1
|
Habib MR, Tokutake Y, Yonekura S. Palmitic acid-induced cell death: impact of endoplasmic reticulum and oxidative stress, mitigated by L-citrulline. Anim Biosci 2025; 38:54-66. [PMID: 39210805 PMCID: PMC11725730 DOI: 10.5713/ab.24.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Palmitic acid (PA), the most abundant saturated free fatty acids, induces apoptosis in bovine mammary epithelial cells (MECs). It is suggested that oxidative stress and endoplasmic reticulum (ER) stress are key mechanisms underlying PA-induced cell death. This study aimed to investigate the interaction between ER stress and oxidative stress during PA-induced cell death in mammary alveolar cell-T (MAC-T) cells. Additionally, we examined whether L-citrulline can protect against PA-induced damage of MAC-T cells. METHODS MAC-T cells were treated with 4-phenyl butyric acid (4-PBA) or N-acetyl-Lcysteine (NAC) to inhibit PA-induced ER stress and oxidative stress, respectively. MAC-T cells were pretreated with or without L-citrulline for 48 h followed by PA treatment. Cell viability was measured with MTT assays. Intracellular reactive oxygen species (ROS) levels in MAC-T cells were assessed using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluores cein diacetate acetyl ester dye. Real-time quantitative polymerase chain reaction was used to explore the regulation of genes associated with oxidative stress, and ER stress genes. Western blotting analysis was also carried out. RESULTS 4-PBA significantly reduced PA-induced mRNA expressions of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and intracellular ROS levels. Furthermore, NAC dramatically reduced PA-induced ROS levels and the mRNA expressions of NRF2, ATF4, and CHOP. L-citrulline pretreatment effectively rescued cell viability decreased by PA. Moreover, L-citrulline pretreatment significantly downregulated the PA-induced upregulation of GRP78, ATF4, and CHOP mRNA expression, and protein expression of p-PERK and cleaved caspase-3. PA increased intracellular ROS levels and NRF2 mRNA expression, whereas L-citrulline pretreatment remarkably reduced these levels. CONCLUSION Both ER and oxidative stresses interact during PA-induced cell death in MAC-T cells, and L-citrulline could attenuate this cell death by inhibiting ER and oxidative stresses. Therefore, L-citrulline may be a promising supplement for protecting against PA-induced cell death in bovine MECs during the lactation period of dairy cows.
Collapse
Affiliation(s)
- Md. Rezwanul Habib
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 399-4598,
Japan
| | - Yukako Tokutake
- Institute of Agriculture, Academic Assembly, Shinshu University, Nagano 399-4598,
Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 399-4598,
Japan
- Institute of Agriculture, Academic Assembly, Shinshu University, Nagano 399-4598,
Japan
| |
Collapse
|
2
|
He Y, Li S, Jiang L, Wu K, Chen S, Su L, Liu C, Liu P, Luo W, Zhong S, Li Z. Palmitic Acid Accelerates Endothelial Cell Injury and Cardiovascular Dysfunction via Palmitoylation of PKM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412895. [PMID: 39665133 DOI: 10.1002/advs.202412895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Indexed: 12/13/2024]
Abstract
High serum level of palmitic acid(PA) is implicated in pathogenesis of cardiovascular diseases. PA serves as the substrate for protein palmitoylation. However, it is still unknown whether palmitoylation is involved in PA-induced cardiovascular dysfunction. Here, in clinical cohort studies of 1040 patients with coronary heart disease, high level of PA is associated with risk of major adverse cardiovascular events (MACE) and death. In ApoE-/-mice, 10 mg/kg-1 PA treatment induces blood pressure elevation, cardiac contractile dysfunction, endothelial dysfunction and atherosclerotic plaqueformation. In endothelial cells, inhibition of palmitoylation bypalmitoyl-transferase inhibitor 2-BP eliminates PA-induced endothelial injury, whereas promotion of palmitoylation by depalmitoylase inhibitor ML349 exacerbates the harmful effect of PA. Palmitoyl-proteomics analysis identifies pyruvate kinase isozyme type M2 (PKM2) as the palmitoylated protein responsible for PA-induced endothelial injury, and Cys31 as the predominant palmitoylated site. PKM2-C31S mutants (cysteine replaced by serine) prevents PA-induced endothelial injury. Endothelial-specific AAV-C31S PKM2endo ameliorates cardiovascular dysfunction caused by PA in ApoE-/- mice. Mechanistically, PKM2-C31 palmitoylation impairs PKM2 tetramerization to inhibit its pyruvate kinase activity and endothelial glycolysis. Finally, zDHHC13 is identified as the palmitoyl acyltransferase of PKM2. In conclusion, these findings suggest that PKM2-C31 palmitoylation contributes to PA-induced endothelial injury and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Yu He
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Senlin Li
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lujing Jiang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kejue Wu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanshan Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Linjie Su
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Cui Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenwei Luo
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
| | - Shilong Zhong
- Department of Pharmacy, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, P. R. China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Nittayananta W, Srichana T, Chuerduangphui J, Hitakomate E, Netsomboon K. Formulation of 1% α-mangostin in orabase gel induces apoptosis in oral squamous cell carcinoma. BMC Complement Med Ther 2024; 24:276. [PMID: 39033112 PMCID: PMC11264970 DOI: 10.1186/s12906-024-04450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Plant-derived compounds have chemopreventive properties to be used as alternative medicine. Pericarp of Mangosteen (Garcinia mangostana Linn.), a tropical fruit in Southeast Asia contains a phytochemical α-mangostin (α-MG) that demonstrates potent anticancer effects against various types of cancer. α-MG has been reported to be the most effective agent in human cancer cell lines. The objectives of this study were to develop oral gel formulations containing α-MG and determine their (1) anticancer activity, (2) anti-HPV-16 and antimicrobial activities, (3) nitric oxide (NO) inhibitory activity, and (4) wound healing effect. METHODS Formulations of oral gel containing α-MG were developed. Anticancer activity on SCC-25 was assessed. Apoptotic induction was determined using flow cytometry technique. Antiviral activity against HPV-16 pseudovirus and antimicrobial activity against S. mutans, P. gingivalis and C. albicans were investigated. NO inhibition was carried out. Fibroblast cell migration was determined by in vitro scratch assay. RESULTS The formulation of 1% α-MG in orabase gel demonstrated anticancer activity by promoting apoptosis in SCC-25. The induction of apoptotic activity was dose dependent with pronounced effect in late apoptosis. The formulation appeared to reduce cell viability of oral keratinocytes (OKC). At CC50 it showed an inhibition against HPV-16 pseudovirus infection. The formulation had no antimicrobial activity against S. mutans, P. gingivalis and C. albicans. No significant NO inhibitory activity and wound healing effects were found. CONCLUSIONS 1% α-MG in orabase gel exhibited anticancer activity by inducing apoptosis although low level of cytotoxicity observed in OKC was present. The appropriate carrier for novel nano-particles targeting cancer cells should be further investigated.
Collapse
Affiliation(s)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | | | - Kesinee Netsomboon
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
4
|
Belal SA, Lee J, Park J, Kang D, Shim K. The Effects of Oleic Acid and Palmitic Acid on Porcine Muscle Satellite Cells. Foods 2024; 13:2200. [PMID: 39063284 PMCID: PMC11276066 DOI: 10.3390/foods13142200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups. No significant effects on apoptosis were observed in all three treatments, whereas necrosis was significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-treated groups. Myotube formation significantly increased in OA-alone and PA + OA-treated PMSCs than in the control and PA-alone-treated PMSCs. mRNA expression of the myogenesis-related genes MyoD1 and MyoG and of the adipogenesis-related genes PPARα, C/EBPα, PLIN1, FABP4, and FAS was significantly upregulated in OA-alone- and PA + OA-treated cells compared to control and PA-alone-treated cells, consistent with immunoblotting results for MyoD1 and MyoG. Supplementation of unsaturated fatty acid (OA) with/without saturated fatty acid (PA) significantly stimulated TAG accumulation in treated cells compared to the control and PA-alone-treated PMSCs. These results indicate that OA (alone and with PA) promotes proliferation by inhibiting necrosis and promoting myotube formation and TAG accumulation, likely upregulating myogenesis- and adipogenesis-related gene expression by modulating the effects of PA in PMSCs.
Collapse
Affiliation(s)
- Shah Ahmed Belal
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Poultry Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jinryong Park
- Food Processing Research Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea; (S.A.B.); (D.K.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| |
Collapse
|
5
|
Hajab H, Anwar A, Nawaz H, Majeed MI, Alwadie N, Shabbir S, Amber A, Jilani MI, Nargis HF, Zohaib M, Ismail S, Kamal A, Imran M. Surface-enhanced Raman spectroscopy of the filtrate portions of the blood serum samples of breast cancer patients obtained by using 30 kDa filtration device. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124046. [PMID: 38364514 DOI: 10.1016/j.saa.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Raman spectroscopy is reliable tool for analyzing and exploring early disease diagnosis related to body fluids, such as blood serum, which contain low molecular weight fraction (LMWF) and high molecular weight fraction (HMWF) proteins. The disease biomarkers consist of LMWF which are dominated by HMWF hence their analysis is difficult. In this study, in order to overcome this issue, centrifugal filter devices of 30 kDa were used to obtain filtrate and residue portions obtained from whole blood serum samples of control and breast cancer diagnosed patients. The filtrate portions obtained in this way are expected to contain the marker proteins of breast cancer of the size below this filter size. These may include prolactin, Microphage migration inhabitation factor (MIF), γ-Synuclein, BCSG1, Leptin, MUC1, RS/DJ-1 present in the centrifuged blood serum (filtrate portions) which are then analyzed by the SERS technique to recognize the SERS spectral characteristics associated with the progression of breast cancer in the samples of different stages as compared to the healthy ones. The key intention of this study is to achieve early-stage breast cancer diagnosis through the utilization of Surface Enhanced Raman Spectroscopy (SERS) after the centrifugation of healthy and breast cancer serum samples with Amicon ultra-filter devices of 30 kDa. The silver nanoparticles with high plasmon resonance are used as a substrate for SERS analysis. Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) models are utilized as spectral classification tools to assess and predict rapid, reliable, and non-destructive SERS-based analysis. Notably, they were particularly effective in distinguishing between different SERS spectral groups of the cancerous and non-cancerous samples. By comparing all these spectral data sets to each other PLSDA shows the 79 % accuracy, 76 % specificity, and 81 % sensitivity in samples with AUC value of AUC = 0.774 SERS has proven to be a valuable technique for the rapid identification of the SERS spectral features of blood serum and its filtrate fractions from both healthy individuals and those with breast cancer, aiding in disease diagnosis.
Collapse
Affiliation(s)
- Hawa Hajab
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Anwar
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| | - Najah Alwadie
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Sana Shabbir
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Arooj Amber
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Hafiza Faiza Nargis
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Zohaib
- Department of Zoology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sidra Ismail
- Medical College, Foundation University Islamabad, Pakistan
| | - Abida Kamal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| |
Collapse
|
6
|
Dai L, Yang L, Li Y, Li S, Yang D, Li Y, He D. Origin differentiation based on volatile constituents of genuine medicinal materials Quisqualis indica L. via HS-GC-MS, response surface methodology, and chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:567-578. [PMID: 38191129 DOI: 10.1002/pca.3313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Quisqualis indica L. (QIL) has a long history as a traditional Chinese herb in China, but the study of volatile components in QIL from different geographical sources has been relatively rare. OBJECTIVES To establish an optimal headspace gas chromatography-mass spectrometry (HS-GC-MS) method to comprehensively analyse the volatile component profile and screen quality markers of QIL from different origins. METHODS Response surface methodology (RSM) was used to optimise the conditions for headspace analysis. The volatile components of QIL from four main origins of southwest China were analysed and identified by HS-GC-MS. The similarity of all samples of QIL was evaluated by fingerprint. The differences of the volatile components in QIL from different origins were distinguished by chemometrics. RESULTS According to the optimal conditions of RSM, a total of 31 volatile components were identified, including fatty acids, aldehydes, alcohols, alkyl pyrazines, and other volatile components. Similarity evaluation presented that there were 26 common volatile components with different contents in all samples. Principal component analysis (PCA) showed that QIL from four different origins could be roughly divided into four categories. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that QIL from different origins had obvious regional characteristics. CONCLUSION The optimised HS-GC-MS method provided a strategy to rapidly, effectively, and accurately elucidate the volatile component profile of QIL from different origins, and seven important differential components were screened for quality evaluation and origin traceability.
Collapse
Affiliation(s)
- Lei Dai
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Lin Yang
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Li
- Chongqing Pharmaceutical Preparation Engineering Technology Research Center, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Shuya Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yaxuan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan He
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Kong Y, Liu Y, Li X, Rao M, Li D, Ruan X, Li S, Jiang Z, Zhang Q. Palmitoylation landscapes across human cancers reveal a role of palmitoylation in tumorigenesis. J Transl Med 2023; 21:826. [PMID: 37978524 PMCID: PMC10655258 DOI: 10.1186/s12967-023-04611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Protein palmitoylation, which is catalyzed by palmitoyl-transferase and de-palmitoyl-transferase, plays a crucial role in various biological processes. However, the landscape and dynamics of protein palmitoylation in human cancers are not well understood. METHODS We utilized 23 palmitoyl-acyltransferases and seven de-palmitoyl-acyltransferases as palmitoylation-related genes for protein palmitoylation analysis. Multiple publicly available datasets were employed to conduct pan-cancer analysis, examining the transcriptome, genomic alterations, clinical outcomes, and correlation with c-Myc (Myc) for palmitoylation-related genes. Real-time quantitative PCR and immunoblotting were performed to assess the expression of palmitoylation-related genes and global protein palmitoylation levels in cancer cells treated with Myc depletion or small molecule inhibitors. Protein docking and drug sensitivity analyses were employed to predict small molecules that target palmitoylation-related genes. RESULTS We identified associations between palmitoylation and cancer subtype, stage, and patient survival. We discovered that abnormal DNA methylation and oncogenic Myc-driven transcriptional regulation synergistically contribute to the dysregulation of palmitoylation-related genes. This dysregulation of palmitoylation was closely correlated with immune infiltration in the tumor microenvironment and the response to immunotherapy. Importantly, dysregulated palmitoylation was found to modulate canonical cancer-related pathways, thus influencing tumorigenesis. To support our findings, we performed a proof-of-concept experiment showing that depletion of Myc led to reduced expression of most palmitoylation-related genes, resulting in decreased global protein palmitoylation levels. Through mass spectrometry and enrichment analyses, we also identified palmitoyl-acyltransferases ZDHHC7 and ZDHHC23 as significant contributors to mTOR signaling, DNA repair, and immune pathways, highlighting their potential roles in tumorigenesis. Additionally, our study explored the potential of three small molecular (BI-2531, etoposide, and piperlongumine) to modulate palmitoylation by targeting the expression or activity of palmitoylation-related genes or enzymes. CONCLUSIONS Overall, our findings underscore the critical role of dysregulated palmitoylation in tumorigenesis and the response to immunotherapy, mediated through classical cancer-related pathways and immune cell infiltration. Additionally, we propose that the aforementioned three small molecule hold promise as potential therapeutics for modulating palmitoylation, thereby offering novel avenues for cancer therapy.
Collapse
Affiliation(s)
- Yue Kong
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Yugeng Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Xianzhe Li
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Menglan Rao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Dawei Li
- Zhumadian Central Hospital, Huanghuai University, Zhumadian, 463000, China
| | - Xiaolan Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Shanglin Li
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, Basic Medicine College, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, 510632, China.
| | - Qiang Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
8
|
Jiménez-Nevárez YB, Montes-Avila J, Angulo-Escalante MA, Nolasco-Quintana NY, González Christen J, Hurtado-Díaz I, Quintana-Obregón EA, Heredia JB, Valdez-Torres JB, Alvarez L. Bioactivity of Fractions and Pure Compounds from Jatropha cordata (Ortega) Müll. Arg. Bark Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:3780. [PMID: 37960136 PMCID: PMC10649229 DOI: 10.3390/plants12213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, β-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 μg/mL and 30 μg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 μg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation.
Collapse
Affiliation(s)
- Yazmín B. Jiménez-Nevárez
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Julio Montes-Avila
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico;
| | - Miguel Angel Angulo-Escalante
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Ninfa Yaret Nolasco-Quintana
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Judith González Christen
- Laboratorio de Inmunidad Innata, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, Cuernavaca 62206, Mexico;
| | - Israel Hurtado-Díaz
- Departamento de Madera Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, km 15.5 Guadalajara-Nogales, Las Agujas, Zapopan 45100, Mexico;
| | - Eber Addí Quintana-Obregón
- CONACYT—Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Mexico;
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Eldorado km 5.5, Campo El Diez, Culiacán 80110, Mexico; (Y.B.J.-N.); (M.A.A.-E.); (J.B.H.)
| | - Laura Alvarez
- Programa de Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria s/n, Culiacán 80010, Mexico;
| |
Collapse
|
9
|
Wang X, Zhang C, Bao N. Molecular mechanism of palmitic acid and its derivatives in tumor progression. Front Oncol 2023; 13:1224125. [PMID: 37637038 PMCID: PMC10447256 DOI: 10.3389/fonc.2023.1224125] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Palmitic acid (PA) is a saturated fatty acid commonly found in coconut oil and palm oil. It serves as an energy source for the body and plays a role in the structure and function of cell membranes. Beyond its industrial applications, PA has gained attention for its potential therapeutic properties. Modern pharmacological studies have demonstrated that PA exhibits anti-inflammatory, antioxidant, and immune-enhancing effects. In recent years, PA has emerged as a promising anti-tumor agent with demonstrated efficacy against various malignancies including gastric cancer, liver cancer, cervical cancer, breast cancer, and colorectal cancer. Its anti-tumor effects encompass inducing apoptosis in tumor cells, inhibiting tumor cell proliferation, suppressing metastasis and invasion, enhancing sensitivity to chemotherapy, and improving immune function. The main anticancer mechanism of palmitic acid (PA) involves the induction of cell apoptosis through the mitochondrial pathway, facilitated by the promotion of intracellular reactive oxygen species (ROS) generation. PA also exhibits interference with the cancer cell cycle, leading to cell cycle arrest predominantly in the G1 phase. Moreover, PA induces programmed cell autophagy death, inhibits cell migration, invasion, and angiogenesis, and synergistically enhances the efficacy of chemotherapy drugs while reducing adverse reactions. PA acts on various intracellular and extracellular targets, modulating tumor cell signaling pathways, including the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), endoplasmic reticulum (ER), B Cell Lymphoma-2 (Bcl-2), P53, and other signaling pathways. Furthermore, derivatives of PA play a significant regulatory role in tumor resistance processes. This paper provides a comprehensive review of recent studies investigating the anti-tumor effects of PA. It summarizes the underlying mechanisms through which PA exerts its anti-tumor effects, aiming to inspire new perspectives for the treatment of malignant tumors in clinical settings and the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Xitan Wang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chaonan Zhang
- Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Weifang Medical University, Weifang, Shandong, China
| | - Na Bao
- Jining First People’s Hospital, Jining, Shandong, China
| |
Collapse
|
10
|
Marrano N, Biondi G, Borrelli A, Rella M, Zambetta T, Di Gioia L, Caporusso M, Logroscino G, Perrini S, Giorgino F, Natalicchio A. Type 2 Diabetes and Alzheimer's Disease: The Emerging Role of Cellular Lipotoxicity. Biomolecules 2023; 13:183. [PMID: 36671568 PMCID: PMC9855893 DOI: 10.3390/biom13010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Type 2 diabetes (T2D) and Alzheimer's diseases (AD) represent major health issues that have reached alarming levels in the last decades. Although growing evidence demonstrates that AD is a significant comorbidity of T2D, and there is a ~1.4-2-fold increase in the risk of developing AD among T2D patients, the involvement of possible common triggers in the pathogenesis of these two diseases remains largely unknown. Of note, recent mechanistic insights suggest that lipotoxicity could represent the missing ring in the pathogenetic mechanisms linking T2D to AD. Indeed, obesity, which represents the main cause of lipotoxicity, has been recognized as a major risk factor for both pathological conditions. Lipotoxicity can lead to inflammation, insulin resistance, oxidative stress, ceramide and amyloid accumulation, endoplasmic reticulum stress, ferroptosis, and autophagy, which are shared biological events in the pathogenesis of T2D and AD. In the current review, we try to provide a critical and comprehensive view of the common molecular pathways activated by lipotoxicity in T2D and AD, attempting to summarize how these mechanisms can drive future research and open the way to new therapeutic perspectives.
Collapse
Affiliation(s)
- Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Borrelli
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Martina Rella
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tommaso Zambetta
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Ludovico Di Gioia
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariangela Caporusso
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Giancarlo Logroscino
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione Cardinale G. Panico, 73039 Lecce, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
11
|
Ge X, He Z, Cao C, Xue T, Jing J, Ma R, Zhao W, Liu L, Jueraitetibaike K, Ma J, Feng Y, Qian Z, Zou Z, Chen L, Fu C, Song N, Yao B. Protein palmitoylation-mediated palmitic acid sensing causes blood-testis barrier damage via inducing ER stress. Redox Biol 2022; 54:102380. [PMID: 35803125 PMCID: PMC9287734 DOI: 10.1016/j.redox.2022.102380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Blood-testis barrier (BTB) damage promotes spermatogenesis dysfunction, which is a critical cause of male infertility. Dyslipidemia has been correlated with male infertility, but the major hazardous lipid and the underlying mechanism remains unclear. In this study, we firstly discovered an elevation of palmitic acid (PA) and a decrease of inhibin B in patients with severe dyszoospermia, which leaded us to explore the effects of PA on Sertoli cells. We observed a damage of BTB by PA. PA penetration to endoplasmic reticulum (ER) and its damage to ER structures were exhibited by microimaging and dynamic observation, and consequent ER stress was proved to mediate PA-induced Sertoli cell barrier disruption. Remarkably, we demonstrated a critical role of aberrant protein palmitoylation in PA-induced Sertoli cell barrier dysfunction. An ER protein, Calnexin, was screened out and was demonstrated to participate in this process, and suppression of its palmitoylation showed an ameliorating effect. We also found that ω-3 poly-unsaturated fatty acids down-regulated Calnexin palmitoylation, and alleviated BTB dysfunction. Our results indicate that dysregulated palmitoylation induced by PA plays a pivotal role in BTB disruption and subsequent spermatogenesis dysfunction, suggesting that protein palmitoylation might be therapeutically targetable in male infertility. An elevation of circulating PA was identified in patients with severe dyszoospermia. PA-induced over-palmitoylation in Sertoli cells leads to ER stress and BTB damage. The palmitoylation of the ER protein Calnexin regulates Sertoli cell barrier function. ω-3 PUFAs ameliorate PA-induced damage and over-palmitoylation in Sertoli cells.
Collapse
|
12
|
Urso C, Zhou H. Palmitic acid-induced defects in cell cycle progression and cytokinesis in Neuro-2a cells. Cell Cycle 2022; 21:1048-1057. [PMID: 35171079 PMCID: PMC9037450 DOI: 10.1080/15384101.2022.2040769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Obesity is associated with elevated levels of free fatty acids (FFAs). Excessive saturated fatty acids (SFAs) exhibit significant deleterious cytotoxic effects in many types of cells. However, the effects of palmitic acid (PA), the most common circulating SFA, on cell cycle progression in neuronal cells have not been well-examined. The aim of this study was to examine whether PA affects the proliferation and cell cycle progression in mouse neuroblastoma Neuro-2a (N2a) cells. Our studies found that 200 µM PA significantly decreased DNA synthesis and mitotic index in N2a cells as early as 4 h following treatment. 24 h treatment with 200 µM PA significantly decreased the percentage of diploid (2 N) cells while dramatically increasing the percentage of tetraploid (4 N) cells as compared to the BSA control. Moreover, our studies found that 24 h treatment with 200 µM PA increased the percentage of binucleate cells as compared to the BSA control. Our studies also found that unsaturated fatty acids (UFAs), including linoleic acid, oleic acid, α-linolenic acid, and docosahexaenoic acid, were able to abolish PA-induced decrease of 2 N cells, increase of 4 N cells, and accumulation of binucleate cells. Taken together, these results suggest that PA may affect multiple aspects of the cell cycle progression in N2a cells, including decreased DNA synthesis, G2/M arrest, and cytokinetic failure, which could be abolished by UFAs.Abbreviations: 4-PBA, 4-Phenylbutyric Acid; ALA, α-linolenic acid; BrdU, 5-bromo-2'-deoxyuridine; DAPI, 4',6-diamidino-2-phenylindole; ER, endoplasmic reticulum; FFA, free fatty acids; FITC, fluorescein isothiocyanate; LA, linoleic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; N2a, Neuro-2a; NAC, N-acetyl cysteine; OA, oleic acid; PA, palmitic acid; pHH3, Phosphorylation of histone H3; PI, propidium iodide; SFA, saturated fatty acids; PUFA, polyunsaturated fatty acids; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; UFA, unsaturated fatty acids.
Collapse
Affiliation(s)
- C.J. Urso
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Heping Zhou
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA,CONTACT Heping Zhou Department of Biological Sciences, Seton Hall University, South Orange, NJ07079, USA
| |
Collapse
|
13
|
Abd-Alhaseeb MM, Massoud SM, Elsayed F, Omran GA, Salahuddin A. Evening Primrose Oil Enhances Tamoxifen's Anticancer Activity against Breast Cancer Cells by Inducing Apoptosis, Inhibiting Angiogenesis, and Arresting the Cell Cycle. Molecules 2022; 27:2391. [PMID: 35458590 PMCID: PMC9031472 DOI: 10.3390/molecules27082391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Despite advancements in cancer treatment, breast cancer (BC) is still one of the leading causes of death among women. The majority of anti-breast-cancer medications induce serious side effects and multidrug resistance. Although several natural compounds, such as evening primrose oil (EPO), have been shown to have anticancer properties when used alone, their combination with the anticancer medicine tamoxifen (TAM) has yet to be investigated. The present study aimed to investigate the anticancer efficacy of EPO, alone or in combination with TAM, in the BC cell lines MCF-7 and MDA-MB-231, as well as to elucidate the mechanism of action. METHODS The MTT assay was used to investigate the cytotoxic effect of EPO on the two cell lines, and we discovered an acceptable IC50 that was comparable to TAM. The ELISA, qRT-PCR, flow cytometry and colorimetric techniques were used. RESULTS The combination of EPO and TAM suppressed the VEGF level, VEGF gene expression and Cyclin D1 signaling pathways, arrested the cell cycle, and induced the apoptotic signaling pathways by increasing the Bax/Bcl-2 ratio and caspase 3 activity; this revealed significant anti-tumor activity. CONCLUSIONS The most significant finding of this study was the confirmation of the anticancer activity of the natural product EPO, which potentiated the activity of the anticancer drug TAM against MCF-7 and MDA-MB-231 BC cell lines through the induction of apoptosis, inhibiting angiogenesis and halting cell proliferation.
Collapse
Affiliation(s)
- Mohammad M. Abd-Alhaseeb
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| | - Sarah M. Massoud
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt; (S.M.M.); (G.A.O.)
| | - Fatma Elsayed
- Cell Culture Unit, Medical Research Institute, Alexandria University, Alexandria 21648, Egypt;
| | - Gamal A. Omran
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt; (S.M.M.); (G.A.O.)
| | - Ahmad Salahuddin
- Department of Biochemistry, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt; (S.M.M.); (G.A.O.)
| |
Collapse
|
14
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
15
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
16
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
17
|
Wu ZS, Huang SM, Wang YC. Palmitate Enhances the Efficacy of Cisplatin and Doxorubicin against Human Endometrial Carcinoma Cells. Int J Mol Sci 2021; 23:ijms23010080. [PMID: 35008502 PMCID: PMC8744704 DOI: 10.3390/ijms23010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer is the most common gynecological cancer worldwide. At present there is no effective screening test for its early detection and no curative treatment for women with advanced-stage or recurrent disease. Overexpression of fatty acid synthase is a common molecular feature of a subgroup of sex steroid-related cancers associated with poor prognoses, including endometrial cancers. Disruption of this fatty acid synthesis leads to cell apoptosis, making it a potential therapeutic target. The saturated fatty acid palmitate reportedly induces lipotoxicity and cell death by inducing oxidative stress in many cell types. Here, we explored the effects of palmitate combined with doxorubicin or cisplatin in the HEC-1-A and RL95-2 human endometrial cancer cell lines. The results showed that physiological concentrations of exogenous palmitate significantly increased cell cycle arrest, DNA damage, autophagy, and apoptosis in both RL95-2 and HEC-1-A cells. It also increased the chemosensitivity of both cell types. Notably, we did not observe that palmitate lipotoxicity reflected increased levels of reactive oxygen species, suggesting palmitate acts via a different mechanism in endometrial cancer. This study thus provides a potential therapeutic strategy in which palmitate is used as an adjuvant in the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Zih-Syuan Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (Z.-S.W.); (S.-M.H.)
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (Z.-S.W.); (S.-M.H.)
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yu-Chi Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (Z.-S.W.); (S.-M.H.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence:
| |
Collapse
|
18
|
Zhu S, Jiao W, Xu Y, Hou L, Li H, Shao J, Zhang X, Wang R, Kong D. Palmitic acid inhibits prostate cancer cell proliferation and metastasis by suppressing the PI3K/Akt pathway. Life Sci 2021; 286:120046. [PMID: 34653428 DOI: 10.1016/j.lfs.2021.120046] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS Prostate cancer is one of the most frequent causes of cancer death in men worldwide, and novel drugs for prostate cancer therapies are still being developed. Palmitic acid is a common saturated long-chain fatty acid that is known to exhibit anti-inflammatory and metabolic regulatory effects and antitumor activities in several types of tumors. The present study aims to explore the antiproliferative and antimetastatic activities of palmitic acid on human prostate cancer cells and the underlying mechanism. MAIN METHODS MTT and colony formation assays were utilized to determine the antiproliferative effect of palmitic acid. Cell metastasis was evaluated by wound healing, Transwell migration and invasion assay. The in vivo anticancer effect was assessed by a nude mouse xenograft model of prostate cancer. The involved molecular mechanisms were investigated by flow cytometry and Western blot analysis. KEY FINDINGS Palmitic acid significantly suppressed prostate cancer cell growth in vitro and in vivo. Treatment with palmitic acid induced G1 phase arrest, which was associated with downregulation of cyclin D1 and p-Rb and upregulation of p27. In addition, palmitic acid could inhibit prostate cancer cell metastasis, in which suppression of PKCζ and p-Integrinβ1 and an increase in E-cadherin expression might be involved. Furthermore, a mechanistic study indicated that palmitic acid inhibited the key molecules of the PI3K/Akt pathway to block prostate cancer proliferation and metastasis. SIGNIFICANCE Our findings suggested the antitumor potential of palmitic acid for prostate cancer by targeting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shan Zhu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yanglu Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Lanjiao Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jingrong Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoliang Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin 301700, China.
| |
Collapse
|
19
|
Tsai MH, Chao HR, Hsu WL, Tsai CC, Lin CW, Chen CH. Analysis of Polybrominated Diphenyl Ethers and Lipid Composition in Human Breast Milk and Their Correlation with Infant Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111501. [PMID: 34770016 PMCID: PMC8583092 DOI: 10.3390/ijerph182111501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 01/09/2023]
Abstract
Breastfeeding is recommended over formula feeding, but human breast milk (HBM) composition varies and can be affected by food additives. Whether flame-retardant polybrominated diphenyl ethers (PBDEs) found in HBM interact with lipid components of HBM to impede infant neurodevelopment is a critical public health issue. Using lipidomic analysis, we examined the association of PBDEs in HBM and HBM lipid components with infant neurodevelopment. HBM samples (n = 100) were collected at the beginning stage of breastfeeding and analyzed for 30 PBDE congeners as well as a group of lipid components by using high-resolution gas chromatography, mass spectrometry, and liquid chromatography time-of-flight mass spectrometry. Infants were examined at 8 to 12 months of age by using the Bayley-III to assess neurodevelopment. A total of seven PBDEs, 35 lipids, and 27 fatty acids in HBM showed significant associations with Bayley-III scores. Multivariate analysis confirmed that these candidate PBDEs and lipid components were significant predictors of infant neurodevelopment. Eicosapentaenoic acid and docosapentaenoic acid in HBM showed no association with infant neurodevelopment in the general Taiwanese population. While certain PBDEs may play a role, our findings indicate that the lipid components of HBM are directly important for infant neurodevelopment.
Collapse
Affiliation(s)
- Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (M.-H.T.); (C.-W.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - How-Ran Chao
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence:
| | - Wen-Li Hsu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, Kaohsiung 82445, Taiwan;
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chu-Wen Lin
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (M.-H.T.); (C.-W.L.)
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, TX 77030, USA;
- New York Heart Research Foundation, Mineola, NY 11501, USA
- Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan
| |
Collapse
|
20
|
Interactions between Endoplasmic Reticulum Stress and Autophagy: Implications for Apoptosis and Neuroplasticity-Related Proteins in Palmitic Acid-Treated Prefrontal Cells. Neural Plast 2021; 2021:8851327. [PMID: 34646319 PMCID: PMC8505096 DOI: 10.1155/2021/8851327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/02/2022] Open
Abstract
Lipotoxicity of palmitic acid (PA) or high-fat diets has been reported to increase endoplasmic reticulum (ER) stress and autophagy in peripheral tissue as well as apoptotic cell death. It also can lead to an AD-like pathological pattern. However, it has been unknown that PA-induced ER stress and autophagy are involved in the regulation of neuroplastic abnormalities. Here, we investigated the roles of ER stress and autophagy in apoptosis and neuroplasticity-related protein expression in PA-treated prefrontal cells. Prefrontal cells dissected from newborn Sprague-Dawley rats were treated with PA compound with ER stress inhibitor 4-phenylbutyric acid (4-PBA) and autophagy inhibitor 3-methyladenine (3-MA) or PA alone. PA promoted ER stress and autophagy and also cause apoptosis as well as a decline in the expression of neuroplasticity-related proteins. Inhibition of ER stress decreased the expressions of neuroplasticity-related proteins and reduced autophagy activation and apoptosis in PA-treated prefrontal cells. Inhibition of autophagy exacerbated apoptosis and enhanced ER stress in PA-treated prefrontal cells. The present study illustrated that both ER stress and autophagy could be involved in apoptosis and decreased neuroplasticity-related proteins, and the interaction between ER stress and autophagy may play a critical role in apoptosis in PA-treated prefrontal cells. Our results provide new insights into the molecular mechanisms in vitro of lipotoxicity in obesity-related cognitive dysfunction.
Collapse
|
21
|
Phitthayaphong P, Kumfu S, Chattipakorn N, Chattipakorn SC. Blockage of Fc Gamma Receptors Alleviates Neuronal and Microglial Toxicity Induced by Palmitic Acid. J Alzheimers Dis 2021; 82:1315-1332. [PMID: 34151811 DOI: 10.3233/jad-210417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Palmitic acid (PA) promotes brain pathologies including Alzheimer's disease (AD)-related proteins, neuroinflammation, and microglial activation. The activation of neurons and microglia via their Fc gamma receptors (FcγRs) results in producing inflammatory cytokines. OBJECTIVE To investigate the expression of FcγRs, FcγR signaling proteins, AD-related proteins, proinflammatory cytokines, and cell viability of neurons and microglia in association with PA exposure as well as the effects of FcγR blockade on these parameters in response to PA. METHODS 200 and 400μM PA-conjugated BSA were applied to SH-SY5Y and HMC3 cells for 24 h. For FcγR blockage experiment, both cells were exposed to FcγR blocker before receiving of 200 and 400μM of PA-conjugated BSA for 24 h. RESULTS PA significantly increased AD-related proteins, including Aβ and BACE1, as well as increasing TNFα, IL-1β, and IL-6 in SH-SY5Y and HMC3 cells. However, the p-Tau/Tau ratio was only increased in SH-SY5Y cells. These results were associated with an increase in FcγRs activation and a decrease in cell viability in both cell types. FcγRs blockage diminished the activation of FcγR in SH-SY5Y and HMC3 cells. Interestingly, blocking FcγRs before PA exposure reduced the increment of AD-related proteins, proinflammatory cytokines caused by PA. FcγRs blocking also inhibits cell death for 23%of SH-SY5Y cells and 64%of HMC3 cells, respectively. CONCLUSION These findings suggest that PA is a risk factor for AD via the increased AD-related pathologies, inflammation, FcγRs activation, and brain cell death, while FcγR blockage can alleviate these effects.
Collapse
Affiliation(s)
- Phansa Phitthayaphong
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
22
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
23
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
24
|
Beaulieu J, Costa G, Renaud J, Moitié A, Glémet H, Sergi D, Martinoli MG. The Neuroinflammatory and Neurotoxic Potential of Palmitic Acid Is Mitigated by Oleic Acid in Microglial Cells and Microglial-Neuronal Co-cultures. Mol Neurobiol 2021; 58:3000-3014. [PMID: 33604780 DOI: 10.1007/s12035-021-02328-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Neuroinflammation has been implicated in the pathogenesis of neurodegeneration and is now accepted as a common molecular feature underpinning neuronal damage and death. Palmitic acid (PA) may represent one of the links between diet and neuroinflammation. The aims of this study were to assess whether PA induced toxicity in neuronal cells by modulating microglial inflammatory responses and/or by directly targeting neurons. We also determined the potential of oleic acid (OA), a monounsaturated fatty acid, to counteract inflammation and promote neuroprotection. We measured the ability of PA to induce the secretion of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the induction of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling pathways, as well as the phosphorylation of c-Jun, and the expression of inducible nitric oxide synthase (iNOS). Finally, to determine whether PA exerted an indirect neurotoxic effect on neuronal cells, we employed a microglia-neuron co-culture paradigm where microglial cells communicate with neuronal cells in a paracrine fashion. Herein, we demonstrate that PA induces the activation of the NF-κB signalling pathway and c-Jun phosphorylation in N9 microglia cells, in the absence of increased cytokine secretion. Moreover, our data illustrate that PA exerts an indirect as well as a direct neurotoxic role on neuronal PC12 cells and these effects are partially prevented by OA. These results are important to establish that PA interferes with neuronal homeostasis and suggest that dietary PA, when consumed in excess, may induce neuroinflammation and possibly concurs in the development of neurodegeneration.
Collapse
Affiliation(s)
- Jimmy Beaulieu
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neurosciences, University of Cagliari, Cagliari, Italy
| | - Justine Renaud
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Amélie Moitié
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada
| | - Hélène Glémet
- Department of Biological and Ecological Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Domenico Sergi
- Nutrition & Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, 3351 boul. des Forges, G9A 5H7, Trois-Rivières, QC, Canada. .,Department of Psychiatry & Neurosciences, Université Laval and CHU Research Center, Québec, Canada.
| |
Collapse
|
25
|
Montero ML, Liu JW, Orozco J, Casiano CA, De Leon M. Docosahexaenoic acid protection against palmitic acid-induced lipotoxicity in NGF-differentiated PC12 cells involves enhancement of autophagy and inhibition of apoptosis and necroptosis. J Neurochem 2020; 155:559-576. [PMID: 32379343 PMCID: PMC7754135 DOI: 10.1111/jnc.15038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
Lipotoxicity (LTx) leads to cellular dysfunction and cell death and has been proposed to be an underlying process during traumatic and hypoxic injuries and neurodegenerative conditions in the nervous system. This study examines cellular mechanisms responsible for docosahexaenoic acid (DHA 22:6 n‐3) protection in nerve growth factor‐differentiated pheochromocytoma (NGFDPC12) cells from palmitic acid (PAM)‐mediated lipotoxicity (PAM‐LTx). NGFDPC12 cells exposed to PAM show a significant lipotoxicity demonstrated by a robust loss of cell viability, apoptosis, and increased HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 gene expression. Treatment of NGFDPC12 cells undergoing PAM‐LTx with the pan‐caspase inhibitor ZVAD did not protect, but shifted the process from apoptosis to necroptosis. This shift in cell death mechanism was evident by the appearance of the signature necroptotic Topo I protein cleavage fragments, phosphorylation of mixed lineage kinase domain‐like, and inhibition with necrostatin‐1. Cultures exposed to PAM and co‐treated with necrostatin‐1 (necroptosis inhibitor) and rapamycin (autophagy promoter), showed a significant protection against PAM‐LTx compared to necrostatin‐1 alone. In addition, co‐treatment with DHA, as well as 20:5 n‐3, 20:4 n‐6, and 22:5 n‐3, in the presence of PAM protected NGFDPC12 cells against LTx. DHA‐induced neuroprotection includes restoring normal levels of HIF‐1α and BCL2/adenovirus E1B 19 kDa protein‐interacting protein 3 transcripts and caspase 8 and caspase 3 activity, phosphorylation of beclin‐1, de‐phosphorylation of mixed lineage kinase domain‐like, increase in LC3‐II, and up‐regulation of Atg7 and Atg12 genes, suggesting activation of autophagy and inhibition of necroptosis. Furthermore, DHA‐induced protection was suppressed by the lysosomotropic agent chloroquine, an inhibitor of autophagy. We conclude that DHA elicits neuroprotection by regulating multiple cell death pathways including enhancement of autophagy and inhibiting apoptosis and necroptosis. ![]()
Collapse
Affiliation(s)
- Manuel L Montero
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jo-Wen Liu
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - José Orozco
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Marino De Leon
- Center for Health Disparities and Molecular Medicine and Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
26
|
Shiozaki Y, Miyazaki-Anzai S, Okamura K, Keenan AL, Masuda M, Miyazaki M. GPAT4-Generated Saturated LPAs Induce Lipotoxicity through Inhibition of Autophagy by Abnormal Formation of Omegasomes. iScience 2020; 23:101105. [PMID: 32408172 PMCID: PMC7225743 DOI: 10.1016/j.isci.2020.101105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive levels of saturated fatty acids are toxic to vascular smooth muscle cells (VSMCs). We previously reported that mice lacking VSMC-stearoyl-CoA desaturase (SCD), a major enzyme catalyzing the detoxification of saturated fatty acids, develop severe vascular calcification from the massive accumulation of lipid metabolites containing saturated fatty acids. However, the mechanism by which SCD deficiency causes vascular calcification is not completely understood. Here, we demonstrate that saturated fatty acids significantly inhibit autophagic flux in VSMCs, contributing to vascular calcification and apoptosis. Mechanistically, saturated fatty acids are accumulated as saturated lysophosphatidic acids (LPAs) (i.e. 1-stearoyl-LPA) possibly synthesized through the reaction of GPAT4 at the contact site between omegasomes and the MAM. The accumulation of saturated LPAs at the contact site causes abnormal formation of omegasomes, resulting in accumulation of autophagosomal precursor isolation membranes, leading to inhibition of autophagic flux. Thus, saturated LPAs are major metabolites mediating autophagy inhibition and vascular calcification.
Collapse
Affiliation(s)
- Yuji Shiozaki
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA
| | - Kayo Okamura
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA
| | - Audrey L Keenan
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA
| | - Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, University of Colorado-Denver, Aurora, CO, USA.
| |
Collapse
|
27
|
Loehfelm A, Elder MK, Boucsein A, Jones PP, Williams JM, Tups A. Docosahexaenoic acid prevents palmitate-induced insulin-dependent impairments of neuronal health. FASEB J 2020; 34:4635-4652. [PMID: 32030816 DOI: 10.1096/fj.201902517r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
The importance of fatty acids (FAs) for healthy brain development and function has become more evident in the past decades. However, most studies focus on the hypothalamus as an important FA-sensing brain region involved in energy homeostasis. Less work has been done to evaluate the effects of FAs on brain regions such as the hippocampus or cortex, two important centres of learning, memory formation, and cognition. Furthermore, the mechanisms of how FAs modulate the neuronal development and function are incompletely understood. Therefore, this study examined the effects of the saturated FA palmitic acid (PA) and the polyunsaturated FA docosahexaenoic acid (DHA) on primary hippocampal and cortical cultures isolated from P0/P1 Sprague Dawley rat pups. Exposure to PA, but not DHA, resulted in severe morphological changes in primary neurons such as cell body swelling, axonal and dendritic blebbing, and a reduction in synaptic innervation, compromising healthy cell function and excitability. Pharmacological assessment revealed that the PA-mediated alterations were caused by overactivation of neuronal insulin signaling, demonstrated by insulin stimulation and phosphoinositide 3-kinase inhibition. Remarkably, co-exposure to DHA prevented all PA-induced morphological changes. This work provides new insights into how FAs can affect the cytoskeletal rearrangements and neuronal function via modulation of insulin signaling.
Collapse
Affiliation(s)
- Aline Loehfelm
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alisa Boucsein
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter P Jones
- Department of Physiology and HeartOtago, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Medical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Alexander Tups
- Department of Physiology, School of Medical Sciences, Centre for Neuroendocrinology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
29
|
Yang L, Guan G, Lei L, Liu J, Cao L, Wang X. Oxidative and endoplasmic reticulum stresses are involved in palmitic acid-induced H9c2 cell apoptosis. Biosci Rep 2019; 39:BSR20190225. [PMID: 31064816 PMCID: PMC6527925 DOI: 10.1042/bsr20190225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
Palmitic acid (PA) is the most common saturated long-chain fatty acid that causes damage to heart muscle cells. However, the molecular mechanism of PA toxicity in myocardial cells is not fully understood. In the present study, we explored the effects of PA on proliferation and apoptosis of H9c2 cardiomyocytes, and uncovered the signaling pathways involved in PA toxicity. Our study revealed induction of both oxidative and endoplasmic reticulum (ER) stresses and exacerbation of apoptosis in PA-treated H9c2 cells. Inhibition of oxidative stress by N-acetylcysteine (NAC) reduced apoptosis and decreased ER stress in PA-treated H9c2 cells. Moreover, inhibition of ER stress by 4-phenyl butyric acid decreased apoptosis and attenuated oxidative stress. In summary, the present study demonstrated that oxidative stress coordinates with ER stress to play important roles in PA-induced H9c2 cell apoptosis.
Collapse
Affiliation(s)
- Lei Yang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Gaopeng Guan
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jianyun Liu
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Lingling Cao
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
- Department of Endocrinology, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Xiangguo Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
30
|
Flores-León M, Pérez-Domínguez M, González-Barrios R, Arias C. Palmitic Acid-Induced NAD + Depletion is Associated with the Reduced Function of SIRT1 and Increased Expression of BACE1 in Hippocampal Neurons. Neurochem Res 2019; 44:1745-1754. [PMID: 31073968 DOI: 10.1007/s11064-019-02810-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022]
Abstract
Increased levels of circulating fatty acids, such as palmitic acid (PA), are associated with the development of obesity, insulin resistance, type-2 diabetes and metabolic syndrome. Furthermore, these diseases are linked to an increased risk of cancer, cardiovascular diseases, mild cognitive impairment and even Alzheimer's disease (AD). However, the precise actions of elevated PA levels on neurons and their association with neuronal metabolic disruption that leads to the expression of pathological markers of AD, such as the overproduction and accumulation of the amyloid-β peptide, represent an area of intense investigation. A possible molecular mechanism involved in the effects of PA may be through dysfunction of the NAD+ sensor enzyme, SIRT1. Therefore, the aim of the present study was to analyze the relationship between the effects of PA metabolism on the function of SIRT1 and the upregulation of BACE1 in cultured hippocampal neurons. PA reduced the total amount of NAD+ in neurons that caused an increase in p65 K310 acetylation due to inhibition of SIRT1 activity and low protein content. Furthermore, BACE1 protein and its activity were increased, and BACE1 was relocated in neurites after PA exposure.
Collapse
Affiliation(s)
- Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Martha Pérez-Domínguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIB), Universidad Nacional Autónoma de México (UNAM), 14080, México, DF, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, México, DF, Mexico.
| |
Collapse
|
31
|
Guan G, Lei L, Lv Q, Gong Y, Yang L. Curcumin attenuates palmitic acid-induced cell apoptosis by inhibiting endoplasmic reticulum stress in H9C2 cardiomyocytes. Hum Exp Toxicol 2019; 38:655-664. [PMID: 30859861 DOI: 10.1177/0960327119836222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetic cardiomyopathy is mediated by multiple molecular mechanisms including endoplasmic reticulum (ER) stress. Curcumin, a phenolic compound, has cytoprotective properties, but its potential protective action against diabetic cardiomyopathy and the related molecular mechanisms are not fully elucidated. In this study, we evaluated the effects of curcumin on cell viability and apoptosis in palmitic acid (PA)-treated H9C2 cardiomyocytes and investigated the signaling pathways involved. Treatment with PA reduced cell viability, induced apoptosis, enhanced apoptosis-related protein expression (Caspase 3 and BCL-2 associated X protein (BAX)), and activated ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)). Curcumin attenuated PA-induced reduction in cell viability and activation of apoptosis, Caspase 3 activity, BAX, CHOP, and GRP78 expression. 4-Phenylbutyric acid (4-PBA) attenuated the PA-induced effects on cell viability and apoptosis, similar to curcumin. Both curcumin and 4-PBA also attenuated PA-induced increase in ER stress protein (CHOP and GRP78) expression. Curcumin also protected against cytotoxicity, apoptosis, and ER stress induced by thapsigargin. These findings indicate that PA triggers apoptosis in H9C2 cells via ER stress pathways and curcumin protects against this phenomenon.
Collapse
Affiliation(s)
- G Guan
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - L Lei
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China
| | - Q Lv
- 3 College of Biology and Pharmacy, Yulin Normal University, Yulin, Guangxi, China
| | - Y Gong
- 1 Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, Jiangxi, China.,4 College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| | - L Yang
- 2 Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi, China.,4 College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
32
|
Yang L, Guan G, Lei L, Lv Q, Liu S, Zhan X, Jiang Z, Gu X. Palmitic acid induces human osteoblast-like Saos-2 cell apoptosis via endoplasmic reticulum stress and autophagy. Cell Stress Chaperones 2018; 23:1283-1294. [PMID: 30194633 PMCID: PMC6237680 DOI: 10.1007/s12192-018-0936-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 12/30/2022] Open
Abstract
Palmitic acid (PA) is the most common saturated long-chain fatty acid in food that causes cell apoptosis. However, little is known about the molecular mechanisms of PA toxicity. In this study, we explore the effects of PA on proliferation and apoptosis in human osteoblast-like Saos-2 cells and uncover the signaling pathways involved in the process. Our study showed that endoplasmic reticulum (ER) stress and autophagy are involved in PA-induced Saos-2 cell apoptosis. We found that PA inhibited the viability of Saos-2 cells in a dose- and time-dependent manner. At the same time, PA induced the expression of ER stress marker genes (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)), altered autophagy-related gene expression (microtubule-associated protein 1 light chain 3 (LC3), ATG5, p62, and Beclin), promoted apoptosis-related gene expression (Caspase 3 and BAX), and affected autophagic flux. Inhibiting ER stress with 4-PBA diminished the PA-induced cell apoptosis, activated autophagy, and increased the expression of Caspase 3 and BAX. Inhibiting autophagy with 3-MA attenuated the PA and ER stress-induced cell apoptosis and the apoptosis-related gene expression (Caspase 3 and BAX), but seemed to have no obvious effects on ER stress, although the CHOP expression was downregulated. Taken together, our results suggest that PA-induced Saos-2 cell apoptosis is activated via ER stress and autophagy, and the activation of autophagy depends on the ER stress during this process.
Collapse
Affiliation(s)
- Lei Yang
- College of Basic Medical, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| | - Gaopeng Guan
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Lanjie Lei
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Shengyuan Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Xiuwen Zhan
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Zhenzhen Jiang
- Medicine Graduate School, Nanchang University, Nanchang, 330006, China
| | - Xiang Gu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
- Affiliated Hospital of Jiujiang University, Jiujiang University, Jiujiang, 332000, Jiangxi, China.
| |
Collapse
|
33
|
Chen Z, Nie SD, Qu ML, Zhou D, Wu LY, Shi XJ, Ma LR, Li X, Zhou SL, Wang S, Wu J. The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Cell Death Dis 2018; 9:771. [PMID: 29991726 PMCID: PMC6039485 DOI: 10.1038/s41419-018-0795-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022]
Abstract
The accumulation of palmitic acid (PA), implicated in obesity, can induce apoptotic cell death and inflammation of astrocytes. Caveolin-1 (Cav-1), an essential protein for astrocytes survival, can be degraded by autophagy, which is a double-edge sword that can either promote cell survival or cell death. The aim of this study was to delineate whether the autophagic degradation of Cav-1 is involved in PA-induced apoptosis and inflammation in hippocampal astrocytes. In this study we found that: (1) PA caused apoptotic death and inflammation by autophagic induction; (2) Cav-1 was degraded by PA-induced autophagy and PA induced autophagy in a Cav-1-independent manner; (3) the degradation of Cav-1 was responsible for PA-induced autophagy-dependent apoptotic cell death and inflammation; (4) chronic high-fat diet (HFD) induced Cav-1 degradation, apoptosis, autophagy, and inflammation in the hippocampal astrocytes of rats. Our results suggest that the autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Therefore, Cav-1 may be a potential therapeutic target for central nervous system injuries caused by PA accumulation.
Collapse
Affiliation(s)
- Zi Chen
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Min-Li Qu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Di Zhou
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Liang-Yan Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xia-Jie Shi
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Ling-Ran Ma
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xin Li
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Shan-Lei Zhou
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Shan Wang
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| | - Jing Wu
- Department of Endocrinology, Xiang-Ya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Ng YW, Say YH. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells. PeerJ 2018; 6:e4696. [PMID: 29713567 PMCID: PMC5924683 DOI: 10.7717/peerj.4696] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Obesity-related central nervous system (CNS) pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD) related elevation of saturated fatty acids like palmitic acid (PA) in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model) and human glioblastoma cells T98G (as an astrocytic model), were treated with 100–500 µM PA, oleic acid (OA) or lauric acid (LA) for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of stable overexpression of γ-synuclein (γ-syn), a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD) α-synuclein [α-syn; wild-type (wt) and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ), a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS) level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA) assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS) assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T) modestly (but still significantly) rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA-induced leptin resistance. Annexin V/PI flow cytometry analysis revealed PA-induced increase in percentages of cells in annexin V-positive/PI-negative quadrant (early apoptosis) and subG0-G1 fraction, accompanied by a decrease in G2-M phase cells. The PA-induced ROS production and lipid peroxidation was at greater extent in T98G as compared to that in SH-SY5Y. Discussion In conclusion, PA induces apoptosis by increasing oxidative stress in neurons and astrocytes. Taken together, the results suggest that HFD may cause neuronal and astrocytic damage, which indirectly proposes that CNS pathologies involving neuroinflammation and reactive gliosis could be prevented via the diet regimen.
Collapse
Affiliation(s)
- Yee-Wen Ng
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| | - Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Kampar Campus, Kampar, Perak, Malaysia
| |
Collapse
|
35
|
Alsabeeh N, Chausse B, Kakimoto PA, Kowaltowski AJ, Shirihai O. Cell culture models of fatty acid overload: Problems and solutions. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:143-151. [PMID: 29155055 DOI: 10.1016/j.bbalip.2017.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
High plasma levels of fatty acids occur in a variety of metabolic diseases. Cellular effects of fatty acid overload resulting in negative cellular responses (lipotoxicity) are often studied in vitro, in an attempt to understand mechanisms involved in these diseases. Fatty acids are poorly soluble, and thus usually studied when complexed to albumins such as bovine serum albumin (BSA). The conjugation of fatty acids to albumin requires care pertaining to preparation of the solutions, effective free fatty acid concentrations, use of different fatty acid species, types of BSA, appropriate controls and ensuring cellular fatty acid uptake. This review discusses lipotoxicity models, the potential problems encountered when using these cellular models, as well as practical solutions for difficulties encountered.
Collapse
Affiliation(s)
- Nour Alsabeeh
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Bruno Chausse
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Pamela A Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Orian Shirihai
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Lin HC, Ho MY, Tsen CM, Huang CC, Wu CC, Huang YJ, Hsiao IL, Chuang CY. From the Cover: Comparative Proteomics Reveals Silver Nanoparticles Alter Fatty Acid Metabolism and Amyloid Beta Clearance for Neuronal Apoptosis in a Triple Cell Coculture Model of the Blood–Brain Barrier. Toxicol Sci 2017; 158:151-163. [DOI: 10.1093/toxsci/kfx079] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Yan P, Tang S, Zhang H, Guo Y, Zeng Z, Wen Q. Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway. Metab Brain Dis 2017; 32:453-460. [PMID: 27928692 DOI: 10.1007/s11011-016-9935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022]
Abstract
Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Lipotoxicity, involving a series of pathological cellular responses after exposure to elevated levels of fatty acids, leads to oxidative stress and cell death in various cell types. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O1 (PI3K/Akt/FoxO1) pathway is crucial for cell survival and apoptosis. More importantly, FoxO1 gene has been reported to confer relatively higher risks for eye diseases including glaucoma. However, little information is available regarding the interaction between FoxO1 and RGC apoptosis, much less a precise mechanism. In the present study, immortalized rat retinal ganglion cell line 5 (RGC-5) was used as a model to study the toxicity of palmitic acid (PA), as well as underlying mechanisms. We found that PA exposure significantly decreased cell viability by enhancing apoptosis in RGC-5 cells, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. PA also induced a remarkable increase in reactive oxygen species and malondialdehyde. Moreover, PA significantly decreased the level of phospho-Akt and phospho-FoxO1 in cells. Finally, shRNA knockdown and plasmid overexpression studies displayed that downregulation of Akt protein or upregulation of FoxO1 protein augmented cell death, while knockdown of FoxO1 or overexpression of Akt1 abolished PA-induced cell death. Collectively, our results indicated that PA-induced cell death is mediated through modulation of Akt/FoxO1 pathway activity.
Collapse
Affiliation(s)
- Panshi Yan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shu Tang
- Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Haifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuanyuan Guo
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China
| | - Zhiwen Zeng
- Shenzhen Mental Health Center and Shenzhen Key Lab for Psychological Healthcare, Shenzhen, 518020, People's Republic of China.
| | - Qiang Wen
- Department of Clinical Pharmacology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
38
|
α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5352412. [PMID: 27478478 PMCID: PMC4960343 DOI: 10.1155/2016/5352412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/05/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
Abstract
Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC.
Collapse
|
39
|
Wang Y, Zuo M. Nicotinamide improves sevoflurane-induced cognitive impairment through suppression of inflammation and anti-apoptosis in rat. Int J Clin Exp Med 2015; 8:20079-20085. [PMID: 26884920 PMCID: PMC4723765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Nicotinamide is amide form of vitamin B3, participate in oxidation-reduction reaction, and it plays an important role in the maintenance of normal life activities in cells; it has broad application prospects in the treatment of heart blood-vessel disease, respiratory disease, type 1 diabetes and inflammatory autoimmune diseases. Thus the present study aimed to identify whether the nicotinamide improves sevoflurane-induced cognitive impairment and its potential mechanisms in rat. Firstly, Male Sprague-Dawley rats were induced by 2.1% sevoflurane for 6 h. Protective function of nicotinamide on cognitive impairment was evaluated using Morris water maze test in the rats. Next, NF-κB and caspase-3 activities, and p53, Bax and Bcl-2 protein expression was executed using commercial kits and Western blot analysis, respectively. Preconditioning with nicotinamide could improve cognitive impairment in the rats. Administrate of nicotinamide suppressed the activation of NF-κB and caspase-3, reduced the protein expression of Bax, and promoted Bcl-2 protein expression in rats. The present results suggested nicotinamide improves sevoflurane-induced cognitive impairment and has an anti-inflammatory and anti-apoptotic effect against sevoflrane-induced damages.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University222 Zhong Shan Road, Dalian 116011, China
| | - Min Zuo
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University222 Zhong Shan Road, Dalian 116011, China
| |
Collapse
|
40
|
Su X, Chu Y, Kordower JH, Li B, Cao H, Huang L, Nishida M, Song L, Wang D, Federoff HJ. PGC-1α Promoter Methylation in Parkinson's Disease. PLoS One 2015; 10:e0134087. [PMID: 26317511 PMCID: PMC4552803 DOI: 10.1371/journal.pone.0134087] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/06/2015] [Indexed: 01/11/2023] Open
Abstract
The etiopathogenesis of sporadic Parkinson's disease (PD) remains elusive although mitochondrial dysfunction has long been implicated. Recent evidence revealed reduced expression of peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α) and downstream regulated nuclear encoded respiratory complex genes in affected brain tissue from PD patients. We sought to determine whether epigenetic modification of the PGC-1α gene could account for diminished expression. In substantia nigra from PD patients but not control subjects, we show significant promoter-proximal non-canonical cytosine methylation of the PGC-1α gene but not an adjacent gene. As neuroinflammation is a prominent feature of PD and a mediator of epigenetic change, we evaluated whether the pro-inflammatory fatty acid, palmitate, would stimulate PGC-1α promoter methylation in different cell types from the CNS. Indeed, in mouse primary cortical neurons, microglia and astrocytes, palmitate causes PGC-1α gene promoter non-canonical cytosine methylation, reduced expression of the gene and reduced mitochondrial content. Moreover, intracerebroventricular (ICV) injection of palmitate to transgenic human α-synuclein mutant mice resulted in increased PGC-1α promoter methylation, decreased PGC-1α expression and reduced mitochondrial content in substantia nigra. Finally we provide evidence that dysregulation of ER stress and inflammatory signaling is associated with PGC-1α promoter methylation. Together, these data strengthen the connection between saturated fatty acids, neuroflammation, ER stress, epigenetic alteration and bioenergetic compromise in PD.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States of America
| | - Yaping Chu
- Department of Neurological Science, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Jeffrey H. Kordower
- Department of Neurological Science, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Bin Li
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States of America
| | - Hong Cao
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States of America
| | - Liang Huang
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States of America
| | - Maki Nishida
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, United States of America
| | - Lei Song
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, United States of America
| | - Difei Wang
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington DC, United States of America
| | - Howard J. Federoff
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, United States of America
- Department of Neurology, Georgetown University Medical Center, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
41
|
Togliatto G, Dentelli P, Gili M, Gallo S, Deregibus C, Biglieri E, Iavello A, Santini E, Rossi C, Solini A, Camussi G, Brizzi MF. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2015; 40:102-11. [PMID: 26122028 PMCID: PMC4722244 DOI: 10.1038/ijo.2015.123] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Soluble factors and cell-derived extracellular vesicles (EVs) are crucial tissue repair mediators in cell-based therapy. In the present study, we investigate the therapeutic impact of EVs released by adipose tissue-derived stem cells (ASCs) recovered from obese subjects' visceral and subcutaneous tissues. METHODS ASCs were recovered from 10 obese (oASCs) and 6 non-obese (nASCs) participants and characterized. In selected experiments, nASCs and oASCs were cultured with palmitic acid (PA) or high glucose (HG), respectively. EVs from obese (oEVs) and non-obese (nEVs) subjects' visceral and subcutaneous ASCs were collected after ultracentrifugation and analyzed for their cargo: microRNA-126 (miR-126), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2), and for their biological effects on endothelial cells (ECs). Western blotting analysis and loss- and gain-of function experiments were performed. RESULTS oEVs show impaired angiogenic potential compared with nEVs. This effect depends on EV cargo: reduced content of VEGF, MMP-2 and, more importantly, miR-126. We demonstrate, using gain- and loss-of-function experiments, that this reduced miR-126 content leads to Spred1 upregulation and the inhibition of the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway in ECs. We also show that PA treatment of nASCs translates into the release of EVs that recapitulate oEV cargo. Moreover, HG treatment of oASCs further reduces miR-126 EV content and EV-mediated in vitro angiogenesis. Finally, impaired pro-angiogenic potential is also detected in EVs released from obese subcutaneous adipose tissue-derived ASCs. CONCLUSIONS These results indicate that obesity impacts on EV pro-angiogenic potential and may raise concerns about the use of adipose tissue-derived EVs in cell-based therapy in the obese setting.
Collapse
Affiliation(s)
- G Togliatto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - P Dentelli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - M Gili
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - S Gallo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - C Deregibus
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - E Biglieri
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - A Iavello
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Solini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - G Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - M F Brizzi
- Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|