1
|
Alves KC, da Costa CEF, Remédios CMR, Calcagno DQ, Lima MDO, Silva JRA, Alves CN. LDH-Indomethacin Nanoparticles Antitumoral Action: A Possible Coadjuvant Drug for Cancer Therapy. Molecules 2024; 29:3353. [PMID: 39064929 PMCID: PMC11279815 DOI: 10.3390/molecules29143353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Indomethacin (INDO) has a mechanism of action based on inhibiting fatty acids cyclooxygenase activity within the inflammation process. The action mechanism could be correlated with possible anticancer activity, but its high toxicity in normal tissues has made therapy difficult. By the coprecipitation method, the drug carried in a layered double hydroxides (LDH) hybrid matrix would reduce its undesired effects by promoting chemotherapeutic redirection. Therefore, different samples containing INDO intercalated in LDH were synthesized at temperatures of 50, 70, and 90 °C and synthesis times of 8, 16, 24, and 48 h, seeking the best structural organization. X-ray diffraction (XRD), vibrational Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), spectrophotometric analysis in UV-VIS, and differential thermogravimetric analysis (TGA/DTA) were used for characterization. Our results indicate that higher temperatures and longer synthesis time through coprecipitation reduce the possibility of INDO intercalation. However, it was possible to establish a time of 16 h and a temperature of 50 °C as the best conditions for intercalation. In vitro results confirmed the cell viability potential and anticancer activity in the LDH-INDO sample (16 h and 50 °C) for gastric cancer (AGP01, ACP02, and ACP03), breast cancer (MDA-MB-231 and MCF-7), melanoma (SK-MEL-19), lung fibroblast (MRC-5), and non-neoplastic gastric tissue (MN01) by MTT assay. Cell proliferation was inhibited, demonstrating higher and lower toxicity against MDA-MB-231 and SK-MEL-19. Thus, a clinical redirection of INDO is suggested as an integral and adjunctive anticancer medication in chemotherapy treatment.
Collapse
Affiliation(s)
- Kelly Costa Alves
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | | | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Marcelo de Oliveira Lima
- Programa de Pós-Graduação em Ciências e Meio Ambiente, Universidade Federal do Pará, Belém 66075-110, Brazil;
| | - José Rogério A. Silva
- Computer Modeling of Molecular Biosystems (CompMBio), Universidade Federal do Pará, Belém 66075-110, Brazil
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Cláudio Nahum Alves
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 60740-000, Brazil
- Programa de Pós-Graduação em Ciências e Meio Ambiente, Universidade Federal do Pará, Belém 66075-110, Brazil;
| |
Collapse
|
2
|
Li G, Guo Y, Ni C, Wang Z, Zhan M, Sun H, Choi G, Choy JH, Shi X, Shen M. A functionalized cell membrane biomimetic nanoformulation based on layered double hydroxide for combined tumor chemotherapy and sonodynamic therapy. J Mater Chem B 2024. [PMID: 38967310 DOI: 10.1039/d4tb00813h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development of nanoformulations with simple compositions that can exert targeted combination therapy still remains a great challenge in the area of precision cancer nanomedicine. Herein, we report the design of a multifunctional nanoplatform based on methotrexate (MTX)-loaded layered double hydroxide (LDH) coated with chlorin e6 (Ce6)-modified MCF-7 cell membranes (CMM) for combined chemo/sonodynamic therapy of breast cancer. LDH nanoparticles were in situ loaded with MTX via coprecipitation, and coated with CMM that were finally functionalized with phospholipid-modified Ce6. The created nanoformulation of LDH-MTX@CMM-Ce6 displays good colloidal stability under physiological conditions and can release MTX in a pH-dependent manner. We show that the formulation can homologously target breast cancer cells, and induce their significant apoptosis through arresting the cell cycle via cooperative MTX-based chemotherapy and ultrasound (US)-activated sonodynamic therapy. The assistance of US can not only trigger sonosensitizer Ce6 to produce reactive oxygen species, but also enhance the cellular uptake of LDH-MTX@CMM-Ce6 via an acoustic cavitation effect. Upon intravenous injection and US irradiation, LDH-MTX@CMM-Ce6 displays an admirable antitumor performance towards a xenografted breast tumor mouse model. Furthermore, the modification of Ce6 on the CMM endows the LDH-based nanoplatform with fluorescence imaging capability. The developed LDH-based nanoformulation here provides a general intelligent cancer nanomedicine platform with simple composition and homologous targeting specificity for combined chemo/sonodynamic therapy and fluorescence imaging of tumors.
Collapse
Affiliation(s)
- Gaoming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Cheng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
4
|
Mahgoub SM, Essam D, Eldin ZE, Moaty SAA, Shehata MR, Farghali A, Abdalla SEB, Othman SI, Allam AA, El-Ela FIA, Mahmoud R. Carbon supported ternary layered double hydroxide nanocomposite for Fluoxetine removal and subsequent utilization of spent adsorbent as antidepressant. Sci Rep 2024; 14:3990. [PMID: 38368467 PMCID: PMC10874413 DOI: 10.1038/s41598-024-53781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 02/19/2024] Open
Abstract
Fluoxetine (FLX) is one of the most persistent pharmaceuticals found in wastewater due to increased use of antidepressant drugs in recent decades. In this study, a nanocomposite of ternary ZnCoAl layered double hydroxide supported on activated carbon (LAC) was used as an adsorbent for FLX in wastewater effluents. The nanocomposite was characterized using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis (BET). The adsorption investigations showed that the maximum removal capacity was achieved at pH 10, with a 0.1 g/L adsorbent dose, 50 mL volume of solution, and at a temperature of 25 °C. The FLX adsorption process followed the Langmuir-Freundlich model with a maximum adsorption capacity of 450.92 mg/g at FLX concentration of 50 µg/mL. Density functional theory (DFT) computations were used to study the adsorption mechanism of FLX and its protonated species. The safety and toxicity of the nanocomposite formed from the adsorption of FLX onto LAC (FLX-LAC) was investigated in male albino rats. Acute toxicity was evaluated using probit analysis after 2, 6, and 24 h to determine LD50 and LD100 values in a rat model. The FLX-LAC (20 mg/kg) significantly increased and lengthened the sleep time of the rats, which is important, especially with commonly used antidepressants, compared to the pure standard FLX (7 mg/kg), regular thiopental sodium medicine (30 mg/kg), and LAC alone (9 mg/kg). This study demonstrated the safety and longer sleeping duration in insomniac patients after single-dose therapy with FLX-LAC. Selective serotonin reuptake inhibitors (SSRIs) like FLX were found to have decreased side effects and were considered the first-line mood disorder therapies.
Collapse
Affiliation(s)
- Samar M Mahgoub
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - S A Abdel Moaty
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed R Shehata
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Saif Elden B Abdalla
- Department of Medical Laboratory Science. College of Applied Medical Science, Jazan University, Jazan, Saudi Arabia
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. BOX 84428, 11671, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, 11623, Riyadh, Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
5
|
de Carvalho IM, de Souza ABF, Castro TDF, Machado-Júnior PA, Menezes TP, Dias ADS, Oliveira LAM, Nogueira KDOPC, Talvani A, Cangussú SD, Arízaga GGC, Bezerra FS. Effects of a lycopene-layered double hydroxide composite administration in cells and lungs of adult mice: Effects of a lycopene-layered double hydroxide in cells and mice. Int Immunopharmacol 2023; 121:110454. [PMID: 37301124 DOI: 10.1016/j.intimp.2023.110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Lycopene is a natural compound with one of the highest antioxidant activities. Its consumption is associated with lower risks in lung cancer and chronic obstructive pulmonary disease, for example. Experimentally, a murine model demonstrated the ingestion of lycopene, which reduced the damage in lungs caused by cigarette smoke. Since lycopene is highly hydrophobic, its formulations in supplements and preparations for laboratory assays are based on oils, additionally, bioavailavility is low. We developed a lycopene layered double hydroxide (Lyc-LDH) composite, which is capable of transporting lycopene aqueous media. Our objective was to evaluate the cytotoxicity of Lyc-LDH and the intra-cellular production of reactive oxygen species (ROS) in J774A.1 cells. Also, in vivo assays were conducted with 50 male C57BL/6 mice intranasally treated with Lyc-LDH 10 mg/kg (LG10), Lyc-LDH 25 mg/kg (LG25) and Lyc-LDH 50 mg/kg (LG50) during five days compared against a vehicle (VG) and control (CG) group. The blood, bronchoalveolar lavage fluid (BALF) and lung tissue were analyzed. The results revealed that Lyc-LDH composite attenuated intracellular ROS production stimulated with lipopolysacharide. In BALF, the highest doses of Lyc-LDH (LG25 and LG50) promoted influx of macrophages, lymphocytes, neutrophils and eosinophils compared to CG and VG. Also, LG50 increased the levels of IL-6 and IL-13, and promoted the redox imbalance in the pulmonary tissue. On the contrary, low concentrations did not produce significative effects. In conclusion, our results suggest that intranasal administration of high concentrations of Lyc-LDH induces inflammation as well as redox status changes in the lungs of healthy mice, however, results with low concentrations open a promising way to study LDH composites as vehicles for intranasal administration of antioxidant coadjuvants.
Collapse
Affiliation(s)
- Iriane Marques de Carvalho
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Thalles de Feitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Andreia da Silva Dias
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Laser Antônio Machado Oliveira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials (LNBio), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil
| | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023; 23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery. METHODS Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence. RESULTS Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity. CONCLUSION The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.
Collapse
Affiliation(s)
- Yashoda Mariappa Hegde
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Geetha Srinivas
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Monashilpa Palanivel
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Nivetha Shanmugam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Senthil Rajan Dharmalingam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| |
Collapse
|
7
|
Yousefipour K, Rahimi HR, Shakibaei M, Ranjbar M, Ameri A, Adeli-Sardou M. Preparation, Characterization, and Evaluation of Cellular Toxicity of Mg/Ca-Layered Double Hydroxide on Human Lung Carcinoma (A549) Cell Lines. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00959-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
9
|
Mahgoub SM, Shehata MR, Zaher A, Abo El-Ela FI, Farghali A, Amin RM, Mahmoud R. Cellulose-based activated carbon/layered double hydroxide for efficient removal of Clarithromycin residues and efficient role in the treatment of stomach ulcers and acidity problems. Int J Biol Macromol 2022; 215:705-728. [DOI: 10.1016/j.ijbiomac.2022.06.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/05/2022]
|
10
|
Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 2022; 187:114360. [PMID: 35636568 DOI: 10.1016/j.addr.2022.114360] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/28/2022]
Abstract
The development of two-dimensional (2D) nanomaterials for cancer therapy has attracted increasing attention due to their high specific surface area, unique ultrathin structure, electronic and photonic properties. For biomedical applications, investigations into the family of 2D materials have been sparked by graphene and its derivatives. Many 2D nanomaterials, including layered double hydroxides, transition metal dichalcogenides, nitrides and carbonitrides, black phosphorus nanosheets, and metal-organic framework nanosheets, are extensively explored as cancer theranostic platforms. In addition to the high drug loading, 2D nanomaterials are featured with improved physiological properties of drugs, prolonged blood circulation, and increased tumor accumulation and bioavailability. As a consequence, 2D nanomaterials have been widely examined in pre-clinical tumor therapy, particularly through the tumor microenvironment (TME) modulation. This review summarizes recent progresses in developing 2D nanomaterials for TME modulating-based cancer diagnosis and therapy. It is anticipated that this review will benefit researchers to obtain a deeper understanding of interactions between 2D nanomaterials and TME components and develop rational and reliable 2D nanomedicines for pre/clinical cancer theranostics.
Collapse
|
11
|
Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020935] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable polymers have been used as carriers in drug delivery systems for more than four decades. Early work used crude natural materials for particle fabrication, whereas more recent work has utilized synthetic polymers. Applications include the macroscale, the microscale, and the nanoscale. Since pioneering work in the 1960’s, an array of products that use biodegradable polymers to encapsulate the desired drug payload have been approved for human use by international regulatory agencies. The commercial success of these products has led to further research in the field aimed at bringing forward new formulation types for improved delivery of various small molecule and biologic drugs. Here, we review recent advances in the development of these materials and we provide insight on their drug delivery application. We also address payload encapsulation and drug release mechanisms from biodegradable formulations and their application in approved therapeutic products.
Collapse
|
12
|
Tejani TH, Milosevic A, Patel M, Gillam D. The effect of layered double hydroxide on fluoride release and recharge from a commercial and an experimental resin varnish. Dent Mater 2021; 38:e1-e9. [PMID: 34763905 DOI: 10.1016/j.dental.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Layered Double Hydroxide (LDH) is capable of fluoride anion exchange and release. This study investigated the effects of incorporating ZnAl-LDH in commercial and experimental dental varnishes, on fluoride release and re-release after charging in NaF. METHODS Five discs of each material (commercial ClinproXT varnish and experimental light cured resin varnish), with and without 9%ZnAl-LDH were immersed and agitated in deionised water (DW) at 37 °C. A fluoride ion selective electrode measured fluoride release in DW daily over two-weeks. At 3, 6, 9 and 12 days the discs were recharged in 15 ml 0.05 M NaF solution (37 °C) for five minutes followed by immersion in DW. Energy dispersive X-ray spectra (EDS), weight changes and SEMs were performed on discs, before and after each cycle. RESULTS Evidence of ZnAl-LDH was confirmed by the presence of peaks for zinc and aluminium in EDS spectra. Cumulative fluoride and mean fluoride released between Clinpro, Clinpro + LDH and resin were significantly different (ANOVA, Tukey's HSD post-hoc test, p < 0.001) except between the resin and resin + LDH. Mean fluoride concentrations differed significantly after every recharge between Clinpro, Clinpro + LDH and resin, but not between the resin and resin + LDH (p < 0.01). The weights and SEMs of the experimental resins +/-LDH, appeared to be stable whilst the weights of Clinpro samples +/-LDH, fluctuated and fragmented. SIGNIFICANCE ClinproXT and experimental resin containing ZnAl-LDH recharged with fluoride did not significantly increase fluoride release compared to the unmodified materials. However, all LDH-F incorporated materials demonstrated fluoride recharging properties which appear beneficial to dentistry and thus further work is required to improve these properties.
Collapse
Affiliation(s)
- Tameeza Hassanali Tejani
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), DHCC, Building 14, Dubai, United Arab Emirates.
| | - Alex Milosevic
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Mangala Patel
- Centre for Oral Bioengineering, DPSU, Institute of Dentistry, Barts and the London, University of London, London, E1 4NS, UK
| | - David Gillam
- Centre for Oral Bioengineering, DPSU, Institute of Dentistry, Barts and the London, University of London, London, E1 4NS, UK; Centre for Adult Oral Health, Institute of Dentistry, Barts and the London, Queen Mary University, New Road, London, E1 2AD, UK
| |
Collapse
|
13
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
14
|
Li X, Xu S, Wang H, Dong A. Synthesis and characterization of hybrid nanocarrier layered double hydroxide grafted by polyethylene glycol and gemcitabine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2293-2305. [PMID: 34429025 DOI: 10.1080/09205063.2021.1967701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
For the past few years, organic-inorganic hybrid nanocarriers have been widely explored for effective drug delivery and preferable disease treatments. In this article, hydrothermal method was utilized to prepare fine dispersed layered double hydroxide (Mg-Al LDH) suspension. Polyethylene glycol (PEG) was grafted on the surface of LDH lamella in order to improve the dispersibility of LDH. Besides, the anti-cancer drug gemcitabine was grafted on the surface of LDH lamellas through chemical grafting. Hence a novel new type of organic-inorganic hybrid drug delivery system LDH-mPEG-Gemcitabine was obtained. In addition, the siRNA was intercalated into the LDH interlamination by ion exchange method to realize drug and gene co-delivery. The loading capacity of LDH and LDH-mPEG-Gemcitabine was evaluated by agarose gel electrophoresis. The characterization by laser particle size analyzer, TEM, FT-IR, XRD, in vitro cell viability and in vitro drug release demonstrated that LDH-mPEG-Gemcitabine possessed fine dispersibility, uniform morphology and particle size, fine biocompatibility, ideal drug loading and releasing capacity and held great potential to be used as a desired co-delivery system for drug and gene.
Collapse
Affiliation(s)
- Xue Li
- Department of Chemistry, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuxin Xu
- Department of Bio-Medical Diagnostics, Jinan Guo Ke Medical Technology Development Co., Ltd, Jinan, Shandong, China
| | - Haojiang Wang
- Department of Chemistry, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Anjie Dong
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
15
|
Shao B, Zhang X, Guo A, Jiang L, Cui F, Yang X. Eu 3+-doped layered gadolinium hydroxides as drug carriers and their bactericidal behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112213. [PMID: 34225865 DOI: 10.1016/j.msec.2021.112213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Layered rare earth hydroxides (LRHs) due to outstanding photoluminescence (PL) properties and anion exchangeability are extensively reported in multiple fields. In this work, the drug-loaded and bactericidal behaviors of Eu3+-doped layered gadolinium hydroxides (LGdHs:Eu) as optical carriers were explored through intercalation and release of cephalexin (CE). In the intercalation state, the PL intensity of CE--LGdHs:Eu obviously decreased because of the quenching effect of CE-. And the PL intensity of LGdHs:Eu was restored with the release of CE- ions in phosphate buffer solutions (PBS). A significant functional relationship between the drug releasing amount and PL intensity ratio was found, providing a novel optical method to specify the drug dosage. And CE--LGdHs:Eu showed the excellent bactericidal properties in both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Baiyi Shao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian District, Beijing 100875, China; Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian District, Beijing 100094, China
| | - Xiaobao Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Aoping Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Lu Jiang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Fangming Cui
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, 104-Youyi Road, Haidian District, Beijing 100094, China.
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, 19-Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| |
Collapse
|
16
|
Pardakhty A, Ranjbar M, Yahyapour M. Eco-friendly synthesis of the Li/Al in nonionic surfactant-based vesicles (niosomes) modified with graphene oxide quantum dot nanostructures for controlled released of chlorpheniramine maleate. LUMINESCENCE 2021; 36:1638-1647. [PMID: 34142436 DOI: 10.1002/bio.4105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 06/13/2021] [Indexed: 11/07/2022]
Abstract
The aim of the present work was the preparation of Li/Al nanoparticles (NPs) functionalized with graphene oxide quantum dots (GOQDs) for the controlled release of chlorpheniramine maleate (CPAM). The role of lemon and egg white extracts as oxidation agents were investigated for the morphology and particle size of the products. GOQDs were synthesized using green, environmentally friendly, and cost-effective precursors. This work demonstrates that Li/Al NPs functionalized with graphene oxide as a nanolayer structure can be used as efficient nanocarriers for loading and delivery of CPAM as water-insoluble aromatic drugs The final products were identified with X-ray diffraction, scanning electron microscopy, atomic force microscopy, ultraviolet-visible spectroscopy, dynamic light scattering, thermogravimetric analysis, and transmission electron microscopy nitrogen adsorption [i.e. Brunauer-Emmett-Teller (BET) surface area analysis] techniques. The calibration curve for Li/Al nanoparticles functionalized with GOQDs for controlled released of CPAM was calculated as y = 0.0137x + 0.0103 with R2 = 0.9995. The data found through BET and Barrett-Joyner-Halenda analysis using the adsorption/desorption isotherm method demonstrated by total pore volumes and dead volume were calculated respectively as 0.162 nm2 , 0.0439 cm3 g-1 . The mean pore diameter was calculated as 20.33 nm using BET isotherm data.
Collapse
Affiliation(s)
- Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moghadeseh Yahyapour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release 2020; 330:398-426. [PMID: 33383094 DOI: 10.1016/j.jconrel.2020.12.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased. The co-precipitation, ion exchange, manual grinding, and sol-gel methods are the most employed for their synthesis. The unique properties like the ease of synthesis, low cost, high biocompatibility, and low toxicity render them suitable for biomedical applications. This review presents the advances in the structure, properties, method of preparation, types, functionalization, and drug delivery applications of LDH. Also, this review provides various new conceptual insights that can form the basis for new research questions related to the drug delivery applications of LDH.
Collapse
Affiliation(s)
- V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
18
|
Lin CW, Lin SX, Kankala RK, Busa P, Deng JP, Lue SI, Liu CL, Weng CF, Lee CH. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia. Int J Pharm 2020; 590:119921. [PMID: 33027632 DOI: 10.1016/j.ijpharm.2020.119921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
The surface modification of two-dimensional (2D) nanocontainers with versatile chemical functionalities offers enormous advantages in medicine owing to their altered physicochemical properties. In this study, we demonstrate the fabrication of surface-functionalized layered double hydroxides (LDHs) towards their use as effective intestinal bile acid sequestrants. To demonstrate these aspects, the LDHs are initially modified with an amino silane, N1-(3-trimethoxysilylpropyl) diethylenetriamine (LDHs-N3),which, on the one hand, subsequently used for the fabrication of the dendrimer by repetitive immobilization of ethylene diamine using methyl acrylate as a spacer. On the other hand, these surface-functionalized LDHs are wrapped with an anionic enteric co-polymer to not only prevent the degradation but also increase the stability of these 2D nanoplates in an acidic environment of the stomach to explore the in vivo efficacy. In vitro cholic acid adsorption results showed that these surface-functionalized LDHs displayed tremendous adsorption ability of bile salt. Consequently, the bile salt adsorption results in vivo in mice confirmed that the enteric polymer-coated diethylenetriamine silane-modified LDHs, resulting in the reduced cholesterol by 8.2% in the high fat diet-fed mice compared to that of the oil treatment group with augmented 28% of cholesterol, which gained weight by 6.7% in 4 weeks. Notably, the relative organ (liver and kidney) weight analysis and the tissue section of histology results indicated that the modified LDHs showed high biocompatibility in vivo. Together, our findings validate that these surface-functionalized 2D nanoplates have great potential as effective intestinal bile acid sequestrants.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Shi-Xiang Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Prabhakar Busa
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Sheng-I Lue
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Lun Liu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
19
|
Superlattice Structure from Re-stacked NiFe Layer Double Hydroxides for Oxygen Evolution Reaction. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Yapryntsev AD, Baranchikov AE, Ivanov VK. Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Deep eutectic solvent-assisted facile synthesis of copper hydroxide nitrate nanosheets as recyclable enzyme-mimicking colorimetric sensor of biothiols. Anal Bioanal Chem 2020; 412:4629-4638. [DOI: 10.1007/s00216-020-02712-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
|
22
|
Belskaya OB, Likholobov VA. Development of Approaches to the Formation of Platinum Sites with Desired Properties Using Layer-Structured Supports. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
24
|
Smalenskaite A, Kaba MM, Grigoraviciute-Puroniene I, Mikoliunaite L, Zarkov A, Ramanauskas R, Morkan IA, Kareiva A. Sol-Gel Synthesis and Characterization of Coatings of Mg-Al Layered Double Hydroxides. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3738. [PMID: 31766177 PMCID: PMC6888420 DOI: 10.3390/ma12223738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this study, new synthetic approaches for the preparation of thin films of Mg-Al layered double hydroxides (LDHs) have been developed. The LDHs were fabricated by reconstruction of mixed-metal oxides (MMOs) in deionized water. The MMOs were obtained by calcination of the precursor gels. Thin films of sol-gel-derived Mg-Al LDHs were deposited on silicon and stainless-steel substrates using the dip-coating technique by a single dipping process, and the deposited film was dried before the new layer was added. Each layer in the preparation of the Mg-Al LDH multilayers was separately annealed at 70 °C or 300 °C in air. Fabricated Mg-Al LDH coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was discovered that the diffraction lines of Mg3Al LDH thin films are sharper and more intensive in the sample obtained on the silicon substrate, confirming a higher crystallinity of synthesized Mg3Al LDH. However, in both cases the single-phase crystalline Mg-Al LDHs have formed. To enhance the sol-gel processing, the viscosity of the precursor gel was increased by adding polyvinyl alcohol (PVA) solution. The LDH coatings could be used to protect different substrates from corrosion, as catalyst supports, and as drug-delivery systems in medicine.
Collapse
Affiliation(s)
- A. Smalenskaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - M. M. Kaba
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - I. Grigoraviciute-Puroniene
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - L. Mikoliunaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - A. Zarkov
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - R. Ramanauskas
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - I. A. Morkan
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - A. Kareiva
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| |
Collapse
|
25
|
Acharya R, Alsharabasy AM, Saha S, Rahaman SH, Bhattacharjee A, Halder S, Chakraborty M, Chakraborty J. Intercalation of shRNA-plasmid in Mg–Al layered double hydroxide nanoparticles and its cellular internalization for possible treatment of neurodegenerative diseases. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
The Impact of Magnesium-Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent. Int J Mol Sci 2019; 20:ijms20153764. [PMID: 31374834 PMCID: PMC6695672 DOI: 10.3390/ijms20153764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/02/2022] Open
Abstract
One of the current developments in drug research is the controlled release formulation of drugs, which can be released in a controlled manner at a specific target in the body. Due to the diverse physical and chemical properties of various drugs, a smart drug delivery system is highly sought after. The present study aimed to develop a novel drug delivery system using magnetite nanoparticles as the core and coated with polyvinyl alcohol (PVA), a drug 5-fluorouracil (5FU) and Mg–Al-layered double hydroxide (MLDH) for the formation of FPVA-FU-MLDH nanoparticles. The existence of the coated nanoparticles was supported by various physico-chemical analyses. In addition, the drug content, kinetics, and mechanism of drug release also were studied. 5-fluorouracil (5FU) was found to be released in a controlled manner from the nanoparticles at pH = 4.8 (representing the cancerous cellular environment) and pH = 7.4 (representing the blood environment), governed by pseudo-second-order kinetics. The cytotoxicity study revealed that the anticancer delivery system of FPVA-FU-MLDH nanoparticles showed much better anticancer activity than the free drug, 5FU, against liver cancer and HepG2 cells, and at the same time, it was found to be less toxic to the normal fibroblast 3T3 cells.
Collapse
|
27
|
El-Ela FIA, Farghali AA, Mahmoud RK, Mohamed NA, Moaty SAA. New Approach in Ulcer Prevention and Wound Healing Treatment using Doxycycline and Amoxicillin/LDH Nanocomposites. Sci Rep 2019; 9:6418. [PMID: 31015527 PMCID: PMC6478882 DOI: 10.1038/s41598-019-42842-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
Doxycycline (DOX) and amoxicillin (AMOX) are important Broad-spectrum antibiotics used in treating multiple human and animal diseases. For the sake of exploring novel medical applications, both antibiotics were loaded into magnesium aluminium layer double hydroxide (Mg-Al)/LDH nanocomposite through the co-precipitation method. The synthesized materials were characterized by XRD, FT-IR, particle size analysis, FESEM and HRTEM. Acute toxicological studies were conducted using median lethal dose LD50, where a total number of 98 rats (200-150 gm) of both sexes were used. An experimental wound was aseptically incised on the anterior-dorsal side of each rat, while 98% of pure medical ethanol was used for ulcer induction. Acute toxicity, wound closure rate, healing percentages, ulcer index, protective rate and histopathological studies were investigated. Antibiotic Nanocomposites has significantly prevented ulcer formation and improved wound healing process to take shorter time than that of the typical processes, when compared with that of same drugs in microscale systems or commercial standard drugs. These results were confirmed by the histopathological findings. By converting it into the Nanoform, which is extremely important, especially with commonly used antibiotics, novel pharmacological properties were acquired from the antibiotics. The safe uses of DOX/LDH and AMOX/LDH Nanocomposites in this study were approved for biomedical applications.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Lecturer of Pharmacology, Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab K Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Nada A Mohamed
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - S A Abdel Moaty
- Materials Science Lab, Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
28
|
Silva TAD, Silva TAD, Nascimento TGD, Yatsuzuka RE, Grillo LAM, Dornelas CB. Recent advances in layered double hydroxides applied to photoprotection. EINSTEIN-SAO PAULO 2019; 17:eRW4456. [PMID: 30785475 PMCID: PMC6377044 DOI: 10.31744/einstein_journal/2019rw4456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/01/2018] [Indexed: 01/25/2023] Open
Abstract
Layered double hydroxides have received more attention from researchers due to their range of applications, ease of synthesis and low cost of production. With broader knowledge about solar radiation effects on the body, the use of sunscreens has become even more important. The ability of some nanostructures, such as layered double hydroxides, to act as matrices has made it possible to obtain improvements in photoprotective formulations, with solutions to problems caused by radiation and sunscreens. This review article brings together the most recent advances of these clays, the layered double hydroxides, applied to photoprotection.
Collapse
|
29
|
Khorsandi K, Hosseinzadeh R, Shahidi FK. Photodynamic treatment with anionic nanoclays containing curcumin on human triple‐negative breast cancer cells: Cellular and biochemical studies. J Cell Biochem 2018; 120:4998-5009. [DOI: 10.1002/jcb.27775] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center,YARA Institute, ACECR Tehran Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute ACECR Tehran Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center,YARA Institute, ACECR Tehran Iran
| |
Collapse
|
30
|
Okoronkwo MU, Balonis M, Juenger M, Bauchy M, Neithalath N, Sant G. Stability of Calcium–Alumino Layered-Double-Hydroxide Nanocomposites in Aqueous Electrolytes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Monday U. Okoronkwo
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | | | - Maria Juenger
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas 78712, United States
| | | | - Narayanan Neithalath
- School of Sustainable Engineering and the Built-Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Gaurav Sant
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
31
|
Abstract
Aim: The chemical composition of layered double hydroxides (LDHs) affects their structure and properties. The method of ibuprofen (IBU) intercalation into LDHs may modify its release, reduce adverse effects and decrease the required dosing frequency. Methodology: This study investigates the effects of four different LDHs; MgAl-LDH, MgFe-LDH, NiAl-LDH and NiFe-LDH on in vitro release of IBU intercalated by coprecipitation and anionic-exchange. Results: MgAl-LDH was the most crystalline and substitution of either cation decreased LDH order. Fourier-transform infrared spectra and power x-ray diffractograms confirmed the intercalation of IBU within the lamellar structure of MgAl-LDH and MgFe-LDH. Intercalation of IBU by anion-exchange resulted in slower, partial, drug release compared with coprecipitation. Conclusion: The chemical composition of LDHs affects their crystallinity, IBU intercalation and subsequent release.
Collapse
|
32
|
Liu Y, Jing Z, Zhang T, Chen Q, Qiu F, Peng Y, Tang S. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C, Viseras C. Advanced Inorganic Nanosystems for Skin Drug Delivery. CHEM REC 2018; 18:891-899. [DOI: 10.1002/tcr.201700061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- E. Carazo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - A. Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - F. García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - R. Sánchez-Espejo
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - P. Cerezo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| |
Collapse
|
34
|
Hakeem A, Zhan G, Xu Q, Yong T, Yang X, Gan L. Facile synthesis of pH-responsive doxorubicin-loaded layered double hydroxide for efficient cancer therapy. J Mater Chem B 2018; 6:5768-5774. [DOI: 10.1039/c8tb01572d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method to load doxorubicin with positive charge into layered double hydroxide has been developed to improve its anticancer efficacy.
Collapse
Affiliation(s)
- Abdul Hakeem
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Guiting Zhan
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Qingbo Xu
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Tuying Yong
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Lu Gan
- National Engineering Research Center for Nanomedicine
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
35
|
Peng F, Wang D, Tian Y, Cao H, Qiao Y, Liu X. Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide: Enhanced Corrosion Resistance, Cytocompatibility and Drug Delivery Ability. Sci Rep 2017; 7:8167. [PMID: 28811545 PMCID: PMC5557750 DOI: 10.1038/s41598-017-08238-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
In recent years, magnesium (Mg) alloys show a promising application in clinic as degradable biomaterials. Nevertheless, the poor corrosion resistance of Mg alloys is the main obstacle to their clinical application. Here we successfully seal the pores of plasma electrolytic oxidation (PEO) coating on AZ31 with Mg-Al layered double hydroxide (LDH) via hydrothermal treatment. PEO/LDH composite coating possess a two layer structure, an inner layer made up of PEO coating (~5 μm) and an outer layer of Mg-Al LDH (~2 μm). Electrochemical and hydrogen evolution tests suggest preferable corrosion resistance of the PEO/LDH coating. Cytotoxicity, cell adhesion, live/dead staining and proliferation data of rat bone marrow stem cells (rBMSCs) demonstrate that PEO/LDH coating remarkably enhance the cytocompatibility of the substrate, indicating a potential application in orthopedic surgeries. In addition, hemolysis rate (HR) test shows that the HR value of PEO/LDH coating is 1.10 ± 0.47%, fulfilling the request of clinical application. More importantly, the structure of Mg-Al LDH on the top of PEO coating shows excellent drug delivery ability.
Collapse
Affiliation(s)
- Feng Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiliang Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
36
|
Fuster-García C, García-García G, González-Romero E, Jaijo T, Sequedo MD, Ayuso C, Vázquez-Manrique RP, Millán JM, Aller E. USH2A Gene Editing Using the CRISPR System. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:529-541. [PMID: 28918053 PMCID: PMC5573797 DOI: 10.1016/j.omtn.2017.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 01/06/2023]
Abstract
Usher syndrome (USH) is a rare autosomal recessive disease and the most common inherited form of combined visual and hearing impairment. Up to 13 genes are associated with this disorder, with USH2A being the most prevalent, due partially to the recurrence rate of the c.2299delG mutation. Excluding hearing aids or cochlear implants for hearing impairment, there are no medical solutions available to treat USH patients. The repair of specific mutations by gene editing is, therefore, an interesting strategy that can be explored using the CRISPR/Cas9 system. In this study, this method of gene editing is used to target the c.2299delG mutation on fibroblasts from an USH patient carrying the mutation in homozygosis. Successful in vitro mutation repair was demonstrated using locus-specific RNA-Cas9 ribonucleoproteins with subsequent homologous recombination repair induced by an engineered template supply. Effects on predicted off-target sites in the CRISPR-treated cells were discarded after a targeted deep-sequencing screen. The proven effectiveness and specificity of these correction tools, applied to the c.2299delG pathogenic variant of USH2A, indicates that the CRISPR system should be considered to further explore a potential treatment of USH.
Collapse
Affiliation(s)
- Carla Fuster-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema García-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elisa González-Romero
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Teresa Jaijo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - María D Sequedo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M Millán
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.
| | - Elena Aller
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), Madrid, Spain; Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
37
|
Ju R, Gu Q. Biohybrid based on layered terbium hydroxide and applications as drug carrier and biological fluorescence probe. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Ruijun Ju
- Department of Chemical Engineering; Beijing Institute of Petrochemical Technology; Beijing 102617 China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology; Beijing 102617 China
| | - Qingyang Gu
- Department of Chemical Engineering; Beijing Institute of Petrochemical Technology; Beijing 102617 China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology; Beijing 102617 China
| |
Collapse
|
38
|
Elsayed M, Gobara M, Elbasuney S. Instant synthesis of bespoke nanoscopic photocatalysts with enhanced surface area and photocatalytic activity for wastewater treatment. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Andrea KA, Wang L, Carrier AJ, Campbell M, Buhariwalla M, Mutch M, MacQuarrie SL, Bennett C, Mkandawire M, Oakes K, Lu M, Zhang X. Adsorption of Oligo-DNA on Magnesium Aluminum-Layered Double-Hydroxide Nanoparticle Surfaces: Mechanistic Implication in Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3926-3933. [PMID: 28375634 DOI: 10.1021/acs.langmuir.6b04172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnesium aluminum-layered double-hydroxide nanoparticles (LDH NPs) are promising drug-delivery vehicles for gene therapy, particularly for siRNA interference; however, the interactions between oligo-DNA and LDH surfaces have not been adequately elucidated. Through a mechanistic study, oligo-DNA initially appears to rapidly bind strongly to the LDH outer surfaces through interactions with their phosphate backbones via ligand exchange with OH- on Mg2+ centers and electrostatic forces with Al3+. These initial interactions might precede diffusion into interlayer spaces, and this knowledge can be used to design better gene therapy delivery systems.
Collapse
Affiliation(s)
| | - Li Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University , Hangzhou, Zhejiang 310018, People's Republic of China
| | | | | | - Margaret Buhariwalla
- Department of Physics, Acadia University , Wolfville, Nova Scotia B4P 2R6, Canada
| | | | | | - Craig Bennett
- Department of Physics, Acadia University , Wolfville, Nova Scotia B4P 2R6, Canada
| | | | | | - Mingsheng Lu
- College of Marine Life and Fisheries, Huaihai Institute of Technology , Lianyungang, Jiang Su 222005, People's Republic of China
| | | |
Collapse
|
40
|
Electrodeposition of Ni-Al layered double hydroxide thin films having an inversed opal structure: Application as electrochromic coatings. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Qiu Y. Two-Dimensional Materials Beyond Graphene: Emerging Opportunities for Biomedicine. ACTA ACUST UNITED AC 2016. [DOI: 10.1142/s1793984416420083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
With the rise of graphene, there is growing attention on two-dimensional (2D) materials in the physical science community during the last decade. Most studies to date focus on the rich set of their superior electrical, optical, catalytic and electrochemical properties and highlight the encouraging opportunities for developing next generation electronics, optoelectronics, catalysis, and energy storage technologies. On the contrary, the biomedicine community has barely recognized the potential of these materials other than graphene. There are very limited published studies on these materials’ biological effects and biomedical applications. Here, we present a brief overview of 2D materials and discuss their potential for biomedical applications in hope of raising biomedical researchers’ awareness of the great opportunities associated with these materials. We first discuss the emergence of 2D materials and review two most important prerequisites for 2D materials’ biomedical applications, synthesis and biocompatibility. We then categorize the existing studies on 2D materials’ biomedical applications into biosensing, drug/gene delivery, antimicrobial, bioimaging and multimode therapeutic applications. We would put special emphasis on the great flexibility of various rational combinations of 2D material superior properties for the design and construction of assorted forms of reagents or devices with highly effective simultaneous diagnostic and therapeutic functions (or theranostics functions). At last, the newly emerging 2D black phosphorous with very rare and interesting properties is introduced as the next promising and important 2D materials to study in the upcoming years.
Collapse
Affiliation(s)
- Yang Qiu
- School of Engineering, Brown University, Providence, RI 02906, United States
| |
Collapse
|
42
|
Cunha VRR, de Souza RB, da Fonseca Martins AMCRP, Koh IHJ, Constantino VRL. Accessing the biocompatibility of layered double hydroxide by intramuscular implantation: histological and microcirculation evaluation. Sci Rep 2016; 6:30547. [PMID: 27480483 PMCID: PMC4969587 DOI: 10.1038/srep30547] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/06/2016] [Indexed: 01/29/2023] Open
Abstract
Biocompatibility of layered double hydroxides (LDHs), also known as hydrotalcite-like materials or double metal hydroxides, was investigated by in vivo assays via intramuscular tablets implantation in rat abdominal wall. The tablets were composed by chloride ions intercalated into LDH of magnesium/aluminum (Mg2Al-Cl) and zinc/aluminum (Zn2Al-Cl). The antigenicity and tissue integration capacity of LDHs were assessed histologically after 7 and 28 days post-implantation. No fibrous capsule nearby the LDH was noticed for both materials as well any sign of inflammatory reactions. Sidestream Dark Field imaging, used to monitor in real time the microcirculation in tissues, revealed overall integrity of the microcirculatory network neighboring the tablets, with no blood flow obstruction, bleeding and/or increasing of leukocyte endothelial adhesion. After 28 days Mg2Al-Cl promoted multiple collagen invaginations (mostly collagen type-I) among its fragments while Zn2Al-Cl induced predominantly collagen type-III. This work supports previous results in the literature about LDHs compatibility with living matter, endorsing them as functional materials for biomedical applications.
Collapse
Affiliation(s)
- Vanessa Roberta Rodrigues Cunha
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Rodrigo Barbosa de Souza
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | | | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
43
|
|
44
|
Jafarbeglou M, Abdouss M, Shoushtari AM, Jafarbeglou M. Clay nanocomposites as engineered drug delivery systems. RSC Adv 2016. [DOI: 10.1039/c6ra03942a] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Rocha MA, Petersen PAD, Teixeira-Neto E, Petrilli HM, Leroux F, Taviot-Gueho C, Constantino VRL. Layered double hydroxide and sulindac coiled and scrolled nanoassemblies for storage and drug release. RSC Adv 2016. [DOI: 10.1039/c5ra25814f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Systems comprising anti-inflammatory sulindac intercalated into biocompatible layered double hydroxides nanovehicles were isolated through one pot synthetic method and showed high crystallinity and curled or scrolled particles.
Collapse
Affiliation(s)
- Michele A. Rocha
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | | | | | - Fabrice Leroux
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - Christine Taviot-Gueho
- Université Clermont Auvergne
- Université Blaise Pascal
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont-Ferrand
- France
| | - Vera R. L. Constantino
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
46
|
Gu Q, Chen W, Duan F, Ju R. Fabrication of a nano-drug delivery system based on layered rare-earth hydroxides integrating drug-loading and fluorescence properties. Dalton Trans 2016; 45:12137-43. [DOI: 10.1039/c6dt01875k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intercalation of naproxen (NPX) into LEuH to form nanocomposites with low cytotoxic effects, which can control the release of NPX.
Collapse
Affiliation(s)
- Qingyang Gu
- Department of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- China
| | - Wen Chen
- Department of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- China
| | - Fei Duan
- Department of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- China
| | - Ruijun Ju
- Department of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- China
| |
Collapse
|
47
|
Rodriguez BV, Pescador J, Pollok N, Beall GW, Maeder C, Lewis LK. Impact of size, secondary structure, and counterions on the binding of small ribonucleic acids to layered double hydroxide nanoparticles. Biointerphases 2015; 10:041007. [PMID: 26620852 PMCID: PMC4670447 DOI: 10.1116/1.4936393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/03/2015] [Accepted: 11/12/2015] [Indexed: 11/17/2022] Open
Abstract
Use of ribonucleic acid (RNA) interference to regulate protein expression has become an important research topic and gene therapy tool, and therefore, finding suitable vehicles for delivery of small RNAs into cells is of crucial importance. Layered double metal hydroxides such as hydrotalcite (HT) have shown great promise as nonviral vectors for transport of deoxyribose nucleic acid (DNA), proteins, and drugs into cells, but the adsorption of RNAs to these materials has been little explored. In this study, the binding of small RNAs with different lengths and levels of secondary structure to HT nanoparticles has been analyzed and compared to results obtained with small DNAs in concurrent experiments. Initial experiments established the spectrophotometric properties of HT in aqueous solutions and determined that HT particles could be readily sedimented with near 100% efficiencies. Use of RNA+HT cosedimentation experiments as well as electrophoretic mobility shift assays demonstrated strong adsorption of RNA 25mers to HT, with twofold greater binding of single-stranded RNAs relative to double-stranded molecules. Strong affinities were also observed with ssRNA and dsRNA 54mers and with more complex transfer RNA molecules. Competition binding and RNA displacement experiments indicated that RNA-HT associations were strong and were only modestly affected by the presence of high concentrations of inorganic anions.
Collapse
Affiliation(s)
- Blanca V Rodriguez
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666
| | - Jorge Pescador
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666
| | - Nicole Pollok
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666
| | - Gary W Beall
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666 and Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Corina Maeder
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212
| | - L Kevin Lewis
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, Texas 78666
| |
Collapse
|
48
|
Glutamine may repress the weak LPS and enhance the strong heat shock induction of monocyte and lymphocyte HSP72 proteins but may not modulate the HSP72 mRNA in patients with sepsis or trauma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:806042. [PMID: 26550577 PMCID: PMC4621332 DOI: 10.1155/2015/806042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
Abstract
Objective. We assessed the lipopolysaccharide (LPS) or heat shock (HS) induction of heat shock protein-72 (HSP72) in peripheral blood mononuclear cells (PBMCs) of patients with severe sepsis (SS) or trauma-related systemic inflammatory response syndrome (SIRS), compared to healthy individuals (H); we also investigated any pre- or posttreatment modulating glutamine (Gln) effect. Methods. SS (11), SIRS (10), and H (19) PBMCs were incubated with 1 μg/mL LPS or 43°HS. Gln 10 mM was either added 1 h before or 1 h after induction or was not added at all. We measured monocyte (m), lymphocyte (l), mRNA HSP72, HSP72 polymorphisms, interleukins (ILs), monocyte chemoattractant protein-1 (MCP-1), and cortisol levels. Results. Baseline lHSP72 was higher in SS (p < 0.03), and mHSP72 in SIRS (p < 0.02), compared to H. Only HS induced l/mHSP72/mRNA HSP72; LPS induced IL-6, IL-8, IL-10, and MCP-1. Induced mRNA was related to l/mHSP72, and was related negatively to cytokines. Intracellular l/mHSP72/HSP72 mRNA was related to serum ILs, not being influenced by cortisol, illness severity, and HSP72 polymorphisms. Gln did not induce mRNA in any group but modified l/mHSP72 after LPS/HS induction unpredictably. Conclusions. HSP72 mRNA and l/mHSP72 are higher among critically ill patients, further induced by HS, not by LPS. HSP72 proteins and HSP72 mRNA are related to serum ILs and are negatively related to supernatant cytokines, not being influenced by HSP72 polymorphisms, cortisol, or illness severity. Gln may depress l/mHSP72 after LPS exposure and enhance them after HS induction, but it may not affect early induced HSP72 mRNA.
Collapse
|
49
|
Wei PR, Kuthati Y, Kankala RK, Lee CH. Synthesis and Characterization of Chitosan-Coated Near-Infrared (NIR) Layered Double Hydroxide-Indocyanine Green Nanocomposites for Potential Applications in Photodynamic Therapy. Int J Mol Sci 2015; 16:20943-68. [PMID: 26340627 PMCID: PMC4611849 DOI: 10.3390/ijms160920943] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023] Open
Abstract
We designed a study for photodynamic therapy (PDT) using chitosan coated Mg-Al layered double hydroxide (LDH) nanoparticles as the delivery system. A Food and Drug Administration (FDA) approved near-infrared (NIR) fluorescent dye, indocyanine green (ICG) with photoactive properties was intercalated into amine modified LDH interlayers by ion-exchange. The efficient positively charged polymer (chitosan (CS)) coating was achieved by the cross linkage using surface amine groups modified on the LDH nanoparticle surface with glutaraldehyde as a spacer. The unique hybridization of organic-inorganic nanocomposites rendered more effective and successful photodynamic therapy due to the photosensitizer stabilization in the interlayer of LDH, which prevents the leaching and metabolization of the photosensitizer in the physiological conditions. The results indicated that the polymer coating and the number of polymer coats have a significant impact on the photo-toxicity of the nano-composites. The double layer chitosan coated LDH-NH₂-ICG nanoparticles exhibited enhanced photo therapeutic effect compared with uncoated LDH-NH₂-ICG and single layer chitosan-coated LDH-NH₂-ICG due to the enhanced protection to photosensitizers against photo and thermal degradations. This new class of organic-inorganic hybrid nanocomposites can potentially serve as a platform for future non-invasive cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pei-Ru Wei
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Yaswanth Kuthati
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan.
| |
Collapse
|
50
|
Tuncelli G, Ay AN, Zümreoglu-Karan B. 5-Fluorouracil intercalated iron oxide@layered double hydroxide core-shell nano-composites with isotropic and anisotropic architectures for shape-selective drug delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:562-8. [PMID: 26117790 DOI: 10.1016/j.msec.2015.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 02/21/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022]
Abstract
We report the synthesis, characterization and in vitro release behavior of anti-cancer drug carrying iron oxide@layered double hydroxide core-shell nanocomposites with sizes ranging from 40 to 300 nm, good drug loading capacities and soft ferromagnetic properties. HRTEM analyses verified that nearly spherical isotropic carriers were obtained by coating spherical magnetite particles while anisotropic carriers were obtained by coating spindle-shaped hematite particles. They both displayed a fluctuating in vitro release profile with a higher release percentage for the anisotropic carrier.
Collapse
Affiliation(s)
- Gülsevde Tuncelli
- Hacettepe University, Chemistry Department, Beytepe Campus, 06800 Ankara, Turkey
| | - Ahmet Nedim Ay
- Hacettepe University, Chemistry Department, Beytepe Campus, 06800 Ankara, Turkey.
| | | |
Collapse
|