG-induced podocyte apoptosis was further evaluated by inhibiting Sam68 expression by Sam68 siRNA and performing flow cytometry. The mRNA and protein expression of pro-apoptosis gene Bax and anti-apoptotic gene Bcl-2 were assessed by qRCR and immunoblotting. In the present study, it was first demonstrated that Sam68 was upregulated in a time and dose-dependent manner in in vitro HG-treated podocytes. Pretreatment with Sam68 siRNA markedly decreased nuclear Sam68 expression. Moreover, the effects of HG-induced apoptosis were also abrogated by Sam68 knockdown in cultured podocytes. Furthermore, HG increased Bax and decreased Bcl-2 protein expression in cultured podocytes, and this effect was blocked by Sam68 knockdown. The results of the present study revealed that Sam68 mediated HG-induced podocyte apoptosis, probably through the Bax/Bcl-2 signaling pathway, and thus may be a potential therapeutic target for DN.
Collapse
Affiliation(s)
- Yuyu Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Li Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shuangxin Liu
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Binfeng Yao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Zhang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shun Liang
- Division of Nephrology, Yue Bei People's Hospital, Shaoguan, Guangdong 512025, P.R. China
| | - Jianchao Ma
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Shi
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
24
|
García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-y-Miño C. Post-transcriptional Regulation of Colorectal Cancer: A Focus on RNA-Binding Proteins. Front Mol Biosci 2019; 6:65. [PMID: 31440515 PMCID: PMC6693420 DOI: 10.3389/fmolb.2019.00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health problem with an estimated 1. 8 million new cases worldwide. To date, most CRC studies have focused on DNA-related aberrations, leaving post-transcriptional processes under-studied. However, post-transcriptional alterations have been shown to play a significant part in the maintenance of cancer features. RNA binding proteins (RBPs) are uprising as critical regulators of every cancer hallmark, yet little is known regarding the underlying mechanisms and key downstream oncogenic targets. Currently, more than a thousand RBPs have been discovered in humans and only a few have been implicated in the carcinogenic process and even much less in CRC. Identification of cancer-related RBPs is of great interest to better understand CRC biology and potentially unveil new targets for cancer therapy and prognostic biomarkers. In this work, we reviewed all RBPs which have a role in CRC, including their control by microRNAs, xenograft studies and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - César Paz-y-Miño
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
25
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|
26
|
Chen YC, Chang YW, Huang YS. Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autism-Risk Genes Involved in Translation. Dev Neurobiol 2018; 79:60-74. [PMID: 30430754 DOI: 10.1002/dneu.22653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/17/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Regulated local translation-whereby specific mRNAs are transported and localized in subcellular domains where they are translated in response to regional signals-allows for remote control of gene expression to concentrate proteins in subcellular compartments. Neurons are highly polarized cells with unique features favoring local control for axonal pathfinding and synaptic plasticity, which are key processes involved in constructing functional circuits in the developing brain. Neurodevelopmental disorders are caused by genetic or environmental factors that disturb the nervous system's development during prenatal and early childhood periods. The growing list of genetic mutations that affect mRNA translation raises the question of whether aberrant translatomes in individuals with neurodevelopmental disorders share common molecular features underlying their stereotypical phenotypes and, vice versa, cause a certain degree of phenotypic heterogeneity. Here, we briefly give an overview of the role of local translation during neuronal development. We take the autism-risk gene list and discuss the molecules that (perhaps) are involved in mRNA transport and translation. Both exaggerated and suppressed translation caused by mutations in those genes have been identified or suggested. Finally, we discuss some proof-of-principle regimens for use in autism mouse models to correct dysregulated translation.
Collapse
Affiliation(s)
- Yan-Chu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
27
|
Abstract
During the last years, it has become evident that miRNAs are important players in almost all physiological and pathological processes, including viral infections. Enterovirus infections range from mild to severe acute infections concerning several organ systems and are also associated with chronic diseases. In this review, we summarize the findings on the impact of acute and persistent enterovirus infection on the expression of cellular miRNAs. Furthermore, the currently available data on the regulation of cellular or viral targets by the dysregulated miRNAs are reviewed. Finally, a translational perspective, namely the use of miRNAs as biomarkers of enterovirus infection and as antiviral strategy is discussed.
Collapse
Affiliation(s)
- Ilka Engelmann
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Enagnon Kazali Alidjinou
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Antoine Bertin
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Famara Sane
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| | - Didier Hober
- a Laboratoire de Virologie EA3610, Faculté de Médecine, CHU Lille, University of Lille , Lille , France
| |
Collapse
|
28
|
Sun W, Qin R, Wang R, Ding D, Yu Z, Liu Y, Hong R, Cheng Z, Wang Y. Sam68 Promotes Invasion, Migration, and Proliferation of Fibroblast-like Synoviocytes by Enhancing the NF-κB/P65 Pathway in Rheumatoid Arthritis. Inflammation 2018; 41:1661-1670. [DOI: 10.1007/s10753-018-0809-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Goel RK, Paczkowska M, Reimand J, Napper S, Lukong KE. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src- related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS). Mol Cell Proteomics 2018; 17:925-947. [PMID: 29496907 DOI: 10.1074/mcp.ra118.000643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Marta Paczkowska
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada
| | - Jüri Reimand
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada.,¶Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto M5G 1L7, Ontario, Canada
| | - Scott Napper
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada.,‖Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon S7N 5E3, Saskatchewan, Canada
| | - Kiven Erique Lukong
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada;
| |
Collapse
|
30
|
The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 2018; 27:404-418.e7. [PMID: 29358041 PMCID: PMC6996513 DOI: 10.1016/j.cmet.2017.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.
Collapse
|
31
|
Xiao J, Wang Q, Yang Q, Wang H, Qiang F, He S, Cai J, Yang L, Wang Y. Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett 2018; 15:4745-4752. [PMID: 29552114 PMCID: PMC5840748 DOI: 10.3892/ol.2018.7930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/11/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer is one of the most common types of malignancy worldwide. However, the molecular mechanisms of cancer development remain unclear. Src-associated in mitosis of 68 kDa (Sam68) is involved in cell proliferation, transformation, tumorigenesis and metastasis in several types of cancer. The present study aimed to assess the expression and function of Sam68 in human gastric cancer. Western blot analysis and immunohistochemistry indicated that Sam68 expression was increased in tumor samples and the levels were associated with the grade of malignancy. High Sam68 expression was associated with the poor prognosis of patients with gastric cancer. In vitro, following knockdown of Sam68 by transfection of gastric cancer cells with small interfering RNA, the cell viability, cell cycle progress, migration and invasion were decreased. The results of the present study revealed that Sam68 may be a novel prognostic factor for, and is associated with cell growth, migration and invasion in, gastric cancer.
Collapse
Affiliation(s)
- Jinzhang Xiao
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Qiuhong Wang
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Qichang Yang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Hua Wang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Fulin Qiang
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Song He
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Jin Cai
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Lei Yang
- Department of Internal Oncology Medicine, Affiliated Nantong Cancer Hospital, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yingying Wang
- The Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
32
|
Zhang Y, Zhang Y, Zhang Y. Transcriptome-wide identification and competitive disruption of sacum-binding partners in human colorectal cancer. J Mol Graph Model 2018; 80:48-51. [PMID: 29328992 DOI: 10.1016/j.jmgm.2017.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human sacum is regulatory adaptor protein involved in cellular signaling network of colorectal cancer. Molecular evidences suggest that the protein is integrated into oncogenic signaling network by binding to SH3-containing proteins through its proline-rich motifs. In this study, we have performed a transcriptome-wide analysis and identification of sacum-binding partners in the genome profile of human colorectal cancer. The sacum-binding potency of SH3-containing proteins found in colorectal cancer was investigated by using bioinformatics modeling and intermolecular binding analysis. With the protocol we were able to predict those high-affinity domain binders of the proline-rich peptides of human sacum in a high-throughput manner, and to analyze sequence-specific interaction in the domain-peptide recognition at molecular level. Consequently, a number of putative domain binders with both high affinity and specificity were identified, from which the Src SH3 domain was selected as a case study and tested for its binding activity towards the sacum peptides. We also designed two peptide variants that may have potent capability to competitively disrupt sacum interaction with its partners.
Collapse
Affiliation(s)
- Yinguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwang Zhang
- Beijing Union Second Pharmaceutical Factory, Beijing 102600, China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
33
|
Zhang Y, Zhang Y, Zhang Y. Transcriptome-wide identification and competitive disruption of sacum-binding partners in human colorectal cancer. J Mol Graph Model 2017; 77:259-262. [PMID: 28898789 DOI: 10.1016/j.jmgm.2017.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 11/19/2022]
Abstract
Human sacum is regulatory adaptor protein involved in cellular signaling network of colorectal cancer. Molecular evidence suggests that the protein is integrated into oncogenic signaling network by binding to SH3-containing proteins through its proline-rich motifs. In this study, we have performed a transcriptome-wide analysis and identification of sacum-binding partners in the genome profile of human colorectal cancer. The sacum-binding potency of SH3-containing proteins found in colorectal cancer was investigated by using bioinformatics modeling and intermolecular binding analysis. With the protocol we were able to predict those high-affinity domain binders of the proline-rich peptides of human sacum in a high-throughput manner, and to analyze sequence-specific interaction in the domain-peptide recognition at molecular level. Consequently, a number of putative domain binders with both high affinity and specificity were identified, from which the Src SH3 domain was selected as a case study and tested for its binding activity towards the sacum peptides. We also designed two peptide variants that may have potent capability to competitively disrupt sacum interaction with its partners.
Collapse
Affiliation(s)
- Yinguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongwang Zhang
- Beijing Union Second Pharmaceutical Factory, Beijing 102600, China
| | - Yuxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
34
|
Combined Knockdown of D-dopachrome Tautomerase and Migration Inhibitory Factor Inhibits the Proliferation, Migration, and Invasion in Human Cervical Cancer. Int J Gynecol Cancer 2017; 27:634-642. [DOI: 10.1097/igc.0000000000000951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ObjectiveD-dopachrome tautomerase (D-DT) is a homologue of macrophage migration inhibitory factor (MIF) with similar functions. However, the possible biological roles of D-DT in cervical cancer remain unknown so far.MethodsD-dopachrome tautomerase was assessed by immunohistochemistry in 83 cervical cancer and 31 normal cervix tissues. The stable knockdown of D-DT and MIF by lentivirus-delivered short hairpin RNA was established, and tumor growth was examined in vitro and in vivo. The effects of D-DT and MIF on the migration and invasion were further detected by wound healing assay and transwell assay. Western blot was used to explore the mechanism of D-DT and MIF in cervical cancer pathogenesis.ResultsWe found that D-DT was significantly high in cervical cancer, which correlated with lymph node metastasis. The knockdown of D-DT and MIF, individually and additively, inhibited the proliferation, migration, and invasion in HeLa and SiHa cells and restrained the growth of xenograft tumor. The ablation of D-DT and MIF rescued the expression of E-cadherin and inhibited the expression of PCNA, cyclin D1, gankyrin, Sam68, and vimentin, as well as phospho-Akt and phospho-glycogen synthase kinase 3-β.ConclusionsThe inhibition of D-DT and MIF in combination may represent a potential therapeutic strategy for cervical cancer.
Collapse
|
35
|
Splicing and Polyadenylation of Human Papillomavirus Type 16 mRNAs. Int J Mol Sci 2017; 18:ijms18020366. [PMID: 28208770 PMCID: PMC5343901 DOI: 10.3390/ijms18020366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 12/24/2022] Open
Abstract
The human papillomavirus type 16 (HPV16) life cycle can be divided into an early stage in which the HPV16 genomic DNA is replicated, and a late stage in which the HPV16 structural proteins are synthesized and virions are produced. A strong coupling between the viral life cycle and the differentiation state of the infected cell is highly characteristic of all HPVs. The switch from the HPV16 early gene expression program to the late requires a promoter switch, a polyadenylation signal switch and a shift in alternative splicing. A number of cis-acting RNA elements on the HPV16 mRNAs and cellular and viral factors interacting with these elements are involved in the control of HPV16 gene expression. This review summarizes our knowledge of HPV16 cis-acting RNA elements and cellular and viral trans-acting factors that regulate HPV16 gene expression at the level of splicing and polyadenylation.
Collapse
|
36
|
Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells. PLoS One 2016; 11:e0158218. [PMID: 27415018 PMCID: PMC4944952 DOI: 10.1371/journal.pone.0158218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.
Collapse
|
37
|
Wang Q, Li Y, Cheng J, Chen L, Xu H, Li Q, Pang T. Sam68 affects cell proliferation and apoptosis of human adult T-acute lymphoblastic leukemia cells via AKT/mTOR signal pathway. Leuk Res 2016; 46:1-9. [DOI: 10.1016/j.leukres.2016.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
|
38
|
Qian J, Zhao W, Miao X, Li L, Zhang D. Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-κB activation in ulcerative colitis. Mol Immunol 2016; 75:48-59. [PMID: 27235792 DOI: 10.1016/j.molimm.2016.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Sam68 (Src-associated substrate during mitosis of 68 KDa), also known as KHDRBS1 (KH domain containing, RNA binding, signal transduction associated 1), belongs to the prototypic member of the signal transduction activator of RNA (STAR) family of RNA-binding proteins. Sam68 is implicated in various cellular processes including RNA metabolism, apoptosis, signal transduction. Previous researches demonstrated that Sam68 regulated nuclear transcription factor kappa B (NF-κB) to induce inflammation. However, the expression and biological functions of Sam68 in ulcerative colitis (UC) are not clear. In this study, we reported for the first time that Sam68 was up-regulated in intestinal epithelial cells (IECs) of patients with UC. In DSS-induced mouse colitis model, we observed the overexpression of Sam68 accompanied with increased levels of IEC apoptotic markers (active caspase-3 and cleaved PARP) and NF-κB activation indicators (p-p65 and p-IκB) in colitis IECs. Co-localization of Sam68 with active caspase-3 (and p-p65) in IECs of the DSS-induced colitis group further indicated the possible involvement of NF-κB-mediated IEC apoptosis. Applying TNF-α-treated HT-29 cells as an in vitro IEC inflammation model, we confirmed the positive correlation amomg Sam68, NF-κB activation and caspase-dependent apoptosis. Immunofluorescence and immunoprecipitation assay identified nuclear translocation and physical interaction of Sam68 and NF-κB subunits in TNF-α-treated HT-29 cells. Besides, depletion of Sam68 by RNA interference greatly alleviated NF-κB activation and apoptosis in TNF-α-treated HT-29 cells. Taken together, our results indicated that Sam68 modulates apoptosis of intestinal epithelial cells via mediating NF-κB activation in UC.
Collapse
Affiliation(s)
- Ji Qian
- Department of Digestion Medicine, Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, Yixing 214200, Jiangsu, People's Republic of China
| | - Weijuan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xianjing Miao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Liren Li
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, People's Republic of China.
| | - Dongmei Zhang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Wu W, Liu Y, Wang Y. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush. Biochem Biophys Res Commun 2016; 473:1045-1051. [DOI: 10.1016/j.bbrc.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
|
40
|
Licatalosi DD. Roles of RNA-binding Proteins and Post-transcriptional Regulation in Driving Male Germ Cell Development in the Mouse. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:123-51. [PMID: 27256385 DOI: 10.1007/978-3-319-29073-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue development and homeostasis are dependent on highly regulated gene expression programs in which cell-specific combinations of regulatory factors determine which genes are expressed and the post-transcriptional fate of the resulting RNA transcripts. Post-transcriptional regulation of gene expression by RNA-binding proteins has critical roles in tissue development-allowing individual genes to generate multiple RNA and protein products, and the timing, location, and abundance of protein synthesis to be finely controlled. Extensive post-transcriptional regulation occurs during mammalian gametogenesis, including high levels of alternative mRNA expression, stage-specific expression of mRNA variants, broad translational repression, and stage-specific activation of mRNA translation. In this chapter, an overview of the roles of RNA-binding proteins and the importance of post-transcriptional regulation in male germ cell development in the mouse is presented.
Collapse
Affiliation(s)
- Donny D Licatalosi
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
41
|
EMT-Inducing Molecular Factors in Gynecological Cancers. BIOMED RESEARCH INTERNATIONAL 2015; 2015:420891. [PMID: 26356073 PMCID: PMC4556818 DOI: 10.1155/2015/420891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/14/2015] [Indexed: 12/27/2022]
Abstract
Gynecologic cancers are the unregulated growth of neoplastic cells that arise in the cervix, ovaries, fallopian tubes, uterus, vagina, and vulva. Although gynecologic cancers are characterized by different signs and symptoms, studies have shown that they share common risk factors, such as smoking, obesity, age, exposure to certain chemicals, infection with human immunodeficiency virus (HIV), and infection with human papilloma virus (HPV). Despite recent advancements in the preventative, diagnostic, and therapeutic interventions for gynecologic cancers, many patients still die as a result of metastasis and recurrence. Since mounting evidence indicates that the epithelial-mesenchymal transition (EMT) process plays an essential role in metastatic relapse of cancer, understanding the molecular aberrations responsible for the EMT and its underlying signaling should be given high priority in order to reduce cancer morbidity and mortality.
Collapse
|
42
|
Zhao D, Tian Y, Li P, Wang L, Xiao A, Zhang M, Shi T. MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol Med Rep 2015; 12:5554-60. [PMID: 26136151 DOI: 10.3892/mmr.2015.4013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid extracranial tumor in children. However, the molecular mechanism of NB remains to be elucidated. In the present study, reverse transcription quantitative polymerase chain reaction data demonstrated that the expression of Sam68 was significantly upregulated in NB tissues compared with their matched adjacent normal tissues. Furthermore, it was revealed that reduced expression of miR‑203 and increased expression of Sam68 co‑existed in NB tissues. Knockdown of Sam68 reduced the proliferation, migration and invasion of human SK‑N‑SH and SH‑SY5Y NB cells. Similarly, overexpression of miR‑203 also inhibited the proliferation, migration and invasion of these two cell lines. It was further demonstrated that the protein expression level of Sam68 was negatively mediated by miR‑203 in the SK‑N‑SH and SH‑SY5Y NB cells. Additionally, data from a dual luciferase reporter assay confirmed that miR‑203 directly targeted Sam68 by binding to its 3'‑untranslated region. In conclusion, the present study suggested for the first time, to the best of our knowledge, that the aberrant downregulation of miR‑203 may contribute to the aberrant upregulation of Sam68 in NB and that miR‑203 has an inhibitory role in malignant progression of NB by targeting Sam68. The present study provided evidence to support miR-203/Sam68 as a novel diagnostic or therapeutic targets for NB.
Collapse
Affiliation(s)
- Dongju Zhao
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yunjiao Tian
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Peiling Li
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Limin Wang
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Aiju Xiao
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Mingqiu Zhang
- Department of Interventional Radiography, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Taixin Shi
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
43
|
Wang Q, Li Y, Zhou J, Liu J, Qin J, Xing F, Zhang J, Cheng J. Clinical significance of Sam68 expression in endometrial carcinoma. Tumour Biol 2015; 36:4509-18. [PMID: 25874492 DOI: 10.1007/s13277-015-3095-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Sam68 (Src-associated in mitosis of 68 kDa) is a substrate for tyrosine kinase c-Src during mitosis. The nuclear protein level has been found to be associated with progression and prognosis in various human malignant tumors. The aim of this study is to investigate the clinical value of Sam68 in endometrial carcinoma (EC). Sam68 expression was confirmed by real-time PCR, Western blot, and immunofluorescent assay in primary normal endometrial epithelial cells, endometrial carcinoma cell lines, as well as seven pairs of EC and matched adjacent noncancerous endometrial tissues. Moreover, the protein level of Sam68 was evaluated by immunohistochemistry in a cohort of surgical specimens derived from 131 patients including primary endometrial carcinoma (n = 95), endometrial atypical hyperplasia (precancerous lesions, n = 26), and normal endometria (n = 10). In endometrial cancer cell lines, RNA interfering approach was employed to downregulate Sam68 expression to determine its role in proliferation. Clinicopathological relevance and prognostic associations were examined by statistical analyses. Compared with normal endometrial and endometrial atypical hyperplasia tissues, Sam68 significantly elevated in endometrial cancer samples (P < 0.01), which was negative or low in 37 cases (38.9 %) and high in 58 cases (61.1 %). The high expression of Sam68 was associated with histological grade (P < 0.001), FIGO stage (P = 0.039), and myometrial invasion (P = 0.002). Kaplan-Meier analysis demonstrated that overexpression of Sam68 correlated with shorter overall survival. It is confirmed by univariate and multivariate analysis (P < 0.001 and P = 0.048, respectively). Additionally, we found that Sam68 was highly expressed at both the transcriptional and translational levels in endometrial cancer cell lines (Ishikawa, HEC-1B, AN3CA, KLE, and RL95-2) and siRNA knockdown of Sam68 remarkably inhibited cellular proliferation in in vitro models. Sam68 may be useful prognostic marker for EC, and it plays an important role in promoting the cellular proliferation. Further investigation of Sam68 as a potential therapeutic target for EC patients could be of interest.
Collapse
Affiliation(s)
- Qingying Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
STAR (signal transduction and activation of RNA) proteins are a family of RNA-binding proteins that regulate post-transcriptional gene regulation events at various levels, such as pre-mRNA alternative splicing, RNA export, translation and stability. Most of these proteins are regulated by signalling pathways through post-translational modifications, such as phosphorylation and arginine methylation. These proteins share a highly conserved RNA-binding domain, denoted STAR domain. Structural investigations of this STAR domain in complex with RNA have highlighted how a subset of STAR proteins specifically recognizes its RNA targets. The present review focuses on the structural basis of RNA recognition by this family of proteins.
Collapse
|
45
|
Chapat C, Corbo L. Novel roles of the CCR4-NOT complex. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:883-901. [PMID: 25044499 DOI: 10.1002/wrna.1254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
Abstract
The CCR4-NOT complex is a multi-subunit protein complex evolutionarily conserved across eukaryotes which regulates several aspects of gene expression. A fascinating model is emerging in which this complex acts as a regulation platform, controlling gene products 'from birth to death' through the coordination of different cellular machineries involved in diverse cellular functions. Recently the CCR4-NOT functions have been extended to the control of the innate immune response through the regulation of interferon signaling. Thus, a more comprehensive picture of how CCR4-NOT allows the rapid adaptation of cells to external stress, from transcription to mRNA and protein decay, is presented and discussed here. Overall, CCR4-NOT permits the efficient and rapid adaptation of cellular gene expression in response to changes in environmental conditions and stimuli.
Collapse
Affiliation(s)
- Clément Chapat
- Université Lyon 1, Lyon, France; CNRS UMR 5286, Lyon, France; Inserm U1052, Lyon, France; Cancer Research Center of Lyon, Centre Léon Bérard, Lyon, France
| | | |
Collapse
|
46
|
Daubner GM, Brümmer A, Tocchini C, Gerhardy S, Ciosk R, Zavolan M, Allain FHT. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. Nucleic Acids Res 2014; 42:8092-105. [PMID: 24838563 PMCID: PMC4081071 DOI: 10.1093/nar/gku445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 01/13/2023] Open
Abstract
The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5'end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5'end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins.
Collapse
Affiliation(s)
- Gerrit M Daubner
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Anneke Brümmer
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Cristina Tocchini
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Stefan Gerhardy
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Rafal Ciosk
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| |
Collapse
|