1
|
Yuan Z, Lin B, Wang C, Yan Z, Yang F, Su H. Collagen remodeling-mediated signaling pathways and their impact on tumor therapy. J Biol Chem 2025:108330. [PMID: 39984051 DOI: 10.1016/j.jbc.2025.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025] Open
Abstract
In addition to their traditional roles in maintaining tissue morphology and organ development, emerging evidence suggests that collagen (COL) remodeling-referring to dynamic changes in the quantity, stiffness, arrangements, cleavage states, and homo-/hetero-trimerization of COLs-serves as a key signaling mechanism that governs tumor growth and metastasis. COL receptors act as switches, linking various forms of COL remodeling to different cell types during cancer progression, including cancer cells, immune cells, and cancer-associated fibroblasts (CAFs). In this review, we summarize recent findings on the signaling pathways mediated by COL arrangement, cleavage, and trimerization states (both homo- and hetero-), as well as the roles of the primary COL receptors-integrin, DDR1/2, LAIR-1/2, MRC2, and GPVI-in cancer progression. We also discuss the latest therapeutic strategies targeting COL fragments, CAFs, and COL receptors, including integrins, DDR1/2, and LAIR1/2. Understanding the pathways modulated by COL remodeling and COL receptors in various pathological contexts will pave the way for developing new precision therapies.
Collapse
Affiliation(s)
- Zihang Yuan
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui 230000, China
| | - Bo Lin
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Chunlan Wang
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zhaoyue Yan
- The Department of Stomatology, Shandong Public Health Clinical Center, Shandong University, Shandong 250013, China
| | - Fei Yang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui 230000, China.
| | - Hua Su
- Liver Cancer Institute, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Liu Q, Liang Z, Wang J, Wang Y, Wang J, Wang S, Du Z, Zhao L, Wei Y, Huang D. Mannose-modified multifunctional iron-based nanozyme for hepatocellular carcinoma treatment by remodeling the tumor microenvironment. Colloids Surf B Biointerfaces 2025; 250:114548. [PMID: 39923382 DOI: 10.1016/j.colsurfb.2025.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with conventional treatments often accompanied by severe side effects. Recently, nanozymes have been extensively employed in cancer therapy due to their enhanced enzymatic activities, stability compared to native enzymes. However, a standalone nanozyme exhibits insufficient targeting capability and fails to specifically localize to the pathological site. In this study, we successfully synthesized a multifunctional iron-based-nanozyme delivery system - Fe3O4-OA-DHCA-PEI-MAN@DSF modified with PEI and MAN by the thermal decomposition method. This mannose-modified nanozyme can specifically target HCC cells via an external magnetic field and mannose-mannose receptor (MRC2) binding. In addition, it exhibits good biocompatibility and pH-dependent drug release characteristics. Within the acidic tumor microenvironment, the iron-based nanozyme initiates intracellular fenton reactions, boosting reactive oxygen species (ROS) production, which ultimately induces apoptosis in HCC cells. Concurrently, the disulfiram small molecule released from the Fe3O4-OA-DHCA-PEI-MAN@DSF nanozyme binds to the FROUNT factor within monocyte-macrophages, thereby inhibiting their response to chemotactic signals emitted by liver cancer cells. This process ultimately suppresses the recruitment of macrophages by HCC cells, reshaping the tumor microenvironment and supporting effective liver cancer treatment. Moreover, this nanozyme system holds potential for MRI-guided targeted chemotherapy combined with chemodynamic therapy, aiming to refine the early diagnosis and precision treatment of hepatic carcinoma, and paving the way for the creation of sophisticated integrated nanoplatforms melding diagnostic and therapeutic functionalities.
Collapse
Affiliation(s)
- Qi Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; NHC Key Laboratory of Glycoconjuates Research Department of Biochemistry and Molecular, Biology School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Jiapu Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaojie Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Artificial Intelligence, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China; Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, China.
| |
Collapse
|
3
|
Rastegari B, Ghamar Talepoor A, Khosropanah S, Doroudchi M. In Vitro Targeted Delivery of Simvastatin and Niacin to Macrophages Using Mannan-Grafted Magnetite Nanoparticles. ACS OMEGA 2024; 9:658-674. [PMID: 38222576 PMCID: PMC10785661 DOI: 10.1021/acsomega.3c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Atherosclerosis, a leading cause of mortality worldwide, involves various subsets of macrophages that contribute to its initiation and progression. Current treatment approaches focus on systemic, long-term administration of cholesterol-lowering antioxidants such as statins and certain vitamins, which unfortunately come with prolonged side effects. To overcome these drawbacks, a mannose-containing magnetic nanoparticle (NP) is introduced as a drug delivery system to specifically target macrophages in vitro using simvastatin or niacin and a combinational therapy approach that reduces local inflammation while avoiding unwanted side effects. The synthesized NPs exhibited superparamagnetic behavior, neutrally charged thin coating with a hydrodynamic size of 77.23 ± 13.90 nm, and a metallic core ranging from 15 to 25 nm. Efficient loading of niacin (87.21%) and simvastatin (75.36%) on the NPs was achieved at respective weights of 20.13 and 5.03 (w/w). In the presence of a mannan hydrolyzing enzyme, 79.51% of simvastatin and 67.23% of niacin were released from the NPs within 90 min, with a leakage rate below 19.22%. Additionally, the coated NPs showed no destructive effect on J774A macrophages up to a concentration of 200 μg/mL. Simvastatin-loaded NPs exhibited a minimal increase in IL-6 expression. The low dosage of simvastatin decreased both IL-6 and ARG1 expressions, while niacin and combined simvastatin/niacin increased the level of ARG1 expression significantly. Toxicity evaluations on human umbilical vein endothelial cells and murine liver cells revealed that free simvastatin administration caused significant toxicity, whereas the encapsulated forms of simvastatin, niacin, and a combination of simvastatin/niacin at equivalent concentrations exhibited no significant toxicity. Hence, the controlled release of the encapsulated form of simvastatin and niacin resulted in the effective modulation of macrophage polarization. The delivery system showed suitability for targeting macrophages to atherosclerotic plaque.
Collapse
Affiliation(s)
- Banafsheh Rastegari
- Diagnostic
Laboratory Sciences and Technology Research Center, School of Paramedical
Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Atefe Ghamar Talepoor
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Shahdad Khosropanah
- Department
of Cardiology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mehrnoosh Doroudchi
- Department
of Immunology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-45794, Iran
- Immunology
Center for Excellence, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| |
Collapse
|
4
|
Gopalakrishnan KV, Kannan B, Pandi C, Jayaseelan VP, Arumugam P. Prognostic and clinicopathological significance of MRC2 expression in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101617. [PMID: 37666484 DOI: 10.1016/j.jormas.2023.101617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive types of cancers worldwide, with metastasis being the major cause of death. Recent research suggests that changes in the expression of MRC2 (mannose receptor, C-type 2) may play a role in the development and progression of various cancers; however, its expression pattern in HNSCC/ OSCC is unknown. This study aimed to elucidate the clinicopathological significance and prognostic role of MRC2 expression in HNSCC, including OSCC. MATERIALS AND METHODS In the present study, we assessed the potential roles of MRC2 in expression, prognostic value, immune infiltration and functional enrichment analysis in HNSCC patients by using different bioinformatics databases. We then validated MRC2 gene expression in 30 OSCC and adjacent normal tissue samples using quantitative reverse transcription PCR (RT-qPCR). RESULTS MRC2 mRNA and protein expression were significantly upregulated in OSCC and HNSCC patients compared to that in adjacent normal tissues. Upregulated MRC2 expression was associated with poor overall survival. Increased MRC2 expression has also been linked to an aggressive clinicopathological features including advanced stages, grade, metastasis and HPV status. Interestingly, our in silico results strongly suggest that the MRC2 gene and protein interaction networks are associated with HNSCC development. Moreover, the tumor infiltration level was significantly correlated with HPV-negative HNSCC patients. CONCLUSION Our results suggest that MRC2 could be used as a novel prognostic marker and therapeutic target for HNSCC.
Collapse
Affiliation(s)
- Karpaka Vinayakam Gopalakrishnan
- Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Balachander Kannan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Chandra Pandi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Vijayashree Priyadharsini Jayaseelan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
5
|
Zheng P, Zhang W, Wang J, Gong Q, Xu N, Chen N. Bioinformatics and functional experiments reveal that MRC2 inhibits atrial fibrillation via the PPAR signaling pathway. J Thorac Dis 2023; 15:5625-5639. [PMID: 37969297 PMCID: PMC10636429 DOI: 10.21037/jtd-23-1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 11/17/2023]
Abstract
Background Atrial fibrillation (AF) is a prevalent cardiac arrhythmia that requires improved clinical markers to increase diagnostic accuracy and provide insight into its pathogenesis. Although some biomarkers are available, new ones need to be discovered to better capture the complex physiology of AF. However, their limitations are still not fully addressed. Bioinformatics and functional studies can help find new clinical markers and improve the understanding of AF, meeting the need for early diagnosis and individualized treatment. Methods To identify AF-related differentially expressed genes (DEGs), We applied the messenger RNA (mRNA) expression profile retrieved in Series Matrix File format from the GSE143924 microarray dataset obtained from the Gene Expression Omnibus (GEO) database, and then used weighted gene co-expression network analysis (WGCNA) to identify the overlapping genes. These genes were analyzed by enrichment analysis, expression analysis and others to obtain the hub gene. Additionally, the potential signaling pathway of hub gene in AF was explored and verified by functional experiments, like quantitative real-time polymerase chain reaction (qRT-PCR), cell counting kit-8 (CCK-8), flow cytometry, and Western blotting (WB) assay. Results From the GSE143924 data (410 DEGs) and tan module (57 genes), 10 overlapping genes were identified. A central down-regulated gene in AF, MRC2, was identified through bioinformatics analysis. based on these results, it was hypothesized that the PPAR signaling pathway is related to the mechanism of action of MRC2 in AF. Moreover, over-MRC2 markedly reduced the growth speed of angiotensin II (Ang II)-induced human cardiac fibroblasts (HCFs) and increased apoptosis. Conversely, knockdown of MRC2 promoted HCFs cell proliferation number. Additionally, MRC2 over-expression increased the protein expression level of PPARα, PPARγ, CPT-1, and SIRT3 in Ang II-induced HCFs. Conclusions While meeting the need for new biomarkers in the diagnosis and prognosis of AF, this study reveals the inherent limitations of current biomarkers. We identified MRC2 as a key player as an inhibitory gene in AF, highlighting its role in suppressing AF progression through the PPAR signaling pathway. MRC2 may not only serve as a diagnostic indicator, but also as a promising therapeutic target for patients with AF, which is expected to be applied in clinical practice and open up new avenues for individualized interventions.
Collapse
Affiliation(s)
- Pengxiang Zheng
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahong Wang
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qunlin Gong
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Xu
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nannan Chen
- Department of Cardiology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Pascual-Antón L, Sandoval P, González-Mateo GT, Kopytina V, Tomero-Sanz H, Arriero-País EM, Jiménez-Heffernan JA, Fabre M, Egaña I, Ferrer C, Simón L, González-Cortijo L, Sainz de la Cuesta R, López-Cabrera M. Targeting carcinoma-associated mesothelial cells with antibody-drug conjugates in ovarian carcinomatosis. J Pathol 2023; 261:238-251. [PMID: 37555348 DOI: 10.1002/path.6170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/10/2023]
Abstract
Ovarian carcinomatosis is characterized by the accumulation of carcinoma-associated mesothelial cells (CAMs) in the peritoneal stroma and mainly originates through a mesothelial-to-mesenchymal transition (MMT) process. MMT has been proposed as a therapeutic target for peritoneal metastasis. Most ovarian cancer (OC) patients present at diagnosis with peritoneal seeding, which makes tumor progression control difficult by MMT modulation. An alternative approach is to use antibody-drug conjugates (ADCs) targeted directly to attack CAMs. This strategy could represent the cornerstone of precision-based medicine for peritoneal carcinomatosis. Here, we performed complete transcriptome analyses of ascitic fluid-isolated CAMs in advanced OC patients with primary-, high-, and low-grade, serous subtypes and following neoadjuvant chemotherapy. Our findings suggest that both cancer biological aggressiveness and chemotherapy-induced tumor mass reduction reflect the MMT-associated changes that take place in the tumor surrounding microenvironment. Accordingly, MMT-related genes, including fibroblast activation protein (FAP), mannose receptor C type 2 (MRC2), interleukin-11 receptor alpha (IL11RA), myristoylated alanine-rich C-kinase substrate (MARCKS), and sulfatase-1 (SULF1), were identified as specific actionable targets in CAMs of OC patients, which is a crucial step in the de novo design of ADCs. These cell surface target receptors were also validated in peritoneal CAMs of colorectal cancer peritoneal implants, indicating that ADC-based treatment could extend to other abdominal tumors that show peritoneal colonization. As proof of concept, a FAP-targeted ADC reduced tumor growth in an OC xenograft mouse model with peritoneal metastasis-associated fibroblasts. In summary, we propose MMT as a potential source of ADC-based therapeutic targets for peritoneal carcinomatosis. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lucía Pascual-Antón
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Pilar Sandoval
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Guadalupe T González-Mateo
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Valeria Kopytina
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Henar Tomero-Sanz
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | - Eva María Arriero-País
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| | | | | | | | | | | | | | | | - Manuel López-Cabrera
- Tissue and Organ Homeostasis Program, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CBMSO-CSIC-UAM), Madrid, Spain
| |
Collapse
|
7
|
Liu Y, Zhang X, Ren X, Sun J, Wen Y, Guo Z, Ma Q. Tandem mass tag (TMT) quantitative protein analysis-based proteomics and parallel reaction monitoring (PRM) validation revealed that MST4 accelerates osteosarcoma proliferation by increasing MRC2 activity. Mol Carcinog 2023; 62:1338-1354. [PMID: 37378424 DOI: 10.1002/mc.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/14/2023] [Accepted: 03/14/2023] [Indexed: 06/29/2023]
Abstract
Osteosarcoma is one of the most common orthopedic malignancies and is characterized by rapid disease progression and a poor prognosis. Currently, research on methods to inhibit osteosarcoma proliferation is still limited. In this study, we found that MST4 levels were significantly increased in osteosarcoma cell lines and tumor tissues compared to normal controls and demonstrated that MST4 is an influential factor in promoting osteosarcoma proliferation both in vivo and in vitro. Proteomic analysis was performed on osteosarcoma cells in the MST4 overexpression and vector expression groups, and 545 significantly differentially expressed proteins were identified and quantified. The candidate differentially expressed protein MRC2 was then identified using parallel reaction monitoring validation. Subsequently, MRC2 expression was silenced with small interfering RNA (siRNA), and we were surprised to find that this alteration affected the cell cycle of MST4-overexpressing osteosarcoma cells, promoted apoptosis and impaired the positive regulation of osteosarcoma growth by MST4. In conclusion, this study identified a novel approach for suppressing osteosarcoma proliferation. Reduction of MRC2 activity inhibits osteosarcoma proliferation in patients with high MST4 expression by altering the cell cycle, which may be valuable for treating osteosarcoma and improving patient prognosis.
Collapse
Affiliation(s)
- Yunyan Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoyu Zhang
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingguang Ren
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Sun
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanhua Wen
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Guo
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Ma
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Huang K, Wu H, Xu X, Wu L, Li Q, Han L. Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging (Albany NY) 2023; 15:7187-7218. [PMID: 37498303 PMCID: PMC10415570 DOI: 10.18632/aging.204901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Heart failure (HF) remains a huge medical burden worldwide. Pathological cardiac hypertrophy is one of the most significant phenotypes of HF. Several studies have reported that the TGF-β pathway plays a double-sided role in HF. Therefore, TGF-β-related genes (TRGs) may be potential therapeutic targets for cardiac hypertrophy and HF. However, the roles of TRGs in HF at the single-cell level remain unclear. METHOD In this study, to analyze the expression pattern of TRGs during the progress of cardiac hypertrophy and HF, we used three public single-cell RNA sequencing datasets for HF (GSE161470, GSE145154, and GSE161153), one HF transcriptome data (GSE57338), and one hypertrophic cardiomyopathy transcriptome data (GSE141910). Weighted gene co-expression network analysis (WGCNA), functional enrichment analysis and machine learning algorithms were used to filter hub genes. Transverse aortic constriction mice model, CCK-8, wound healing assay, quantitative real-time PCR and western blotting were used to validate bioinformatics results. RESULTS We observed that cardiac fibroblasts (CFs) and endothelial cells showed high TGF-β activity during the progress of HF. Three modules (royalblue, brown4, and darkturquoize) were identified to be significantly associated with TRGs in HF. Six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) showed anomaly trend in cardiac hypertrophy. We further validated the regulation of the TGF-β-MYC-ADAMTS2 axis on CFs activation in vitro. CONCLUSIONS This study identified six hub genes (TANC2, ADAMTS2, DYNLL1, MRC2, EGR1, and OTUD1) by integrating scRNA and transcriptome data. These six hub genes might be therapeutic targets for cardiac hypertrophy and HF.
Collapse
Affiliation(s)
- Kai Huang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiangyang Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lujia Wu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin Li
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lin Han
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Identification and Interaction Analysis of Molecular Markers in Pancreatic Ductal Adenocarcinoma by Bioinformatics and Next-Generation Sequencing Data Analysis. Bioinform Biol Insights 2023; 17:11779322231186719. [PMID: 37529485 PMCID: PMC10387711 DOI: 10.1177/11779322231186719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/18/2023] [Indexed: 08/03/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancers worldwide. Intense efforts have been made to elucidate the molecular pathogenesis, but the molecular mechanisms of PDAC are still not well understood. The purpose of this study is to further explore the molecular mechanism of PDAC through integrated bioinformatics analysis. Methods To identify the candidate genes in the carcinogenesis and progression of PDAC, next-generation sequencing (NGS) data set GSE133684 was downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and Gene Ontology (GO) and pathway enrichment analyses were performed. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using Integrated Interactions Database (IID) interactome database and Cytoscape. Subsequently, miRNA-DEG regulatory network and TF-DEG regulatory network were constructed using miRNet database, NetworkAnalyst database, and Cytoscape software. The expression levels of hub genes were validated based on Kaplan-Meier analysis, expression analysis, stage analysis, mutation analysis, protein expression analysis, immune infiltration analysis, and receiver operating characteristic (ROC) curve analysis. Results A total of 463 DEGs were identified, consisting of 232 upregulated genes and 233 downregulated genes. The enriched GO terms and pathways of the DEGs include vesicle organization, secretory vesicle, protein dimerization activity, lymphocyte activation, cell surface, transferase activity, transferring phosphorus-containing groups, hemostasis, and adaptive immune system. Four hub genes (namely, cathepsin B [CCNB1], four-and-a-half LIM domains 2 (FHL2), major histocompatibility complex, class II, DP alpha 1 (HLA-DPA1) and tubulin beta 1 class VI (TUBB1)) were obtained via taking interaction of different analysis results. Conclusions On the whole, the findings of this investigation enhance our understanding of the potential molecular mechanisms of PDAC and provide potential targets for further investigation.
Collapse
Affiliation(s)
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Society’s College of Pharmacy, Gadag, India
| | - Rajeshwari Horakeri
- Department of Computer Science, Government First Grade College, Hubballi, India
| | | |
Collapse
|
10
|
Wang XK, Zhang XD, Luo K, Yu L, Huang S, Liu ZY, Li RF. Comprehensive analysis of candidate signatures of long non-coding RNA LINC01116 and related protein-coding genes in patients with hepatocellular carcinoma. BMC Gastroenterol 2023; 23:216. [PMID: 37340445 DOI: 10.1186/s12876-023-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 05/19/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a long-term malignancy that causes high morbidities and mortalities worldwide. Notably, long non-coding RNAs (LncRNAs) have been identified as candidate targets for malignancy treatments. METHODS LncRNA LINC01116 and its Pearson-correlated genes (PCGs) were identified and analyzed in HCC patients. The diagnostic and prognostic value of the lncRNA was evaluated using data from The Cancer Genome Atlas (TCGA). Further, we explored the target drugs of LINC01116 for clinical application. Relationships between immune infiltration and PCGs, methylation and PCGs were explored. The diagnostic potentials were then validated by Oncomine cohorts. RESULTS LINC01116 and the PCG OLFML2B are differentially and highly expressed in tumor tissues (both P ≤ 0.050). We found that LINC01116, TMSB15A, PLAU, OLFML2B, and MRC2 have diagnostic potentials (all AUC ≥ 0.700, all P ≤ 0.050) while LINC01116 and TMSB15A have prognostic significance (both adjusted P ≤ 0.050). LINC01116 was enriched in the vascular endothelial growth factor (VEGF) receptor signaling pathway, mesenchyme morphogenesis, etc. After that, candidate target drugs with potential clinical significance were identified: Thiamine, Cromolyn, Rilmenidine, Chlorhexidine, Sulindac_sulfone, Chloropyrazine, and Meprylcaine. Analysis of immune infiltration revealed that MRC2, OLFML2B, PLAU, and TMSB15A are negatively associated with the purity but positively associated with the specific cell types (all P < 0.050). Analysis of promoter methylation demonstrated that MRC2, OLFML2B, and PLAU have differential and high methylation levels in primary tumors (all P < 0.050). Validation results of the differential expressions and diagnostic potential of OLFML2B (Oncomine) were consistent with those obtained in the TCGA cohort (P < 0.050, AUC > 0.700). CONCLUSIONS Differentially expressed LINC01116 could be a candidate diagnostic and an independent prognostic signature in HCC. Besides, its target drugs may work for HCC therapy via the VEGF receptor signaling pathway. Differentially expressed OLFML2B could be a diagnostic signature involved in HCC via immune infiltrates.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Long Yu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
11
|
Buľková V, Vargová J, Babinčák M, Jendželovský R, Zdráhal Z, Roudnický P, Košuth J, Fedoročko P. New findings on the action of hypericin in hypoxic cancer cells with a focus on the modulation of side population cells. Biomed Pharmacother 2023; 163:114829. [PMID: 37146419 DOI: 10.1016/j.biopha.2023.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
The presence of key hypoxia regulators, namely, hypoxia-inducible factor (HIF)-1α or HIF-2α, in tumors is associated with poor patient prognosis. Hypoxia massively activates several genes, including the one encoding the BCRP transporter that proffers multidrug resistance to cancer cells through the xenobiotic efflux and is a determinant of the side population (SP) associated with cancer stem-like phenotypes. As natural medicine comes to the fore, it is instinctive to look for natural agents possessing powerful features against cancer resistance. Hypericin, a pleiotropic agent found in Hypericum plants, is a good example as it is a BCRP substrate and potential inhibitor, and an SP and HIF modulator. Here, we showed that hypericin efficiently accumulated in hypoxic cancer cells, degraded HIF-1/2α, and decreased BCRP efflux together with hypoxia, thus diminishing the SP population. On the contrary, this seemingly favorable result was accompanied by the stimulated migration of this minor population that preserved the SP phenotype. Because hypoxia unexpectedly decreased the BCRP level and SP fraction, we compared the SP and non-SP proteomes and their changes under hypoxia in the A549 cell line. We identified differences among protein groups connected to the epithelial-mesenchymal transition, although major changes were related to hypoxia, as the upregulation of many proteins, including serpin E1, PLOD2 and LOXL2, that ultimately contribute to the initiation of the metastatic cascade was detected. Altogether, this study helps in clarifying the innate and hypoxia-triggered resistance of cancer cells and highlights the ambivalent role of natural agents in the biology of these cells.
Collapse
Affiliation(s)
- Viktória Buľková
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Jana Vargová
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia.
| | - Marián Babinčák
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| | - Peter Fedoročko
- Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54 Košice, Slovakia
| |
Collapse
|
12
|
Bian X, Fan N, Li M, Han D, Li J, Fan L, Li X, Kong L, Tang H, Ding S, Song F, Li S, Cheng W. An ER-Horse Detonating Stress Cascade for Hepatocellular Carcinoma Nanotherapy. ACS NANO 2023; 17:4896-4912. [PMID: 36811530 DOI: 10.1021/acsnano.2c11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persisting and excessive endoplasmic reticulum stress (ERS) can evoke rapid cell apoptosis. Therapeutic interference of ERS signaling holds enormous potential for cancer nanotherapy. Herein, a hepatocellular carcinoma (HCC) cell-derived ER vesicle (ERV) encapsulating siGRP94, denoted as ER-horse, has been developed for precise HCC nanotherapy. Briefly, ER-horse, like the Trojan horse, was recognized via homotypic camouflage, imitated the physiological function of ER, and exogenously opened the Ca2+ channel. Consequently, the mandatory pouring-in of extracellular Ca2+ triggered the aggravated stress cascade (ERS and oxidative stress) and apoptosis pathway with the inhibition of unfolded protein response by siGRP94. Collectively, our findings provide a paradigm for potent HCC nanotherapy via ERS signaling interference and exploring therapeutic interference of physiological signal transduction pathways for precision cancer therapy.
Collapse
Affiliation(s)
- Xintong Bian
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Meng Li
- The Second Affliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
13
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
14
|
Zhao Z, Yang Y, Liu Z, Chen H, Guan X, Jiang Z, Yang M, Liu H, Chen T, Gao Y, Zou S, Wang X. Prognostic and immunotherapeutic significance of mannose receptor C type II in 33 cancers: An integrated analysis. Front Mol Biosci 2022; 9:951636. [PMID: 36188226 PMCID: PMC9519056 DOI: 10.3389/fmolb.2022.951636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The type 2 mannose receptor C (MRC2) is involved in tumor biological processes and plays a new role in the remodeling of the extracellular matrix turnover. Previous studies have demonstrated MRC2 expression profiling and prognostic relevance in some tumor types. However, the clinical and immunotherapeutic value of MRC2 in pan-cancers remains controversial. Our study aimed to evaluate MRC2 expression pattern, clinical characteristics and prognostic significance in 33 cancers, explore the relationship between MRC2 and immune-related characteristics, and assess the prediction of MRC2 for the immunotherapeutic response. Methods: Transcriptional and clinical data of 33 cancers were downloaded from The Cancer Genome Atlas database (TCGA) database and two independent immunotherapeutic cohorts were obtained from GSE67501 and the IMvigor210 study. Next, patients stratified by MRC2 expression levels were displayed by Kaplan-Meier plot to compare prognosis-related indexes. Meanwhile, immune infiltrates of different cancers were estimated by tumor immune estimation resources (TIMER) and CIBERSORT. The ESTIMATE algorithm was used to estimate the immune and stromal scores in tumor tissues. MRC2 expression and immunological modulators, including immune inhibitors, immune stimulators, and MHC molecules, were screened through the TISIDB portal. Gene-set enrichment analysis analyses were performed to explore the underlying biological process of MRC2 across different cancers. The immunotherapeutic response prediction was performed in two independent cohorts (GSE78220: metastatic melanoma with pembrolizumab treatment and IMvigor210: advanced urothelial cancer with atezolizumab intervention). Results: MRC2 is expressed differently in many cancers and has been shown to have potential prognostic predicting significance. MRC2 was significantly associated with immune cell infiltration, immune modulators, and immunotherapeutic markers. Notably, the immunotherapeutic response group was associated with lower MRC2 expression in metastatic melanoma and advanced urothelial carcinoma cohort. Conclusion: This study demonstrated that MRC2 could be a prognostic indicator for certain cancer and is critical for tumor immune microenvironments. MRC2 expression level may influence and predict immune checkpoint blockade response as a potential indicator.
Collapse
Affiliation(s)
- Zhixun Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanwei Yang
- Department of Laboratory, National Center for Children’s Health/Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianli Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yibo Gao, ; Shuangmei Zou, ; Xishan Wang,
| |
Collapse
|
15
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
16
|
Chen J, Lin Y, Wu M, Li C, Zhang Y, Chen D, Cheng Y. Drug-Free Liposomes Containing Mannosylated Ligand for Liver-Targeting: Synthetic Optimization, Liposomal Preparation, and Bioactivity Evaluation. J Biomed Nanotechnol 2021; 17:2455-2465. [PMID: 34974868 DOI: 10.1166/jbn.2021.3204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This research was performed to optimize the enzymatic synthesis of mannosylated ligand with which to prepare mannosy-lated liposomes and investigate their bioactivity. Based on single-factor studies, lipase dose, substrate molar ratio (diester lauric diacid-cholesterol to mannose) and temperature were identified as significant parameters, and optimal reaction conditions were determined through response surface methodology (RSM) with central composite design. The optimum operating parameters, 61.23 mg of lipase, a substrate molar ratio of 5.36, and 56.64 °C temperature offered a predicted yield (71.11%) which was consistent with the actual yield (69.08%). Drug-free mannosylated liposomes were prepared film-dispersion. The characterizations of these liposomes showed that mannosylated liposomes were well-dispersible spherical particles with an average particle size of 142.3 nm, the polydispersity index of 0.16, and a zeta potential of -19.8 mV. Pyrogen examination, hemolytic studies and cytotoxicity assays revealed no substantial safety concern for drug-free mannosylated liposomes. Cellular uptake efficiency of mannosylated liposomes by HepG2 cells was significantly higher than that of unmodified liposomes, demonstrating that mannosylated ligands have a positive effect on liver targeting. Overall, mannosylated liposomes could be active drug delivery system for combatting the therapy of hepatic diseases.
Collapse
Affiliation(s)
- Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yuan Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Min Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Chuangnan Li
- Neurosurgery Department, Jiangmen Wuyi Hosipital of TCM, Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, 529020, China
| | - Yimin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Dongpeng Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yi Cheng
- School of Chinese Material Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
17
|
Xu Y, Lin S, He R, Zhang Y, Gao Q, Ng DKP, Geng J. C=C Bond Oxidative Cleavage of BODIPY Photocages by Visible Light. Chemistry 2021; 27:11268-11272. [PMID: 34114272 DOI: 10.1002/chem.202101833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Photocages for protection and the controlled release of bioactive compounds have been widely investigated. However, the vast majority of these photocages employ the cleavage of single bonds and high-energy ultraviolet light. The construction of a photoactivation system that uses visible light to cleave unsaturated bonds still remains a challenge. Herein, we report a regioselective oxidative cleavage of C=C bonds from a boron-dipyrrolemethene (BODIPY)-based photocage by illumination at 630 nm, resulting in a free aldehyde and a thiol fluorescent probe. This strategy was demonstrated in live HeLa cells, and the generated α-formyl-BODIPY allowed real-time monitoring of aldehyde release in the cells. In particular, it is shown that a mannose-functionalized photocage can target HepG2 cells.
Collapse
Affiliation(s)
- Youwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shanmeng Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Rongkun He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong-Shatin, N.T., Hong Kong, China
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
18
|
MRC2 Promotes Proliferation and Inhibits Apoptosis of Diabetic Nephropathy. ACTA ACUST UNITED AC 2021; 2021:6619870. [PMID: 34012764 PMCID: PMC8102129 DOI: 10.1155/2021/6619870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) is an important microvascular complication of diabetes and is the main cause of end-stage renal disease. Type 2 mannose receptor C (MRC2) is a member of the mannose receptor protein family, which has been confirmed to have the ability to promote the cell migration signaling pathway and invasion. By complementary DNA chip screening and analysis, we found that the expression of MRC2 was upregulated in the kidneys of mice with diabetic nephropathy. However, the role of MRC2 in diabetic nephropathy is still unclear. This work studied the effect of MRC2 on diabetic nephropathy. After verifying the results of the chip by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, we used small interfering RNAs (siRNAs) to knock down the expression of MRC2 in mouse mesangial cells (MMCs) and analyzed the level of cell proliferation and apoptosis using western blotting, Cell Counting Kit-8, and flow cytometry. The results showed that the MRC2 knockdown inhibited MMC proliferation and induced cell apoptosis. These results suggest that MRC2 may be a molecular marker and a therapeutic target for diabetic nephropathy.
Collapse
|
19
|
Gai X, Zhou P, Xu M, Liu Z, Zheng X, Liu Q. Hyperactivation of IL-6/STAT3 pathway leaded to the poor prognosis of post-TACE HCCs by HIF-1α/SNAI1 axis-induced epithelial to mesenchymal transition. J Cancer 2020; 11:570-582. [PMID: 31942180 PMCID: PMC6959052 DOI: 10.7150/jca.35631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Transarterial chemoembolization (TACE) has been considered the standard treatment for intermediate-stage hepatocellular carcinoma according to BCLC algorithm. However, it has been unclear about the TACE-related predictive bio-markers and underlying molecular mechanisms. This investigation revealed that HCCs with higher HIF-1α suffered from unfavorable OS after TACE. mRNA expression microarray revealed that HIF-1α was potential target of p-STAT3 which was verified by ChIP and immunoblotting assay. Activation of IL-6/STAT3/HIF-1α signaling was found to promote EMT and chemoresistance to Doxorubicin in vitro and in vivo by regulating SNAI1. Hypoxia did not enhance HIF-1α expression and influence cell growth and chemoresistence to Doxorubicin in HCC cells when STAT3 expression was abolished. Taken together, HIF-1α overexpression in HCC tissues predicted the unfavorable outcome of HCCs after TACE and IL-6/STAT3 pathway resulted in EMT induced-metastases and chemoresistance of HCC after TACE through HIF-1α/SNAI1 axis.
Collapse
Affiliation(s)
- Xiaohong Gai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng Zhou
- Department of General Surgery, Xian NO.3 Hospital, Xi'an, Shaanxi 710001, China
| | - Meng Xu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
20
|
Golebski K, Ros XR, Nagasawa M, van Tol S, Heesters BA, Aglmous H, Kradolfer CMA, Shikhagaie MM, Seys S, Hellings PW, van Drunen CM, Fokkens WJ, Spits H, Bal SM. IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat Commun 2019; 10:2162. [PMID: 31089134 PMCID: PMC6517442 DOI: 10.1038/s41467-019-09883-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022] Open
Abstract
Innate lymphoid cells (ILCs) are crucial for the immune surveillance at mucosal sites. ILCs coordinate early eradication of pathogens and contribute to tissue healing and remodeling, features that are dysfunctional in patients with cystic fibrosis (CF). The mechanisms by which ILCs contribute to CF-immunopathology are ill-defined. Here, we show that group 2 ILCs (ILC2s) transdifferentiated into IL-17-secreting cells in the presence of the epithelial-derived cytokines IL-1β, IL-23 and TGF-β. This conversion is abrogated by IL-4 or vitamin D3. IL-17 producing ILC2s induce IL-8 secretion by epithelial cells and their presence in nasal polyps of CF patients is associated with neutrophilia. Our data suggest that ILC2s undergo transdifferentiation in CF nasal polyps in response to local cytokines, which are induced by infectious agents.
Collapse
Affiliation(s)
- Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Xavier R Ros
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Maho Nagasawa
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Sophie van Tol
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Balthasar A Heesters
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Hajar Aglmous
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Chantal M A Kradolfer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Medya M Shikhagaie
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Sven Seys
- Department of Immunology and Microbiology, Lab of Clinical Immunology, KU Leuven, Belgium Herestraat 49-box 1030, BE-3000, Leuven, Belgium
| | - P W Hellings
- Department of Immunology and Microbiology, Lab of Clinical Immunology, KU Leuven, Belgium Herestraat 49-box 1030, BE-3000, Leuven, Belgium
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| | - Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands.
| | - Suzanne M Bal
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Location AMC, Meibergdreef 9, Amsterdam, 1105, AZ, The Netherlands
| |
Collapse
|
21
|
Guan C, Zhao Y, Hou Y, Shan G, Yan D, Liu Y. Glycosylated liposomes loading carbon dots for targeted recognition to HepG2 cells. Talanta 2018; 182:314-323. [DOI: 10.1016/j.talanta.2018.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
|
22
|
Peng L, Yuan XQ, Zhang CY, Ye F, Zhou HF, Li WL, Liu ZY, Zhang YQ, Pan X, Li GC. High TGF-β1 expression predicts poor disease prognosis in hepatocellular carcinoma patients. Oncotarget 2018; 8:34387-34397. [PMID: 28415739 PMCID: PMC5470976 DOI: 10.18632/oncotarget.16166] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 12/16/2022] Open
Abstract
Transforming growth factor beta (TGF-β) promotes the pathogenesis of hepatocellular carcinoma (HCC). We evaluated the associations between TGF-β1 expression and clinicopathological parameters in HCC patients from The Cancer Genome Atlas (TCGA), as well as the prognostic power of TGF-β1 expression. Eligible studies were retrieved from several databases, and effects (hazard ratios (HRs) with 95% confidence intervals (CIs)) for overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), metastasis-free survival (MFS), and progression-free survival (PFS) were pooled to assess the prognostic ability of TGF-β1 expression in HCC patients. Twelve qualified articles and our TCGA data comprising 2,021 HCC patients were incorporated. In the TCGA analysis, HCC patients with higher TGF-β1 expression presented a shorter OS than those with lower TGF-β1 expression (HR = 1.42, p < 0.05). In the meta-analysis, univariate analyses showed that HCC patients with higher TGF-β1 expression had a shorter OS (pooling HR = 1.71, p < 0.01) and DFS/RFS/MFS/PFS (pooling HR = 1.60, p < 0.01) than those with lower TGF-β1 expression. In conclusion, our results suggested that high TGF-β1 expression promotes a poor prognosis in HCC patients.
Collapse
Affiliation(s)
- Li Peng
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Xiao-Qing Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
| | - Chao-Yang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Fei Ye
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha 410100, P.R. China
| | - Hui-Fang Zhou
- Department of Physiology, Changsha Health Vocational College, Changsha 410100, P.R. China
| | - Wen-Ling Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Zhao-Yang Liu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Ya-Qin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| | - Xi Pan
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China.,Department of Oncology, the third Xiangya Hospital, Central South University, Changsha 410013, P.R. China
| | - Guan-Cheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China.,Cancer Research Institute, Central South University, Changsha 410078, P.R. China
| |
Collapse
|
23
|
Ghosh D, Funk CC, Caballero J, Shah N, Rouleau K, Earls JC, Soroceanu L, Foltz G, Cobbs CS, Price ND, Hood L. A Cell-Surface Membrane Protein Signature for Glioblastoma. Cell Syst 2017; 4:516-529.e7. [PMID: 28365151 DOI: 10.1016/j.cels.2017.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/08/2016] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
We present a systems strategy that facilitated the development of a molecular signature for glioblastoma (GBM), composed of 33 cell-surface transmembrane proteins. This molecular signature, GBMSig, was developed through the integration of cell-surface proteomics and transcriptomics from patient tumors in the REMBRANDT (n = 228) and TCGA datasets (n = 547) and can separate GBM patients from control individuals with a Matthew's correlation coefficient value of 0.87 in a lock-down test. Functionally, 17/33 GBMSig proteins are associated with transforming growth factor β signaling pathways, including CD47, SLC16A1, HMOX1, and MRC2. Knockdown of these genes impaired GBM invasion, reflecting their role in disease-perturbed changes in GBM. ELISA assays for a subset of GBMSig (CD44, VCAM1, HMOX1, and BIGH3) on 84 plasma specimens from multiple clinical sites revealed a high degree of separation of GBM patients from healthy control individuals (area under the curve is 0.98 in receiver operating characteristic). In addition, a classifier based on these four proteins differentiated the blood of pre- and post-tumor resections, demonstrating potential clinical value as biomarkers.
Collapse
Affiliation(s)
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Nameeta Shah
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | | | - John C Earls
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Greg Foltz
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Charles S Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Nathan D Price
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Wei C, Mei J, Tang L, Liu Y, Li D, Li M, Zhu X. 1-Methyl-tryptophan attenuates regulatory T cells differentiation due to the inhibition of estrogen-IDO1-MRC2 axis in endometriosis. Cell Death Dis 2016; 7:e2489. [PMID: 27906184 PMCID: PMC5260991 DOI: 10.1038/cddis.2016.375] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 02/06/2023]
Abstract
Foxp3+ regulatory T (Treg) cells contribute to the local dysfunctional immune environment in endometriosis, an estrogen-dependent gynecological disease, which affects the function of ectopic endometrial tissue clearance by the immune system. The reason for the high percentage of peritoneal Treg in endometriosis patients is unknown. Here, we show that the proportion of peritoneal Treg cells increases as endometriosis progresses. To determine the probable mechanism, we established a naive T cell-macrophage-endometrial stromal cell (ESC) co-culture system to mimic the peritoneal cavity microenvironment. After adding 1-methyl-tryptophan (1-MT), a specific inhibitor of indoleamine 2,3-dioxygenase-1 (IDO1), to the co-culture system, we found that the differentiation of Treg cells, mainly IL-10+ Treg cells, decreased. Therefore, 1-MT-pretreated ESCs-educated Treg cells performed impaired suppressive function. Moreover, estrogen promoted the differentiation of Treg cells by elevating IDO1 expression in the ectopic lesion. Subsequently, we examined mannose receptor C, type 2 (MRC2), which is an up-stream molecule of IL-10, by bioinformatics analysis and real-time PCR validation. MRC2 expression in ectopic ESCs was notably lower than that in normal ESCs, which further negatively regulated the expression of IDO1 and Ki-67 in ESCs. Furthermore, MRC2 is required for Treg differentiation in the ectopic lesion, especially that for CD4high Treg. Therefore, MRC2-silenced ESCs-educated Treg manifested a stronger suppressive function in vitro. Consistently, the percentage of Treg increased when MRC2-shRNA was administered in the peritoneal cavity of endometriosis-disease mice model. Besides, 1-MT improved the condition of endometriosis, in terms of reducing the number and weight of total ectopic lesions in vivo. These results indicate that the estrogen-IDO1-MRC2 axis participates in the differentiation and function of Treg and is involved in the development of endometriosis. Thus, blockage of IDO1 in the ectopic lesion, which does not influence physiological functions of estrogen, may be considered a potential therapy for endometriosis.
Collapse
Affiliation(s)
- Chunyan Wei
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing 210000, China
| | - Lingli Tang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Yukai Liu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Dajin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China
| | - Xiaoyong Zhu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| |
Collapse
|
25
|
RIP1 upregulation promoted tumor progression by activating AKT/Bcl-2/BAX signaling and predicted poor postsurgical prognosis in HCC. Tumour Biol 2016; 37:15305-15313. [DOI: 10.1007/s13277-016-5342-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 01/27/2023] Open
|
26
|
IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal 2016; 28:1314-1324. [PMID: 27297362 DOI: 10.1016/j.cellsig.2016.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/30/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.
Collapse
|
27
|
Song T, Dou C, Jia Y, Tu K, Zheng X. TIMP-1 activated carcinoma-associated fibroblasts inhibit tumor apoptosis by activating SDF1/CXCR4 signaling in hepatocellular carcinoma. Oncotarget 2016; 6:12061-79. [PMID: 25909286 PMCID: PMC4494923 DOI: 10.18632/oncotarget.3616] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP-1) is an endogenous inhibitor for MMPs that regulates the remodeling and turnover of the ECM during normal development and pathological conditions. Intriguingly, recent studies have shown that TIMP-1 plays a dual role in cancer progression. In this study, we found that TIMP-1 expression in HCC tissues is associated with advanced TNM stage, intrahepatic metastasis, portal vein invasion, and vasculature invasion. Notably, TIMP-1 expression in HCC tissue is significantly related to worse overall survival for patients with HCC after liver resection. Ectopic TIMP1 expression promoted the growth of HCC xenografts in nude mice. Both co-culture with Huh7 cells with a high level of TIMP-1 and TIMP1 treatment resulted in up-regulation of hallmarks of carcinoma-associated fibroblasts (CAFs) and accelerated cell proliferation, migration and invasion in immortalized liver fibroblasts (LFs) isolated from human normal liver tissue. By co-culture with CAFs, SDF-1/CXCR4/PI3K/AKT signaling was activated and apoptosis was markedly repressed with an increased Bcl-2/BAX ratio in Huh7 cells. Taken together, our observations suggest that TIMP-1 induces the trans-differentiation of LFs into CAFs, suppresses apoptosis via SDF-1/CXCR4/PI3K/AKT signaling and then promotes HCC progression. This protein may be a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Changwei Dou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuli Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
28
|
Guo LN, Gao HY, He M, Liu D. Significance of expression of mannose receptor in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:37-43. [DOI: 10.11569/wcjd.v24.i1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To detect the expression of mannose receptor (MR) in hepatocellular carcinoma tissues and hepatocellular carcinoma cell lines, and to analyze the relationship between MR expression and the occurrence, development and malignancy of hepatocellular carcinoma.
METHODS: Immunohistochemical method was used to detect the expression of MR in 50 hepatocellular carcinoma tissues, matched tumor adjacent tissues and 10 normal liver tissues. Immunofluorescence and Western blot were used to assay the expression of MR in hepatocellular carcinoma cell lines and a normal liver cell line.
RESULTS: By immunohistochemistry, it was found that MR expression was significantly higher in hepatocellular carcinoma tissues than in tumor adjacent tissues (86% vs 76%, P < 0.05) and normal liver tissues (86% vs 30%, P < 0.01). Immunofluorescence showed that MR was highly expressed in hepatocellular carcinoma cell lines BEL-7402 and HepG2, but lowly expressed in the human liver cell line HL-7702. Western blot analysis indicated that MR expression was significantly higher in BEL-7402 cells than in HepG2 cells (P < 0.01) and HL-7702 cells (P < 0.01).
CONCLUSION: MR is highly expressed in hepatocellular carcinoma tissues and hepatocellular carcinoma cell lines, and the expression of MR is significantly associated with the occurrence, development and malignancy of hepatocellular carcinoma.
Collapse
|
29
|
Wu K, Zhang X, Li F, Xiao D, Hou Y, Zhu S, Liu D, Ye X, Ye M, Yang J, Shao L, Pan H, Lu N, Yu Y, Liu L, Li J, Huang L, Tang H, Deng Q, Zheng Y, Peng L, Liu G, Gu X, He P, Gu Y, Lin W, He H, Xie G, Liang H, An N, Wang H, Teixeira M, Vieira J, Liang W, Zhao X, Peng Z, Mu F, Zhang X, Xu X, Yang H, Kristiansen K, Wang J, Zhong N, Wang J, Pan-Hammarström Q, He J. Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas. Nat Commun 2015; 6:10131. [PMID: 26647728 PMCID: PMC4682110 DOI: 10.1038/ncomms10131] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/06/2015] [Indexed: 01/04/2023] Open
Abstract
The landscape of genetic alterations in lung adenocarcinoma derived from Asian patients is largely uncharacterized. Here we present an integrated genomic and transcriptomic analysis of 335 primary lung adenocarcinomas and 35 corresponding lymph node metastases from Chinese patients. Altogether 13 significantly mutated genes are identified, including the most commonly mutated gene TP53 and novel mutation targets such as RHPN2, GLI3 and MRC2. TP53 mutations are furthermore significantly enriched in tumours from patients harbouring metastases. Genes regulating cytoskeleton remodelling processes are also frequently altered, especially in metastatic samples, of which the high expression level of IQGAP3 is identified as a marker for poor prognosis. Our study represents the first large-scale sequencing effort on lung adenocarcinoma in Asian patients and provides a comprehensive mutational landscape for both primary and metastatic tumours. This may thus form a basis for personalized medical care and shed light on the molecular pathogenesis of metastatic lung adenocarcinoma. Despite lung adenocarcinoma having a high global mortality, the genetic mutations present in Asian patients are uncharacterized. Here the authors use genomic and transcriptomic analysis to identify thirteen significantly affected genes, including RHPN2, GLI3, MRC2, TP53 and IQGAP3.
Collapse
Affiliation(s)
- Kui Wu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China.,Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Fuqiang Li
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Dakai Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yong Hou
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Shida Zhu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Dongbing Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaofei Ye
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Laboratory of Medicine, Karolinska Institutet, Stockholm 14186, Sweden
| | - Mingzhi Ye
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Guangzhou Key Laboratory of Cancer Trans-Omics Research, BGI-Guangzhou, Guangzhou 510006, China
| | - Jie Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Libin Shao
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Hui Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Na Lu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yuan Yu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Liping Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Liyan Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Hailing Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Qiuhua Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yue Zheng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Lihua Peng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Geng Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xia Gu
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ping He
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yingying Gu
- Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Weixuan Lin
- Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Huiming He
- Research Center for Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Guoyun Xie
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Han Liang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Na An
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Hui Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Manuel Teixeira
- Genetics Department and Research Center, Portuguese Oncology Institute, Porto 4200-072, Portugal
| | - Joana Vieira
- Genetics Department and Research Center, Portuguese Oncology Institute, Porto 4200-072, Portugal
| | - Wenhua Liang
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Xin Zhao
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zhiyu Peng
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Guangzhou Key Laboratory of Cancer Trans-Omics Research, BGI-Guangzhou, Guangzhou 510006, China
| | - Feng Mu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,BGI-Wuhan, Wuhan 430075, China
| | - Xiuqing Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Guangzhou Key Laboratory of Cancer Trans-Omics Research, BGI-Guangzhou, Guangzhou 510006, China
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanshan Zhong
- Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Jun Wang
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Qiang Pan-Hammarström
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China.,Department of Laboratory of Medicine, Karolinska Institutet, Stockholm 14186, Sweden
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Guangzhou Institute of Respiratory Disease &State Key Laboratory of Respiratory Disease, Guangzhou 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
30
|
Kanda M, Sugimoto H, Kodera Y. Genetic and epigenetic aspects of initiation and progression of hepatocellular carcinoma. World J Gastroenterol 2015; 21:10584-10597. [PMID: 26457018 PMCID: PMC4588080 DOI: 10.3748/wjg.v21.i37.10584] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/08/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary cancer of the liver that is predominant in developing countries and is responsible for nearly 600000 deaths each year worldwide. Similar to many other tumors, the development of HCC must be understood as a multistep process involving the accumulation of genetic and epigenetic alterations in regulatory genes, leading to the activation of oncogenes and the inactivation or loss of tumor suppressor genes. Extensive research over the past decade has identified a number of molecular biomarkers, including aberrant expression of HCC-related genes and microRNAs. The challenge facing HCC research and clinical care at this time is to address the heterogeneity and complexity of these genetic and epigenetic alterations and to use this information to direct rational diagnosis and treatment strategies. The multikinase inhibitor sorafenib was the first molecularly targeted drug for HCC to show some extent of survival benefits in patients with advanced tumors. Although the results obtained using sorafenib support the importance of molecular therapies in the treatment of HCC, there is still room for improvement. In addition, no molecular markers for drug sensitivity, recurrence and prognosis are currently clinically available. In this review, we provide an overview of recently published articles addressing HCC-related genes and microRNAs to update what is currently known regarding genetic and epigenetic aspects of the pathogenesis of HCC and propose novel promising candidates for use as diagnostic and therapeutic targets in HCC.
Collapse
|
31
|
Melander MC, Jürgensen HJ, Madsen DH, Engelholm LH, Behrendt N. The collagen receptor uPARAP/Endo180 in tissue degradation and cancer (Review). Int J Oncol 2015; 47:1177-88. [PMID: 26316068 PMCID: PMC4583827 DOI: 10.3892/ijo.2015.3120] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The collagen receptor uPARAP/Endo180, the product of the MRC2 gene, is a central component in the collagen turnover process governed by various mesenchymal cells. Through the endocytosis of collagen or large collagen fragments, this recycling receptor serves to direct basement membrane collagen as well as interstitial collagen to lysosomal degradation. This capacity, shared only with the mannose receptor from the same protein family, endows uPARAP/Endo180 with a critical role in development and homeostasis, as well as in pathological disruptions of the extracellular matrix structure. Important pathological functions of uPARAP/Endo180 have been identified in various cancers and in several fibrotic conditions. With a particular focus on matrix turnover in cancer, this review presents the necessary background for understanding the function of uPARAP/Endo180 at the molecular and cellular level, followed by an in-depth survey of the available knowledge of the expression and role of this receptor in various types of cancer and other degenerative diseases.
Collapse
Affiliation(s)
- Maria C Melander
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Henrik J Jürgensen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Daniel H Madsen
- Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, MD, USA
| | - Lars H Engelholm
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Niels Behrendt
- The Finsen Laboratory, Rigshospitalet/BRIC, The University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
32
|
Rostoker R, Abelson S, Genkin I, Ben-Shmuel S, Sachidanandam R, Scheinman EJ, Bitton-Worms K, Orr ZS, Caspi A, Tzukerman M, LeRoith D. CD24(+) cells fuel rapid tumor growth and display high metastatic capacity. Breast Cancer Res 2015; 17:78. [PMID: 26040280 PMCID: PMC4479226 DOI: 10.1186/s13058-015-0589-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/18/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Breast tumors are comprised of distinct cancer cell populations which differ in their tumorigenic and metastatic capacity. Characterization of cell surface markers enables investigators to distinguish between cancer stem cells and their counterparts. CD24 is a well-known cell surface marker for mammary epithelial cells isolation, recently it was suggested as a potential prognostic marker in a wide variety of malignancies. Here, we demonstrate that CD24+ cells create intra-tumor heterogeneity, and display highly metastatic properties. Methods The mammary carcinoma Mvt1 cells were sorted into CD24− and CD24+ cells. Both subsets were morphologically and phenotypically characterized, and tumorigenic capacity was assessed via orthotopic inoculation of each subset into the mammary fat pad of wild-type and MKR mice. The metastatic capacity of each subset was determined with the tail vein metastasis assay. The role of CD24 in tumorigenesis was further examined with shRNA technology. GFP-labeled cells were monitored in vivo for differentiation. The genetic profile of each subset was analyzed using RNA sequencing. Results CD24+ cells displayed a more spindle-like cytoplasm. The cells formed mammospheres in high efficiency and CD24+ tumors displayed rapid growth in both WT and MKR mice, and were more metastatic than CD24- cells. Interestingly, CD24-KD in CD24+ cells had no effect both in vitro and in vivo on the various parameters studied. Moreover, CD24+ cells gave rise in vivo to the CD24− that comprised the bulk of the tumor. RNA-seq analysis revealed enrichment of genes and pathways of the extracellular matrix in the CD24+ cells. Conclusion CD24+ cells account for heterogeneity in mammary tumors. CD24 expression at early stages of the cancer process is an indication of a highly invasive tumor. However, CD24 is not a suitable therapeutic target; instead we suggest here new potential targets accounting for early differentiated cancer cells tumorigenic capacity. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0589-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran Rostoker
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Sagi Abelson
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 31096, Israel.
| | - Inna Genkin
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Sarit Ben-Shmuel
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Ravi Sachidanandam
- Department of Oncological Science, Icahn School of Medicine at Mt Sinai and the James J Peters VA Medical Center, New York, USA.
| | - Eyal J Scheinman
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Keren Bitton-Worms
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Zila Shen Orr
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Avishay Caspi
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel.
| | - Maty Tzukerman
- Laboratory of Molecular Medicine, Rambam Health Care Campus and Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 31096, Israel.
| | - Derek LeRoith
- Diabetes and Metabolism Clinical Research Center of Excellence, Clinical Research Institute at Rambam (CRIR) and the Faculty of Medicine, Technion, Rambam Medical Center, P.O.B 9602, Haifa, 31096, Israel. .,Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Histone acetyltransferase PCAF accelerates apoptosis by repressing a GLI1/BCL2/BAX axis in hepatocellular carcinoma. Cell Death Dis 2015; 6:e1712. [PMID: 25855960 PMCID: PMC4650545 DOI: 10.1038/cddis.2015.76] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 01/03/2023]
Abstract
P300/CBP-associated factor (PCAF), a histone acetyltransferase (HAT), has been found to regulate numerous cell signaling pathways controlling cell fate by acetylating both histone and non-histone proteins. We previously reported that PCAF upregulates cell apoptosis by inactivating Serine/Threonine Protein Kinase 1 (AKT1) signaling and consequently inhibits hepatocellular carcinoma (HCC) cell growth. Here, we show that PCAF can directly acetylate cytoplasmic GLI1 protein at lysine 518, preventing its nuclear translocation and promoter occupancy, and consequently suppressing Hedgehog (Hh) signaling in HCC. Further, our results show that GLI1 can increase Bcl-2 expression and downregulate BAX. Interestingly, forced expression of PCAF reduced Bcl-2 expression, upregulated BAX and repressed cell apoptosis. Further, we provide evidence that knockdown of GLI1 abrogates the inhibitory effect of PCAF on the growth of HCC in vitro. PCAF was also found to sensitize HCC cells to 5-fluorouracil (5-FU) treatment by regulating GLI1/Bcl-2/BAX axis-dependent apoptosis. In vivo experiments also confirmed the regulatory effect of PCAF on the GLI1/Bcl-2/BAX axis and its synergistic antitumor effects with 5-FU. Gene expression microarray studies showed that PCAF was downregulated in HCC tissues compared with adjacent liver tissues and that PCAF expression was significantly associated with longer overall survival and recurrence-free survival after surgery. Together, these results show that PCAF can induce cell apoptosis by modulating a GLI1/Bcl-2/BAX axis that in turn suppresses HCC progression, and suggest that 5-FU may exert a stronger anti-tumor effect in patients with PCAF expression in HCC tumors.
Collapse
|