1
|
Suzuki E, Sueki A, Takahashi H, Ishigooka J, Nishimura K. Association between TNF-α & IL-6 level changes and remission from depression with duloxetine treatment. Int J Neurosci 2024:1-6. [PMID: 39392051 DOI: 10.1080/00207454.2024.2414279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE/AIM OF THE STUDY The pathophysiology of major depressive disorder (MDD) involves multiple factors, including inflammatory processes. This study investigated the relationship between changes in the levels of cytokines and remission in patients with MDD following duloxetine treatment. MATERIALS AND METHODS MDD patients were administered duloxetine for 16 weeks. Clinical evaluation and immunological monitoring were performed every 4 weeks. RESULTS Our results indicated that changes in serum levels of TNF-α and IL-6 were associated with remission following duloxetine treatment in MDD patients. There was a slight increase in TNF-α levels in the first four weeks following duloxetine treatment, which correlated significantly with patients who were in remission. Furthermore, patients in remission exhibited an initial increase in IL-6 levels in the first four weeks, followed by a decrease at 16 weeks. CONCLUSIONS These results suggest an important relationship between changes in cytokine levels and remission in patients with major depression after duloxetine treatment.
Collapse
Affiliation(s)
- Eriko Suzuki
- Department of Neuropsychiatry, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Akitsugu Sueki
- Department of Neuropsychiatry, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Hitoshi Takahashi
- Department of Neuropsychiatry, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Jun Ishigooka
- Department of Neuropsychiatry, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Katsuji Nishimura
- Department of Neuropsychiatry, Tokyo Women's Medical University Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Splenic nerve denervation attenuates depression-like behaviors in Chrna7 knock-out mice via the spleen-gut-brain axis. J Affect Disord 2024; 362:114-125. [PMID: 38944290 DOI: 10.1016/j.jad.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in β-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS The underlying mechanisms remain to be fully understood. CONCLUSIONS Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
3
|
Singh P, Vasundhara B, Das N, Sharma R, Kumar A, Datusalia AK. Metabolomics in Depression: What We Learn from Preclinical and Clinical Evidences. Mol Neurobiol 2024:10.1007/s12035-024-04302-5. [PMID: 38898199 DOI: 10.1007/s12035-024-04302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Depression is one of the predominant common mental illnesses that affects millions of people of all ages worldwide. Random mood changes, loss of interest in routine activities, and prevalent unpleasant senses often characterize this common depreciated mental illness. Subjects with depressive disorders have a likelihood of developing cardiovascular complications, diabesity, and stroke. The exact genesis and pathogenesis of this disease are still questionable. A significant proportion of subjects with clinical depression display inadequate response to antidepressant therapies. Hence, clinicians often face challenges in predicting the treatment response. Emerging reports have indicated the association of depression with metabolic alterations. Metabolomics is one of the promising approaches that can offer fresh perspectives into the diagnosis, treatment, and prognosis of depression at the metabolic level. Despite numerous studies exploring metabolite profiles post-pharmacological interventions, a quantitative understanding of consistently altered metabolites is not yet established. The article gives a brief discussion on different biomarkers in depression and the degree to which biomarkers can improve treatment outcomes. In this review article, we have systemically reviewed the role of metabolomics in depression along with current challenges and future perspectives.
Collapse
Affiliation(s)
- Pooja Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Boosani Vasundhara
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Nabanita Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India
| | - Ruchika Sharma
- Centre for Precision Medicine and Centre, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, 226002, India.
| |
Collapse
|
4
|
Ran LY, Liu XY, Wang W, Tao WQ, Xiang JJ, Zeng Q, Kong YT, Zhang CY, Liao J, Qiu HT, Kuang L. Personality traits predict treatment outcome of an antidepressant in untreated adolescents with depression: An 8-week, open-label, flexible-dose study. J Affect Disord 2024; 350:102-109. [PMID: 38199422 DOI: 10.1016/j.jad.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/25/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Antidepressant response in adults with major depressive disorder (MDD) is probably influenced by personality dimensions. However, personality dimensions in depression and their association with antidepressant treatment in adolescents are relatively unknown. We sought to investigate whether personality traits (PTs) can influence antidepressant treatment response in adolescents with depression. METHODS Eighty-two adolescents with MDD who had completed the 8 weeks of treatment with selective serotonin reuptake inhibitors (SSRI) were enrolled. The Revised NEO Five-Factor Inventory (NEO-FFI-R) was used to measure their personality at baseline, and the 17-item Hamilton Depression Rating Scale (HAMD-17) and Children's Depression Rating Scale-Revised (CDRS-R) were used to evaluate depressive symptoms at baseline and 8 weeks. Moreover, logistic regression was performed to investigate the relationship between personality dimensions and antidepressant response. Receiver operating characteristic analyses were employed to determine the accuracy of a PT-based model in predicting the antidepressant response rate. RESULTS Adolescents with MDD had significantly different PTs at baseline. Multivariable logistic regression analysis showed that extroversion scores were associated with response to antidepressant treatment, the lower the extroversion score, the better the response to antidepressant treatment, after correcting for variables with significant differences and trends or all potential confounding variables. It was also found that the combination of disease duration, extraversion-gregariousness, and agreeableness-trust effectively predicted antidepressant response in adolescents with MDD, with a sensitivity of 79.4 % and specificity of 68.7 %. CONCLUSION Personality dysfunction in adolescents is associated with MDD. The antidepressant treatment response is influenced by the degree of extroversion in adolescents with MDD.
Collapse
Affiliation(s)
- Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Chongqing Clinical Medical Research Center for Psychiatric and Psychological Disorders, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Chongqing Clinical Medical Research Center for Psychiatric and Psychological Disorders, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Qi Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yi-Ting Kong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Chen-Yu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China; Chongqing Clinical Medical Research Center for Psychiatric and Psychological Disorders, China.
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China; Chongqing Clinical Medical Research Center for Psychiatric and Psychological Disorders, China.
| |
Collapse
|
5
|
Ma L, Wang L, Qu Y, Wan X, Hashimoto K. A role of splenic heme biosynthesis pathway in the persistent prophylactic actions of arketamine in lipopolysaccharide-treated mice. Transl Psychiatry 2023; 13:269. [PMID: 37491335 PMCID: PMC10368680 DOI: 10.1038/s41398-023-02564-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Relapse is common in remitted patients with major depressive disorder (MDD). Arketamine, an (R)-enantiomer of ketamine, has persistent prophylactic actions in an inflammatory model of depression. However, the precise mechanisms underlying these prophylactic actions remain unknown. Given the role of the brain-spleen axis in depression, we sought to identify splenic molecular targets that play a role in the prophylactic actions of arketamine. Lipopolysaccharide (LPS) (1.0 mg/kg) was administered 6 days after a single injection of arketamine (10 mg/kg) or saline. RNA-sequencing analysis found altered expression in the heme biosynthesis II pathway. Quantitative RT-PCR revealed that pretreatment with arketamine blocked increased expression of genes involved in the heme biosynthesis II pathway in LPS-treated mice, namely, 5-aminolevulinase synthase 2 (Alas2), ferrochelatase (Fech), hydroxymethylbilane synthase (Hmbs). Interestingly, there were positive correlations between the expression of these genes and spleen weight or plasma levels of pro-inflammatory cytokines. We also found higher expression of ALAS2 and FECH in the spleen from MDD patients. Pretreatment with a key intermediate precursor of heme, 5-aminolaevulinic acid (300 mg/kg/day for 3 days), caused splenomegaly, higher plasma levels of pro-inflammatory cytokines, and depression-like behavior in low-dose LPS (0.1 mg/kg)-treated mice. Interestingly, pretreatment with a heme biosynthesis inhibitor, succinyl acetone (120 mg/kg/day for 3 days), had prophylactic effects in LPS (1.0 mg/kg)-treated mice. These data suggest a novel role for the heme biosynthesis II pathway in the spleen for inflammation-related depression. Therefore, the heme biosynthesis pathway could be a new target for the prevention of relapse in MDD patients.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
6
|
Fenn-Moltu S, Deakin B, Drake R, Howes OD, Lawrie SM, Lewis S, Nikkheslat N, Walters JTR, MacCabe JH, Mondelli V, Egerton A. The association between peripheral inflammation, brain glutamate and antipsychotic response in Schizophrenia: Data from the STRATA collaboration. Brain Behav Immun 2023; 111:343-351. [PMID: 37182555 PMCID: PMC7615624 DOI: 10.1016/j.bbi.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023] Open
Abstract
Glutamate and increased inflammation have been separately implicated in the pathophysiology of schizophrenia and the extent of clinical response to antipsychotic treatment. Despite the mechanistic links between pro-inflammatory and glutamatergic pathways, the relationships between peripheral inflammatory markers and brain glutamate in schizophrenia have not yet been investigated. In this study, we tested the hypothesis that peripheral levels of pro-inflammatory cytokines would be positively associated with brain glutamate levels in schizophrenia. Secondary analyses determined whether this relationship differed according to antipsychotic treatment response. The sample consisted of 79 patients with schizophrenia, of whom 40 were rated as antipsychotic responders and 39 as antipsychotic non-responders. Brain glutamate levels were assessed in the anterior cingulate cortex (ACC) and caudate using proton magnetic resonance spectroscopy (1H-MRS) and blood samples were collected for cytokine assay on the same study visit (IL-6, IL-8, IL-10, TNF- α and IFN-γ). Across the whole patient sample, there was a positive relationship between interferon-gamma (IFN-γ) and caudate glutamate levels (r = 0.31, p = 0.02). In the antipsychotic non-responsive group only, there was a positive relationship between interleukin-8 (IL-8) and caudate glutamate (r = 0.46, p = 0.01). These findings provide evidence to link specific peripheral inflammatory markers and caudate glutamate in schizophrenia and may suggest that this relationship is most marked in patients who show a poor response to antipsychotic treatment.
Collapse
Affiliation(s)
- Sunniva Fenn-Moltu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Drake
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | | | - Shôn Lewis
- Division of Psychology and Mental Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Naghmeh Nikkheslat
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| | - Valeria Mondelli
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
7
|
Hashimoto K. Overview of the potential use of fluvoxamine for COVID-19 and long COVID. DISCOVER MENTAL HEALTH 2023; 3:9. [PMID: 36968793 PMCID: PMC10029802 DOI: 10.1007/s44192-023-00036-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has presented a serious worldwide threat to public health since its emergence in late 2019. From a safety point of view, drug repurposing has received particular attention. Several clinical studies have demonstrated that the use of fluvoxamine, a selective serotonin reuptake inhibitor with potent sigma-1 receptor agonism, in the early-stage of infection might be associated with the prevention of clinical deterioration in individuals with SARS-CoV-2 infection, although several reports have shown that a low dose of fluvoxamine may be ineffective. There is increasing evidence that SARS-CoV-2 can cross the blood-brain barrier, resulting in a number of psychiatric and neurologic symptoms in COVID-19 survivors. Importantly, about half of COVID-19 survivors experience a variety of long-term sequelae, including psychiatric and neurologic symptoms, known as long COVID. In this priority review, the author presents an overview of the potential use of fluvoxamine in the treatment of COVID-19 and long COVID.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670 Japan
| |
Collapse
|
8
|
Scotton E, Casa PL, de Abreu FP, de Avila E Silva S, Wilges RLB, Rossetto MV, Géa LP, Rosa AR, Colombo R. Differentially regulated targets in the fast-acting antidepressant effect of (R)-ketamine: A systems biology approach. Pharmacol Biochem Behav 2023; 223:173523. [PMID: 36731751 DOI: 10.1016/j.pbb.2023.173523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Approximately two-thirds of patients with major depressive disorder (MDD) fail to respond to conventional antidepressants, suggesting that additional mechanisms are involved in the MDD pathophysiology. In this scenario, the glutamatergic system represents a promising therapeutic target for treatment-resistant depression. To our knowledge, this is the first study using semantic approach with systems biology to identify potential targets involved in the fast-acting antidepressant effects of ketamine and its enantiomers as well as identifying specific targets of (R)-ketamine. We performed a systematic review, followed by a semantic analysis and functional gene enrichment to identify the main biological processes involved in the therapeutic effects of these agents. Protein-protein interaction networks were constructed, and the genes exclusively regulated by (R)-ketamine were explored. We found that the regulation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) receptor and N-methyl-d-aspartate (NMDA) receptor subunits-Postsynaptic Protein 95 (PSD-95), Brain Derived Neurotrophic Factor (BDNF), and Tyrosine Receptor Kinase B (TrkB) are shared by the three-antidepressant agents, reinforcing the central role of the glutamatergic system and neurogenesis on its therapeutic effects. Differential regulation of Transforming Growth Factor Beta 1 (TGF-β1) receptors-Mitogen-Activated Protein Kinases (MAPK's), Receptor Activator of Nuclear Factor-Kappa Beta Ligand (RANKL), and Serotonin Transporter (SERT) seems to be particularly involved in (R)-ketamine antidepressant effects. Our data helps further studies investigating the relationship between these targets and the mechanisms of (R)-ketamine and searching for other therapeutic compounds that share the regulation of these specific biomolecules. Ultimately, this study could contribute to improve the fast management of depressive-like symptoms with less detrimental side effects than ketamine and (S)-ketamine.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Pedro Lenz Casa
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | | | | | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| |
Collapse
|
9
|
A role of gut-microbiota-brain axis via subdiaphragmatic vagus nerve in depression-like phenotypes in Chrna7 knock-out mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110652. [PMID: 36191806 DOI: 10.1016/j.pnpbp.2022.110652] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
Abstract
The α7 subtype of the nicotinic acetylcholine receptor (α7 nAChR: coded by Chrna7) is known to regulate the cholinergic ascending anti-inflammatory pathway. We previously reported that Chrna7 knock-out (KO) mice show depression-like behaviors through abnormal composition of gut microbiota and systemic inflammation. Given the role of subdiaphragmatic vagus nerve in gut-microbiota-brain axis, we investigated whether subdiaphragmatic vagotomy (SDV) could affect depression-like behaviors, abnormal composition of gut microbiota, and microbes-derived metabolites in Chrna7 KO mice. SDV blocked depression-like behaviors and reduced expression of synaptic proteins in the medial prefrontal cortex (mPFC) of Chrna7 KO mice. LEfSe (linear discriminant analysis effect size) analysis revealed that the species Lactobacillus sp. BL302, the species Lactobacillus hominis, and the species Lactobacillus reuteri, were identified as potential microbial markers in the KO + SDV group. There were several genus and species altered among the three groups [wild-type (WT) + sham group, KO + sham group, KO + SDV group]. Furthermore, there were several plasma metabolites altered among the three groups. Moreover, there were correlations between relative abundance of several microbiome and behavioral data (or synaptic proteins). Network analysis showed correlations between relative abundance of several microbiome and plasma metabolites (or behavioral data). These data suggest that Chrna7 KO mice produce depression-like behaviors and reduced expression of synaptic proteins in the mPFC through gut-microbiota-brain axis via subdiaphragmatic vagus nerve.
Collapse
|
10
|
Nijdam MJ, Vermetten E, McFarlane AC. Toward staging differentiation for posttraumatic stress disorder treatment. Acta Psychiatr Scand 2023; 147:65-80. [PMID: 36367112 PMCID: PMC10100486 DOI: 10.1111/acps.13520] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Several medical and psychiatric disorders have stage-based treatment decision-making methods. However, international treatment guidelines for posttraumatic stress disorder (PTSD) fail to give specific treatment recommendations based on chronicity or stage of the disorder. There is convincing evidence of a finite range of PTSD symptom trajectories, implying that different phenotypes of the disorder can be distinguished, which are highly relevant for a staging typology of PTSD. METHODS State-of-the-art review building on prior work on staging models in other disorders as a mapping tool to identify and synthesize toward PTSD. RESULTS We propose a four-stage model of PTSD ranging from stage 0: trauma-exposed asymptomatic but at risk to stage 4: severe unremitting illness of increasing chronicity. We favor a symptom description in various chronological characteristics based on neurobiological markers, information processing systems, stress reactivity, and consciousness dimensions. We also advocate for a separate phenomenology of treatment resistance since this can yield treatment recommendations. CONCLUSION A staging perspective in the field of PTSD is highly needed. This can facilitate the selection of interventions that are proportionate to patients' current needs and risk of illness progression and can also contribute to an efficient framework to organize biomarker data and guide service delivery. Therefore, we propose that a neurobiologically driven trajectory-based typology of PTSD can help deduct several treatment recommendations leading to a more personalized and refined grid to strategize, plan and evaluate treatment interventions.
Collapse
Affiliation(s)
- Mirjam J Nijdam
- Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,ARQ National Psychotrauma Center, Diemen, The Netherlands
| | - Eric Vermetten
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander C McFarlane
- Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
12
|
Fuh SC, Fiori LM, Turecki G, Nagy C, Li Y. Multi-omic modeling of antidepressant response implicates dynamic immune and inflammatory changes in individuals who respond to treatment. PLoS One 2023; 18:e0285123. [PMID: 37186582 PMCID: PMC10184917 DOI: 10.1371/journal.pone.0285123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide, and is commonly treated with antidepressant drugs (AD). Although effective, many patients fail to respond to AD treatment, and accordingly identifying factors that can predict AD response would greatly improve treatment outcomes. In this study, we developed a machine learning tool to integrate multi-omic datasets (gene expression, DNA methylation, and genotyping) to identify biomarker profiles associated with AD response in a cohort of individuals with MDD. MATERIALS AND METHODS Individuals with MDD (N = 111) were treated for 8 weeks with antidepressants and were separated into responders and non-responders based on the Montgomery-Åsberg Depression Rating Scale (MADRS). Using peripheral blood samples, we performed RNA-sequencing, assessed DNA methylation using the Illumina EPIC array, and performed genotyping using the Illumina PsychArray. To address this rich multi-omic dataset with high dimensional features, we developed integrative Geneset-Embedded non-negative Matrix factorization (iGEM), a non-negative matrix factorization (NMF) based model, supplemented with auxiliary information regarding gene sets and gene-methylation relationships. In particular, we factorize the subjects by features (i.e., gene expression or DNA methylation) into subjects-by-factors and factors-by-features. We define the factors as the meta-phenotypes as they represent integrated composite scores of the molecular measurements for each subject. RESULTS Using our model, we identified a number of meta-phenotypes which were related to AD response. By integrating geneset information into the model, we were able to relate these meta-phenotypes to biological processes, including a meta-phenotype related to immune and inflammatory functions as well as other genes related to depression or AD response. The meta-phenotype identified several genes including immune interleukin 1 receptor like 1 (IL1RL1) and interleukin 5 receptor (IL5) subunit alpha (IL5RA), AKT/PIK3 pathway related phosphoinositide-3-kinase regulatory subunit 6 (PIK3R6), and sphingomyelin phosphodiesterase 3 (SMPD3), which has been identified as a target of AD treatment. CONCLUSIONS The derived meta-phenotypes and associated biological functions represent both biomarkers to predict response, as well as potential new treatment targets. Our method is applicable to other diseases with multi-omic data, and the software is open source and available on Github (https://github.com/li-lab-mcgill/iGEM).
Collapse
Affiliation(s)
- Shih-Chieh Fuh
- School of Computer Science, McGill University, Rue University, Montréal, Quebec, Canada
| | - Laura M Fiori
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University, Montreal, Quebec, Canada
| | - Corina Nagy
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University, Montreal, Quebec, Canada
| | - Yue Li
- School of Computer Science, McGill University, Rue University, Montréal, Quebec, Canada
| |
Collapse
|
13
|
Emekdar G, Taş Hİ, Şehitoğlu H. Investigation of the Relationship between Inflammation and Oxidative Stress Markers and Treatment Response in First-Attack Major Depression Patients: A Follow-Up Study. TURK PSIKIYATRI DERGISI = TURKISH JOURNAL OF PSYCHIATRY 2023; 34:89-99. [PMID: 37357895 PMCID: PMC10552169 DOI: 10.5080/u26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
OBJECTIVE There is a need to biomarkers for major depression (MD). The goals of this study are to compare serum levels of oxidative stress markers malondialdehyde (MDA) and F2-isoprostane and inflammation markers tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP) between patients with first-episode MD and healthy controls, to investigate the change of these markers after treatment and to investigate the relationship between levels of these markers and treatment response. METHOD Our study was performed in 30 first-episode MD patients and 30 healthy volunteers. During the clinical evaluation Hamilton Depression Rating Scale and Clinical Global Impression Scale were applied to the participants. Serum levels of markers were measured at the baseline and after 8 weeks of treatment. RESULTS Compared to the control group, first-episode MD patients had significantly higher IL-6, CRP and MDA levels and lower F2- isoprostane levels. There was no difference between the groups in terms of TNF-α levels. TNF-α, IL-6, MDA and F2-isoprostane levels decreased significantly after treatment, whereas there was no significant change in CRP levels with treatment. Baseline F2-isoprostane levels were found to be significantly higher in treatment responders than nonresponders (p<0.05). CONCLUSION In our study, it was shown that there are irregularities related to inflammatory processes and oxidative stress in MD, even in patients who had their first-episode and did not take medication, and these irregularities can be resolved after treatment. While there was a relationship between treatment response and baseline F2-isoprostane levels, there was no relationship with other biomarkers.
Collapse
|
14
|
Ma L, Zhang J, Fujita Y, Shinno-Hashimoto H, Shan J, Wan X, Qu Y, Chang L, Wang X, Hashimoto K. Effects of spleen nerve denervation on depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in mice after administration of lipopolysaccharide: A role of brain-spleen axis. J Affect Disord 2022; 317:156-165. [PMID: 36037991 DOI: 10.1016/j.jad.2022.08.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Accumulating evidence suggests the role of brain-spleen axis as well as brain-gut-microbiota axis in inflammation-related depression. The spleen mediates anti-inflammatory effects of the vagus nerve which plays a role in depression. However, the role of spleen nerve in inflammation-related depression remains unclear. METHODS The effects of the splenic nerve denervation (SND) in the depression-like phenotype, systemic inflammation, and abnormal composition of gut microbiota in adult mice after administration of lipopolysaccharide (LPS) were examined. RESULTS LPS (0.5 mg/kg) caused depression-like phenotype, systemic inflammation, splenomegaly, increased expression of Iba1 (ionized calcium-binding adapter molecule 1) and decreased expression of postsynaptic density protein-95 (PSD-95) in the hippocampus in the sham-operated mice. In contrast, LPS did not produce depression-like phenotype, and abnormal expressions of Iba1 and PSD-95 in the hippocampus in the SND-operated mice. Furthermore, SND significantly blocked LPS-induced increased plasma levels of pro-inflammatory cytokine interleukin-6 although SND did not affect LPS-induced splenomegaly and increased plasma levels of tumor necrosis factor-α in mice. There were significant changes in several microbiota among the four groups. Interestingly, there were correlations between the relative abundance of several microbiota and Iba1 (or PSD-95) expression in the hippocampus. In addition, expression of Iba1 in the hippocampus was correlated with the relative abundance of several microbiota. LIMITATIONS Detailed mechanisms are unclear. CONCLUSIONS These results suggest that the splenic nerve plays a role in inflammation-related depression, microglial activation in the hippocampus, and that gut microbiota may regulate microglial function in the brain via gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyo Shinno-Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
15
|
Vitali R, Prioreschi C, Lorenzo Rebenaque L, Colantoni E, Giovannini D, Frusciante S, Diretto G, Marco-Jiménez F, Mancuso M, Casciati A, Pazzaglia S. Gut–Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate. Int J Mol Sci 2022; 23:ijms231911495. [PMID: 36232813 PMCID: PMC9569494 DOI: 10.3390/ijms231911495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1β, S-100, Tgf-β and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/−/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.
Collapse
Affiliation(s)
- Roberta Vitali
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Clara Prioreschi
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Laura Lorenzo Rebenaque
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad CEU-Cardenal Herrera, 46115 Valencia, Spain
| | - Eleonora Colantoni
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Daniela Giovannini
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Sarah Frusciante
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mariateresa Mancuso
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Arianna Casciati
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| | - Simonetta Pazzaglia
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| |
Collapse
|
16
|
Antidepressant Effect of Ketamine on Inflammation-Mediated Cytokine Dysregulation in Adults with Treatment-Resistant Depression: Rapid Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1061274. [PMID: 36160713 PMCID: PMC9507757 DOI: 10.1155/2022/1061274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
Background Major depressive disorder (MDD) and treatment-resistant depression (TRD) represent a global source of societal and health burden. To advise proper management of inflammation-related depression among TRD patients, it is important to identify therapeutic clinical treatments. A key factor is related to proinflammatory cytokines such as interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α which have been implicated in the pathogenesis of depressive symptoms in MDD patients. Ketamine may provide an anti-inflammatory therapeutic strategy by targeting proinflammatory pathways associated with depressive disorders, which may be exacerbated in the ageing population with TRD. Objective Despite a burgeoning body of literature demonstrating that inflammation is linked to TRD, there is still a lack of comprehensive research on the relationship between proinflammatory biomarkers and ketamine's antidepressant effect on TRD patients. Method The Cochrane Library and PubMed/MEDLINE databases were systematically searched from inception up to February 1, 2022, adopting broad inclusion criteria to assess clinical topics related to the impact of ketamine on inflammatory cytokines in TRD patients. The present work is in compliance with the World Health Organization Rapid Review Guide. Results Five out of the seven studies examined in this review show that ketamine infusion may reduce depressive symptoms with a quick start of effect on TRD patients. Based on the Montgomery-Åsberg Depression Rating Scale (MADRS) and Hamilton Depression Rating Scale (HAM-D) scores, the overall response rate for ketamine was 56%; that is, 56% of those treated with ketamine had MADRS/HAM-D scores decreased by at least 50%. Conclusions While the anti-inflammatory effects of ketamine modulate specific proinflammatory cytokines, its rapid antidepressant effect on TRD patients remains inconsistent. However, our study findings can provide a reliable basis for future research on how to improve systemic inflammatory immune disorders and mental health. We suggest that ketamine infusion may be part of a comprehensive treatment approach in TRD patients with elevated levels of depression-specific inflammatory biomarkers.
Collapse
|
17
|
Jesus-Nunes AP, Leal GC, Correia-Melo FS, Vieira F, Mello RP, Caliman-Fontes AT, Echegaray MVF, Marback RF, Guerreiro-Costa LNF, Souza-Marques B, Santos-Lima C, Souza LS, Bandeira ID, Kapczinski F, Lacerda ALT, Quarantini LC. Clinical predictors of depressive symptom remission and response after racemic ketamine and esketamine infusion in treatment-resistant depression. Hum Psychopharmacol 2022; 37:e2836. [PMID: 35179810 DOI: 10.1002/hup.2836] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide and most people do not achieve symptom remission. Treatment-resistant depression (TRD) is characterized by the failure of at least one adequate trial of a major class of antidepressant, with adequate time and dosage. We aimed to identify clinical predictors of depressive symptom remission and response 24 h and 7 days after racemic ketamine and esketamine infusions. METHODS A randomized, double-blind, active-controlled, non-inferiority trial using ketamine and esketamine in TRD. Individuals diagnosed with MDD according to Diagnostic and Statistical Manual of Mental Disorders version IV and fulfilling TRD criteria were recruited from March 2017 to June 2018. Participants received a single subanesthetic dose of ketamine (0.5 mg/kg) or esketamine (0.25 mg/kg) for 40 min. Depressive symptoms were assessed using the Montgomery-Åsberg Depression Rating Scale (MADRS) and symptom remission was defined as a MADRS score ≤7 and response defined as ≥50% reduction in depressive symptom severity, 24 h and 7 days after the infusion. Clinical variables were selected based on previous clinical trials. Stepwise backward logistic regression was used, considering a confidence level of 95%. RESULTS 61 subjects were included: 39 (63.9%) were females with a mean age of 47.2 ± 14.9. Higher number of therapeutic failures (Odds Ratio (OR) = 0.677; 95% confidence interval (CI): 0.47-0.97) and higher severity of illness (OR = 0.912; 95% CI: 0.83-0.99) were associated with fewer remissions of depressive symptoms 7 days after intervention, and with fewer response in 24 h (OR = 0.583; 95% CI: 0,40; 0,84 and OR = 0.909; 95% CI: 0,83; 0,99, respectively). CONCLUSION Number of treatment failures and severity of illness were predictors of fewer remissions and responses of depressive symptoms in this TRD population. Study of predictors of remission may contribute to better selection patients that may benefit from receiving ketamine.
Collapse
Affiliation(s)
- Ana Paula Jesus-Nunes
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Gustavo C Leal
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Fernanda S Correia-Melo
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Flávia Vieira
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Rodrigo P Mello
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Ana Teresa Caliman-Fontes
- Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Mariana V F Echegaray
- Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Roberta F Marback
- Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lívia N F Guerreiro-Costa
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Breno Souza-Marques
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Cassio Santos-Lima
- Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucca S Souza
- Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Igor D Bandeira
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Flavio Kapczinski
- INCT-TM, and Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Acioly L T Lacerda
- Laboratório Interdisciplinar de Neurociências Clínicas, Universidade Federal de São Paulo, São Paulo, Brazil.,Programa de Distúrbios Afetivos, Universidade Federal de São Paulo, São Paulo, Brazil.,BR Trials - Clinical Research, São Paulo, Brazil.,National Institute of Science and Technology in Translational Medicine, CNPq/FAPESP/CAPES, São Paulo, Brazil
| | - Lucas C Quarantini
- Programa de Pós-graduação Em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil.,Laboratório de Neuropsicofarmacologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
18
|
Ferdowsi S, Abdolmaleki A, Asadi A, Zahri S. Glibenclamide promoted functional recovery following sciatic nerve injury in male Wistar rats. Fundam Clin Pharmacol 2022; 36:966-975. [PMID: 35524424 DOI: 10.1111/fcp.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
The impact of peripheral nerve damage on a patient's quality of life is severe. The most frequent peripheral nerve crush damage is a sciatic nerve injury. Previous research has shown that glibenclamide (GB) has neuroprotective properties in a variety of oxidative stress-related disorders, including Alzheimer and Parkinson. The goal of this study was to see how GB affected nerve regeneration and improved function of the sciatic nerve in a rat model following a crush injury. We evaluated motor function, sensory recovery, gene expression, and histomorphometry following damage at different time points. Additionally, we assessed atrophy in the gastrocnemius muscle using histology and mass ratio analyses. Our results suggest that 2, 4, 6, and 8 weeks following glibenclamide therapy, promotes the recovery of motor and sensory function in the injured site. Following glibenclamid injection, the mRNA levels of neurotrophic factors (NGF and BDNF) are raised. According to histomorphometry assessment, glibenclamide injection also increased the number of myelinated fibers while decreasing their thickness. These results showed that glibenclamide therapy by decreasing the proinflammatory and oxidant factors may enhance the nerve regeneration. It is clear that more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sevin Ferdowsi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Arash Abdolmaleki
- Department of Bioinformatics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
19
|
Shan J, Hashimoto K. Soluble Epoxide Hydrolase as a Therapeutic Target for Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094951. [PMID: 35563342 PMCID: PMC9099663 DOI: 10.3390/ijms23094951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
It has been found that soluble epoxide hydrolase (sEH; encoded by the EPHX2 gene) in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation, which, in turn, plays a part in the pathogenesis of neuropsychiatric disorders. Meanwhile, epoxy fatty acids such as epoxyeicosatrienoic acids (EETs), epoxyeicosatetraenoic acids (EEQs), and epoxyeicosapentaenoic acids (EDPs) have been found to exert neuroprotective effects in animal models of neuropsychiatric disorders through potent anti-inflammatory actions. Soluble expoxide hydrolase, an enzyme present in all living organisms, metabolizes epoxy fatty acids into the corresponding dihydroxy fatty acids, which are less active than the precursors. In this regard, preclinical findings using sEH inhibitors or Ephx2 knock-out (KO) mice have indicated that the inhibition or deficiency of sEH can have beneficial effects in several models of neuropsychiatric disorders. Thus, this review discusses the current findings of the role of sEH in neuropsychiatric disorders, including depression, autism spectrum disorder (ASD), schizophrenia, Parkinson’s disease (PD), and stroke, as well as the potential mechanisms underlying the therapeutic effects of sEH inhibitors.
Collapse
|
20
|
Hashimoto Y, Suzuki T, Hashimoto K. Mechanisms of action of fluvoxamine for COVID-19: a historical review. Mol Psychiatry 2022; 27:1898-1907. [PMID: 34997196 PMCID: PMC8739627 DOI: 10.1038/s41380-021-01432-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerates the discovery of prophylactic and therapeutic drugs for persons infected with the virus. Drug repurposing for the COVID-19 pandemic has received particular attention. Increasing clinical data suggest that antidepressant use in early-stage subjects with COVID-19 might be associated with a reduced risk of intubation or death. Among the antidepressants, fluvoxamine is the most attractive drug for mild to moderate subjects with COVID-19. In this article, we review the mechanisms of action (i.e., serotonin transporter, sigma-1 receptor, and acid sphingomyelinase) of fluvoxamine for COVID-19. Furthermore, we discuss a possible link between maternal COVID-19 infection and a risk for neuropsychiatric disorders (i.e., autism spectrum disorder and schizophrenia) in offspring.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
21
|
Moraga-Amaro R, Guerrin CGJ, Reali Nazario L, Lima Giacobbo B, J O Dierckx RA, Stehberg J, de Vries EFJ, Doorduin J. A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats. Stress 2022; 25:145-155. [PMID: 35384793 DOI: 10.1080/10253890.2022.2045269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Worldwide, millions of people suffer from treatment-resistant depression. Ketamine, a glutamatergic receptor antagonist, can have a rapid antidepressant effect even in treatment-resistant patients. A proposed mechanism for the antidepressant effect of ketamine is the reduction of neuroinflammation. To further explore this hypothesis, we investigated whether a single dose of ketamine can modulate protracted neuroinflammation in a repeated social defeat (RSD) stress rat model, which resembles features of depression. To this end, male animals exposed to RSD were injected with ketamine (20 mg/kg) or vehicle. A combination of behavioral analyses and PET scans of the inflammatory marker TSPO in the brain were performed. Rats submitted to RSD showed anhedonia-like behavior in the sucrose preference test, decreased weight gain, and increased TSPO levels in the insular and entorhinal cortices, as observed by [11C]-PK11195 PET. Whole brain TSPO levels correlated with corticosterone levels in several brain regions of RSD exposed animals, but not in controls. Ketamine injection 1 day after RSD disrupted the correlation between TSPO levels and serum corticosterone levels, but had no effect on depressive-like symptoms, weight gain or the protracted RSD-induced increase in TSPO expression in male rats. These results suggest that ketamine does not exert its effect on the hypothalamic-pituitary-adrenal axis by modulation of neuroinflammation.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Cyprien G J Guerrin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Bruno Lima Giacobbo
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Erik F J de Vries
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Medical Imaging, University Medical Center Groningen, University of Groningen, Groningen, GZ, The Netherlands
| |
Collapse
|
22
|
Cecerska-Heryć E, Polikowska A, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Michalczyk A, Dołęgowska B. Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochem Int 2021; 153:105269. [PMID: 34971747 DOI: 10.1016/j.neuint.2021.105269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress is defined as the persistent imbalance between the activity of toxic reactive forms of both oxygen and nitrogen and the antioxidant defense. In low concentrations, they are essential for the proper functioning of the body. Still, their excessive amount contributes to the damage of the biomolecules, consequently leading to various pathologies of the organism. Due to the lipid-rich brain structure, enormous oxygen consumption, and the lack of a sufficient antioxidant barrier make it highly susceptible to oxidative imbalance. Hence, oxidative stress has been linked to various psychiatric disorders. These diseases include all behavioral, emotional, and cognitive abnormalities associated with a significant impediment to social life. Each of the diseases in question: Alzheimer's disease, schizophrenia, depression, and bipolar disorder, is characterized by excessive oxidative stress. Considerable damages to DNA, RNA, proteins, lipids, and mitochondrial dysfunction, are observed. All conditions show increased lipid peroxidation, which appears to be typical of psychiatric disorders because the brain contains large amounts of these types of molecules. In addition, numerous abnormalities in the antioxidant defense are noted, but the results of studies on the activity of antioxidant enzymes differ significantly. The most promising biomarkers seem to be GSH in Alzheimer's disease as an early-stage marker of the disease and thioredoxin in schizophrenia as a marker for therapy monitoring. Data from the literature are consistent with the decrease in antioxidants such as vitamin C, E, uric acid, albumin, etc. Despite these numerous inconsistencies, it seems that oxidative stress is present in the course of psychiatric diseases. Still, it cannot be conclusively determined whether it is the direct cause of development, a consequence of other abnormalities at the biochemical or molecular level, or the result of the disease itself.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
23
|
Zhang J, Ma L, Hashimoto Y, Wan X, Shan J, Qu Y, Hashimoto K. (R)-Ketamine ameliorates lethal inflammatory responses and multi-organ injury in mice induced by cecum ligation and puncture. Life Sci 2021; 284:119882. [PMID: 34384829 DOI: 10.1016/j.lfs.2021.119882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
AIMS Sepsis is a life-threatening organ dysfunction syndrome arising from infection-induced uncontrolled systemic inflammatory responses. Patients surviving severe sepsis also exhibit increased mortality due to enhanced vulnerability to infections. In this study, we examined whether (R)-ketamine could prevent against lethal sepsis-induced systemic inflammation and inflammatory organ injury. MAIN METHODS Septic model was induced by cecal ligation and puncture (CLP) surgery on adult mice. (R)-ketamine (10 or 15 mg/kg) was administrated intraperitoneally (i.p.) 24 h before and/or immediately after CLP. KEY FINDINGS Combined prophylactic and therapeutic use of (R)-ketamine (10 mg/kg), as well as either prophylactic or therapeutic use of (R)-ketamine at a single dose of 15 mg/kg did not reduce 14-day mortality after CLP. However, combined prophylactic and therapeutic use of (R)-ketamine (15 mg/kg) significantly increased 14-day survival rate, attenuated sepsis-induced marked drop in the rectal temperature and increase in the plasma levels of inflammatory cytokines [i.e., interleukin (IL)-6, IL-17A, tumor necrosis factor (TNF)-α, IL-1β, and IL-10] 12 h after CLP. Furthermore, (R)-ketamine alleviated sepsis-induced increase in the organ injury markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), myocardial kinase (CK-MB), and creatinine 24 h after CLP. Moreover, the increased lung wet/dry weight ratio, pulmonary morphological injury and the pulmonary levels of inflammatory cytokines were also attenuated by (R)-ketamine. SIGNIFICANCE Combined prophylactic and therapeutic use of (R)-ketamine could attenuate systemic inflammation and inflammatory multi-organ injury in mice after CLP-induced lethal sepsis. Therefore, (R)-ketamine would be a potential prophylactic and therapeutic drug for patients prone to sepsis.
Collapse
Affiliation(s)
- Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430022, PR China
| | - Yaeko Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Respirology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
24
|
Abstract
Evidence suggests that around 30 % of patients with depression do not respond to antidepressant treatment, with most of them having sub-chronic levels of inflammation. Soluble epoxide hydrolases (sEH) are enzymes present in all living organisms, which metabolize cytochrome P (CYP)-derived epoxy fatty acids to their corresponding diols. Accumulating evidence suggests that sEH plays a key role in the anti-inflammatory properties exerted by the metabolism of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Crucial evidence demonstrates that protein expression of sEH in the brain of mice experiencing depressive-like behaviour, as well as in patients with major depressive disorder is higher than in controls. Of note, treatment with sEH inhibitors exert anti-inflammatory, neurogenic and antidepressant-like effects in pre-clinical models of depression. In this review, the author discusses the role of sEH in the metabolism of ω-3 PUFAs in the context of depression, and the clinical value of sEH inhibitors as alternative therapeutic strategies for patients suffering from this condition.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, UK
| |
Collapse
|
25
|
Zhang J, Ma L, Wan X, Shan J, Qu Y, Hashimoto K. (R)-Ketamine attenuates LPS-induced endotoxin-derived delirium through inhibition of neuroinflammation. Psychopharmacology (Berl) 2021; 238:2743-2753. [PMID: 34313805 DOI: 10.1007/s00213-021-05889-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE (R)-Ketamine produced beneficial effects in a variety of models of inflammatory diseases, including low dose of bacterial lipopolysaccharide (LPS) (0.5-1.0 mg/kg)-induced endotoxemia. LPS-treated mice have been used as animal model of delirium. OBJECTIVES We investigated the effects of (R)-ketamine in neuroinflammation and cognitive impairment in rodents after administration of high dose of LPS. METHODS LPS (5 mg/kg) or saline was administered intraperitoneally (i.p.) to mice. (R)-Ketamine (10 mg/kg) was administrated i.p. 24 h before and/or 10 min after LPS injection. RESULTS LPS (5.0 mg/kg) caused a remarkable splenomegaly and increased plasma levels of pro-inflammatory cytokines [i.e., interleukin (IL-6), IL-17A, and interferon (IFN)-γ]. There were positive correlations between spleen weight and plasma cytokines levels. Furthermore, LPS led to increased levels of pro-inflammatory cytokines in the prefrontal cortex (PFC) and hippocampus. Moreover, LPS impaired the natural and learned behaviors, as demonstrated by a decrease in the number of mice's entries and duration in the novel arm in the Y maze test and an increase in the latency of mice to eat the food in the buried food test. Interestingly, the treatment with (R)-ketamine (twice 24 h before and 10 min after LPS injection) significantly attenuated LPS-induced splenomegaly, central and systemic inflammation, and cognitive impairment. CONCLUSION Our results highlighted the importance of combined prophylactic and therapeutic use of (R)-ketamine in the attenuation of LPS-induced systemic inflammation, neuroinflammation, and cognitive impairment in mice. It is likely that (R)-ketamine could be a prophylactic drug for delirium.
Collapse
Affiliation(s)
- Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.,Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.,Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430022, People's Republic of China
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
26
|
Jiang B, Zhang Y, Wang Y, Li Z, Chen Q, Tang J, Zhu G. Glibenclamide Attenuates Neuroinflammation and Promotes Neurological Recovery After Intracerebral Hemorrhage in Aged Rats. Front Aging Neurosci 2021; 13:729652. [PMID: 34512312 PMCID: PMC8427510 DOI: 10.3389/fnagi.2021.729652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a common disease in the elderly population. Inflammation following ICH plays a detrimental role in secondary brain injury, which is associated with a poor prognosis of patients with ICH, and no efficient pharmacological preventions are available. Here, we investigated the effects of glibenclamide (GLC) on neuroinflammation in an autoblood-induced aged rat (18 months old) model of ICH. Rats were randomized into the sham, vehicle, and GLC groups. First, we investigated the expression level of sulfonylurea receptor 1 (Sur1) surrounding the hematoma after ICH. Then, neurological scores were calculated, and water maze tests, brain water content analysis, western blotting, and immunofluorescence assays were implemented to detect the neuroprotective effect of GLC. The expression of the Sur1-Trpm4 channel was significantly increased in the perihematomal tissue following ICH in aged rats. The GLC administration effectively reduced brain edema and improved neurofunction deficits following ICH. In addition, GLC increased the expression of brain-derived neurotrophic factors and decreased the expression of proinflammatory factors [tumor necrosis factor (TNF)-α,interleukin (IL)-1, and IL-6]. Moreover, GLC markedly reduced Ikappa-B (IκB) kinase (IKK) expression in microglia and nuclear factor (NF)-κB-P65 levels in perihematomal tissue. GLC ameliorated ICH-induced neuroinflammation and improved neurological outcomes in aged rats. In part, GLC may exert these effects by regulating the NF-κB signaling pathway through the Sur1-Trpm4 channel.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Neurology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Ying Zhang
- Department of Neurology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Yan Wang
- Department of Neurology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Zheng Li
- Department of Neurology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
27
|
Kosuge A, Kunisawa K, Arai S, Sugawara Y, Shinohara K, Iida T, Wulaer B, Kawai T, Fujigaki H, Yamamoto Y, Saito K, Nabeshima T, Mouri A. Heat-sterilized Bifidobacterium breve prevents depression-like behavior and interleukin-1β expression in mice exposed to chronic social defeat stress. Brain Behav Immun 2021; 96:200-211. [PMID: 34062230 DOI: 10.1016/j.bbi.2021.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a common and serious psychiatric disease that involves brain inflammation. Bifidobacterium breve is commonly used as a probiotic and was shown to improve colitis and allergic diseases by suppressing the inflammatory response. Heat-sterilized B. breve has beneficial effects on inflammation. We hypothesize, therefore, that this probiotic might reduce depression symptoms. We tested this is a mouse model of social defeat stress. C57BL/6J mice exposed to chronic social defeat stress (CSDS) for five consecutive days developed a mild depression-like behavior characterized by a social interaction impairment. CSDS also altered the gut microbiota composition, such as increased abundance of Bacilli, Bacteroidia, Mollicutes, and Verrucomicrobiae classes and decreased Erysipelotrichi class. The prophylactic effect of heat-sterilized B. breve as a functional food ingredient was evaluated on the depression-like behavior in mice. The supplementation started two weeks before and lasted two weeks after the last exposure to CSDS. Two weeks after CSDS, the mice showed deficits in social interaction and increased levels of inflammatory cytokines, including interleukin-1β (IL-1β) in the prefrontal cortex (PFC) and hippocampus (HIP). Heat-sterilized B. breve supplementation significantly prevented social interaction impairment, suppressed IL-1β increase in the PFC and HIP, and modulated the alteration of the gut microbiota composition induced by CSDS. These findings suggest that heat-sterilized B. breve prevents depression-like behavior and IL-1β expression induced by CSDS through modulation of the gut microbiota composition in mice. Therefore, heat-sterilized B. breve used as an ingredient of functional food might prevent MDD.
Collapse
Affiliation(s)
- Aika Kosuge
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Satoshi Arai
- Morinaga Milk Industry Co., Ltd., R&D Division, Food Ingredients & Technology Institute, Kanagawa, Japan
| | - Yumika Sugawara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Katsuki Shinohara
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tsubasa Iida
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Bolati Wulaer
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Tomoki Kawai
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Hidetsugu Fujigaki
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Yasuko Yamamoto
- Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan
| | - Kuniaki Saito
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Department of Disease Control and Prevention, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Health Sciences, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| |
Collapse
|
28
|
Interactive effects of systemic inflammation and life stressors on treatment response of depressive disorders. Brain Behav Immun 2021; 95:61-67. [PMID: 33548497 DOI: 10.1016/j.bbi.2021.01.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/30/2020] [Accepted: 01/23/2021] [Indexed: 01/23/2023] Open
Abstract
Inflammation is an important contributor in the pathophysiology of depression and recent evidence suggests that systemic inflammation and life stressors have interactive roles in depression onset. The aim of the present study was to investigate the individual and interactive effects of systemic inflammation and life stressors with short- and long-term treatment responses in outpatients with depressive disorders in a naturalistic one-year prospective design. Serum high-sensitivity C-reactive protein (hsCRP) levels were measured and number of stressful life events (SLEs) during the last 3 months were ascertained from 1094 patients at baseline. These patients received initial antidepressant monotherapy, then, for patients with an insufficient response or uncomfortable side effects, next treatment with alternative strategies were administered at every 3 weeks in the acute treatment phase (3, 6, 9, and 12 weeks) and at every 3 months in the continuation treatment phase (6, 9, and 12 months). 12-week and 12-month remission was estimated, defined as a Hamilton Depression Rating Scale score of ≤ 7. In multivariable logistic regression analyses, individual effects were found only between higher baseline serum hsCRP levels (≥1.0 vs. < 1.0 mg/L) and 12-week non-remission. Significant interactive effects between higher hsCRP levels and higher number of SLEs (≥2 vs. < 2) on both 12-week and 12-month non-remission were observed. Combining serum hsCRP levels and number of SLEs might therefore be a useful predictor for short- and long-term treatment responses in patients with depressive disorders receiving pharmacotherapy.
Collapse
|
29
|
McFarlane AC. Stressed, inflamed and depressed: What does this mean for treatment of major depressive disorders? Brain Behav Immun 2021; 94:19-20. [PMID: 33662502 DOI: 10.1016/j.bbi.2021.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Alexander C McFarlane
- Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
30
|
Qu Y, Shan J, Wang S, Chang L, Pu Y, Wang X, Tan Y, Yamamoto M, Hashimoto K. Rapid-acting and long-lasting antidepressant-like action of (R)-ketamine in Nrf2 knock-out mice: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci 2021; 271:439-446. [PMID: 33180200 DOI: 10.1007/s00406-020-01208-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
The transcription nuclear factor-erythroid factor 2-related factor 2 (Nrf2) plays a key role in inflammation that is involved in depression. We previously reported that Nrf2 knock-out (KO) mice exhibit depression-like phenotypes through systemic inflammation. (R)-ketamine, an enantiomer of ketamine, has rapid-acting and long-lasting antidepressant-like effects in rodents. We investigated whether (R)-ketamine can produce antidepressant-like effects in Nrf2 KO mice. Effects of (R)-ketamine on the depression-like phenotypes in Nrf2 KO mice were examined. Furthermore, the role of TrkB in the antidepressant-like actions of (R)-ketamine was also examined. In the tail-suspension test (TST) and forced swimming test (FST), (R)-ketamine (10 mg/kg) significantly attenuated the increased immobility times of TST and FST in the Nrf2 KO mice. In the sucrose preference test (SPT), (R)-ketamine significantly ameliorated the reduced preference of SPT in Nrf2 KO mice. Decreased expression of synaptic proteins (i.e., GluA1 and PSD-95) in the medial prefrontal cortex (mPFC) of Nrf2 KO mice was significantly ameliorated after a single injection of (R)-ketamine. Furthermore, the pre-treatment with the TrkB antagonist ANA-12 (0.5 mg/kg) significantly blocked the rapid and long-lasting antidepressant-like effects of (R)-ketamine in Nrf2 KO mice. Furthermore, ANA-12 significantly antagonized the beneficial effects of (R)-ketamine on decreased expression of synaptic proteins in the mPFC of Nrf2 KO mice. These findings suggest that (R)-ketamine can produce rapid and long-lasting antidepressant-like actions in Nrf2 KO mice via TrkB signaling.
Collapse
Affiliation(s)
- Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiajing Shan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Siming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yaoyu Pu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xingming Wang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Yunfei Tan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Masayuki Yamamoto
- Departments of Medical Biochemistry and Respiratory Medicine, Tohoku University Graduate School of Medicine, SendaiMiyagi, Miyagi, 980-8575, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
31
|
Photobiomodulation Therapy Ameliorates Glutamatergic Dysfunction in Mice with Chronic Unpredictable Mild Stress-Induced Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678276. [PMID: 33859781 PMCID: PMC8024102 DOI: 10.1155/2021/6678276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Accumulating evidence indicates that dysfunction of the glutamatergic neurotransmission has been widely involved in the pathophysiology and treatment of depression. Photobiomodulation therapy (PBMT) has been demonstrated to regulate neuronal function both in vitro and in vivo. Herein, we aim to investigate whether the antidepressant phenotype of PBMT is associated with the improvement of glutamatergic dysfunction and to explore the mechanisms involved. Results showed that PBMT decreased extracellular glutamate levels via upregulation of glutamate transporter-1 (GLT-1) and rescued astrocyte loss in the cerebral cortex and hippocampus, which also alleviated dendritic atrophy and upregulated the expression of AMPA receptors on the postsynaptic membrane, ultimately exhibiting behaviorally significant antidepressant effects in mice exposed to chronic unpredictable mild stress (CUMS). Notably, PBMT also obtained similar antidepressant effects in a depressive mouse model subcutaneously injected with corticosterone (CORT). Evidence from in vitro mechanistic experiments demonstrated that PBMT treatment significantly increased both the GLT-1 mRNA and protein levels via the Akt/NF-κB signaling pathway. NF-κB-regulated transcription was in an Akt-dependent manner, while inhibition of Akt attenuated the DNA-binding efficiency of NF-κB to the GLT-1 promoter. Importantly, in vitro, we further found that PKA activation was responsible for phosphorylation and surface levels of AMPA receptors induced by PBMT, which is likely to rescue excitatory synaptic transmission. Taken together, our research suggests that PBMT as a feasible therapeutic approach has great potential value to control the progression of depression.
Collapse
|
32
|
Fischer KF, Simon MS, Elsner J, Dobmeier J, Dorr J, Blei L, Zill P, Obermeier M, Musil R. Assessing the links between childhood trauma, C-reactive protein and response to antidepressant treatment in patients with affective disorders. Eur Arch Psychiatry Clin Neurosci 2021; 271:1331-1341. [PMID: 33733300 PMCID: PMC8429368 DOI: 10.1007/s00406-021-01245-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Adverse Childhood Experiences (ACE) are a well-known risk-factor for depression. Additionally, (high-sensitive) C-reactive Protein (hsCRP) is elevated in subgroups of depressed patients and high following ACE. In this context the literature considers hsCRP and ACE to be associated with treatment resistant depression. With the data being heterogenous, this study aimed to explore the associations of ACE, hsCRP levels and response to antidepressant treatment in uni- and bipolar depression. N = 76 patients diagnosed with uni- or bipolar depression and N = 53 healthy controls were included. Treatment was over 6 weeks in an inpatient psychiatric setting within an observatory study design. Depressive symptoms were assessed by the Montgomery-Asberg Depression Rating Scale (MADRS), ACE were assessed by the Childhood Trauma Questionnaire (CTQ); the body-mass-index (BMI) and hsCRP were measured. HsCRP levels did not differ between the study population and the healthy controls. While the depressive symptoms decreased, the hsCRP levels increased. Sexual abuse was associated with significant higher and emotional abuse with lower levels of hsCRP after 6 weeks. The baseline hsCRP levels and the ACE subgroups did not show significant associations with the treatment response in unipolar depressed patients. The long-lasting effects of specific forms of ACE may have relevant impact on inflammation, supporting hsCRP to be a suitable biomarker. With ACE and hsCRP not showing any significant associations with treatment response in the unipolar depressed subgroup, a more differentiate research concerning biomarkers and treatment regimens is needed when talking about treatment response.
Collapse
Affiliation(s)
- Kai F. Fischer
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336 München, Germany
| | - Maria S. Simon
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336 München, Germany
| | - Julie Elsner
- grid.17091.3e0000 0001 2288 9830Institute of Mental Health at UBC, University of British Columbia, Vancouver, Canada
| | | | | | - Leonie Blei
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336 München, Germany
| | - Peter Zill
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336 München, Germany
| | | | - Richard Musil
- grid.5252.00000 0004 1936 973XDepartment of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, 80336 München, Germany
| |
Collapse
|
33
|
Li S, Li T, Jin Y, Qin X, Tian J, Zhang L. Antidepressant-Like Effects of Coumaroylspermidine Extract From Safflower Injection Residues. Front Pharmacol 2020; 11:713. [PMID: 32625082 PMCID: PMC7311797 DOI: 10.3389/fphar.2020.00713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, a total coumaroylspermidine extract (CSE), which included four coumaroylspermidine compounds, was prepared from safflower injection (a traditional Chinese medicine) residues for the first time. The total content of the four coumaroylspermidine compounds was determined to be 64.86 ± 0.41% using high-performance liquid chromatography. We then evaluated the anti-depressant effect of CSE by using a chronic unpredictable mild stress (CUMS) model in rats. Results of sucrose preference tests, open field tests, and forced swimming tests suggest that CSE exhibits a significant anti-depressant effect. In studies to explore the mechanism, CSE was found to inhibit the increases in levels of corticosterone and decreases in levels of 5-hydroxytryptamine, dopamine, and noradrenaline induced by CUMS. Metabolic profiling showed that 10 endogenous metabolites and four metabolic pathways were altered after CSE treatment. Thus, this study not only found a spermidine extract with antidepressant effect from safflower injection residue for the first time but also provided a way for the efficient utilize of safflower injection residue.
Collapse
Affiliation(s)
- Shifei Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Ting Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Yufang Jin
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Liwei Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
34
|
Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry 2020; 10:186. [PMID: 32518376 PMCID: PMC7283282 DOI: 10.1038/s41398-020-00878-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The vagus nerve plays a role in the cross talk between the brain and gut microbiota, which could be involved in depression. The subdiaphragmatic vagus nerve serves as a major modulatory pathway between the brain and gut microbiota. Here, we investigated the effects of subdiaphragmatic vagotomy (SDV) on the depression-like phenotype and the abnormal composition of gut microbiota in mice after lipopolysaccharide (LPS) administration. LPS caused a depression-like phenotype, inflammation, increase in spleen weight, and downregulation of synaptic proteins in the medial prefrontal cortex (mPFC) in the sham-operated mice. In contrast, LPS did not produce a depression-like phenotype and downregulated synaptic proteins in the mPFC after SDV. The spleen weight and plasma levels of pro-inflammatory cytokines in the SDV + LPS group were lower than those of the sham + LPS group. Interestingly, there were positive correlations between the plasma levels of pro-inflammatory cytokines and spleen weight, suggesting a relationship between inflammatory events and spleen weight. Furthermore, LPS led to significant alterations in gut microbiota diversity in sham-operated mice, but not SDV-operated mice. In an unweighted UniFrac PCoA, the dots representing the sham + LPS group were located far away from the dots representing the other three groups. Our results suggest that LPS produces a depression-like phenotype, increases spleen weight, triggers inflammation, downregulates synaptic proteins in the mPFC, and leads to abnormal composition of gut microbiota via the subdiaphragmatic vagus nerve. It is likely that the vagus nerve plays a crucial role in the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Jiancheng Zhang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan ,grid.33199.310000 0004 0368 7223Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 PR China
| | - Li Ma
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Lijia Chang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Yaoyu Pu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Youge Qu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670 Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
35
|
Liver hydrolysate prevents depressive-like behavior in an animal model of colitis: Involvement of hippocampal neurogenesis via the AMPK/BDNF pathway. Behav Brain Res 2020; 390:112640. [PMID: 32434062 DOI: 10.1016/j.bbr.2020.112640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 01/17/2023]
Abstract
Patients with inflammatory bowel disease (IBD) have higher rates of psychiatric pathology, including anxiety and depression. The dextran sulfate sodium (DSS)-treated mouse is a well-characterized animal model of colitis that exhibits IBD-like and depressive-like changes. A recent study found that phosphorylated (p-) adenosine monophosphate-activated protein kinase (AMPK) was associated with anti-inflammatory and antidepressant effects. Our previous research in an animal model of major depression suggests that liver hydrolysate (LH) has an antidepressant effect and combats physical fatigue by enhancement via the hippocampal or peripheral p-AMPK pathway. In this study, we examined whether or not LH has antidepressant and anti-inflammatory effects in mice with DSS-induced changes. We evaluated colon inflammation in DSS-treated mice and used the tail suspension and forced swimming tests to confirm whether or not LH prevents IBD-like symptoms and depressive-like behavior. Hippocampal expression of AMPK, brain-derived neurotrophic factor (BDNF), doublecortin, and neuronal nuclear antigen proteins was assessed by Western blotting. Hippocampal neurogenesis and morphometric changes in the microglia and astrocytes were examined by immunohistochemistry. DSS-treated mice showed IBD-like pathology and depressive-like behavior, a reduction in the hippocampal neuronal nuclear antigen level and neurogenesis, and increased hippocampal activation of microglia and astrocytes. These changes were reversed by LH. DSS-treated mice showed enhanced hippocampal expression of p-AMPK and BDNF after administration of LH. LH prevented depressive-like behavior by enhancing hippocampal neurogenesis through the AMPK/BDNF pathway and anti-neuroinflammation in the hippocampus. LH may be a therapeutic option for patients with IBD and depression.
Collapse
|
36
|
Visentin APV, Colombo R, Scotton E, Fracasso DS, da Rosa AR, Branco CS, Salvador M. Targeting Inflammatory-Mitochondrial Response in Major Depression: Current Evidence and Further Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2972968. [PMID: 32351669 PMCID: PMC7178465 DOI: 10.1155/2020/2972968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The prevalence of psychiatric disorders has increased in recent years. Among existing mental disorders, major depressive disorder (MDD) has emerged as one of the leading causes of disability worldwide, affecting individuals throughout their lives. Currently, MDD affects 15% of adults in the Americas. Over the past 50 years, pharmacotherapy, psychotherapy, and brain stimulation have been used to treat MDD. The most common approach is still pharmacotherapy; however, studies show that about 40% of patients are refractory to existing treatments. Although the monoamine hypothesis has been widely accepted as a molecular mechanism to explain the etiology of depression, its relationship with other biochemical phenomena remains only partially understood. This is the case of the link between MDD and inflammation, mitochondrial dysfunction, and oxidative stress. Studies have found that depressive patients usually exhibit altered inflammatory markers, mitochondrial membrane depolarization, oxidized mitochondrial DNA, and thus high levels of both central and peripheral reactive oxygen species (ROS). The effect of antidepressants on these events remains unclear. Nevertheless, the effects of ROS on the brain are well known, including lipid peroxidation of neuronal membranes, accumulation of peroxidation products in neurons, protein and DNA damage, reduced antioxidant defenses, apoptosis induction, and neuroinflammation. Antioxidants such as ascorbic acid, tocopherols, and coenzyme Q have shown promise in some depressive patients, but without consensus on their efficacy. Hence, this paper provides a review of MDD and its association with inflammation, mitochondrial dysfunction, and oxidative stress and is aimed at thoroughly discussing the putative links between these events, which may contribute to the design and development of new therapeutic approaches for patients.
Collapse
Affiliation(s)
| | - Rafael Colombo
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Soligo Fracasso
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Adriane Ribeiro da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Catia Santos Branco
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| | - Mirian Salvador
- Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS 95070 560, Brazil
| |
Collapse
|
37
|
|
38
|
Kruse JL, Cho JHJ, Olmstead R, Hwang L, Faull K, Eisenberger NI, Irwin MR. Kynurenine metabolism and inflammation-induced depressed mood: A human experimental study. Psychoneuroendocrinology 2019; 109:104371. [PMID: 31325802 PMCID: PMC6842695 DOI: 10.1016/j.psyneuen.2019.104371] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022]
Abstract
Inflammation has an important physiological influence on mood and behavior. Kynurenine metabolism is hypothesized to be a pathway linking inflammation and depressed mood, in part through the impact of kynurenine metabolites on glutamate neurotransmission in the central nervous system. This study evaluated whether the circulating concentrations of kynurenine and related compounds change acutely in response to an inflammatory challenge (endotoxin administration) in a human model of inflammation-induced depressed mood, and whether such metabolite changes relate to mood change. Adults (n = 115) were randomized to receive endotoxin or placebo. Mood (Profile of Mood States), plasma cytokine (interleukin-6, tumor necrosis factor-α) and metabolite (kynurenine, tryptophan, kynurenic acid, quinolinic acid) concentrations were repeatedly measured before the intervention, and at 2 and 6 h post-intervention. Linear mixed models were used to evaluate relationships between mood, kynurenine and related compounds, and cytokines. Kynurenine, kynurenic acid, and tryptophan (but not quinolinic acid) concentrations changed acutely (p's all <0.001) in response to endotoxin as compared to placebo. Neither kynurenine, kynurenic acid nor tryptophan concentrations were correlated at baseline with cytokine concentrations, but all three were significantly correlated with cytokine concentrations over time in response to endotoxin. Quinolinic acid concentrations were not correlated with cytokine concentrations either before or following endotoxin treatment. In those who received endotoxin, kynurenine (p = 0.049) and quinolinic acid (p = 0.03) positively correlated with depressed mood, although these findings would not survive correction for multiple testing. Changes in tryptophan and kynurenine pathway metabolites did not mediate the relationship between cytokines and depressed mood. Further work is necessary to clarify the pathways leading from inflammation to depressed mood in humans.
Collapse
Affiliation(s)
- Jennifer L. Kruse
- Cousins Center for Psychoneuroimmunology, University of California Los Angeles,Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Joshua Hyong-Jin Cho
- Cousins Center for Psychoneuroimmunology, University of California Los Angeles, United States; Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, United States.
| | - Richard Olmstead
- Cousins Center for Psychoneuroimmunology, University of California Los Angeles,Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Lin Hwang
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles,Pasarow Mass Spectrometry Laboratory, University of California Los Angeles
| | - Kym Faull
- Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles,Pasarow Mass Spectrometry Laboratory, University of California Los Angeles
| | - Naomi I. Eisenberger
- Cousins Center for Psychoneuroimmunology, University of California Los Angeles,Department of Psychology, University of California Los Angeles
| | - Michael R. Irwin
- Cousins Center for Psychoneuroimmunology, University of California Los Angeles,Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles
| |
Collapse
|
39
|
Takahashi K, Nakagawasai O, Nemoto W, Odaira T, Sakuma W, Onogi H, Nishijima H, Furihata R, Nemoto Y, Iwasa H, Tan-No K, Tadano T. Effect of Enterococcus faecalis 2001 on colitis and depressive-like behavior in dextran sulfate sodium-treated mice: involvement of the brain-gut axis. J Neuroinflammation 2019; 16:201. [PMID: 31672153 PMCID: PMC6822456 DOI: 10.1186/s12974-019-1580-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD), including those with ulcerative colitis and Crohn's disease, have higher rates of psychiatric disorders, such as depression and anxiety; however, the mechanism of psychiatric disorder development remains unclear. Mice with IBD induced by dextran sulfate sodium (DSS) in drinking water exhibit depressive-like behavior. The presence of Lactobacillus in the gut microbiota is associated with major depressive disorder. Therefore, we examined whether Enterococcus faecalis 2001 (EF-2001), a biogenic lactic acid bacterium, prevents DSS-induced depressive-like behavior and changes in peripheral symptoms. METHODS We evaluated colon inflammation and used the tail suspension test to examine whether EF-2001 prevents IBD-like symptoms and depressive-like behavior in DSS-treated mice. The protein expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), X-linked inhibitor of apoptosis protein (XIAP), and cleaved caspase-3 in the rectum and hippocampus was assessed by western blotting. Hippocampal neurogenesis, altered nuclear factor-kappa B (NFκB) p65 morphometry, and the localization of activated NFκB p65 and XIAP were examined by immunohistochemistry. RESULTS Treatment with 1.5% DSS for 7 days induced IBD-like pathology and depressive-like behavior, increased TNF-α and IL-6 expression in the rectum and hippocampus, activated caspase-3 in the hippocampus, and decreased hippocampal neurogenesis. Interestingly, these changes were reversed by 20-day administration of EF-2001. Further, EF-2001 administration enhanced NFκB p65 expression in the microglial cells and XIAP expression in the hippocampus of DSS-treated mice. CONCLUSION EF-2001 prevented IBD-like pathology and depressive-like behavior via decreased rectal and hippocampal inflammatory cytokines and facilitated the NFκB p65/XIAP pathway in the hippocampus. Our findings suggest a close relationship between IBD and depression.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.,Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takayo Odaira
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Wakana Sakuma
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Hiroshi Onogi
- Faculty of Health Science, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, Miyagi, 981-8522, Japan
| | - Hiroaki Nishijima
- Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ryuji Furihata
- Department of Psychiatry, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Yukio Nemoto
- Kampo and Herbal Medicine Research Center, Yokohama University of Pharmacy, 601 Matanocho, Totsuka-ku, Yokohama City, Kanagawa, 245-0066, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co, Ltd, 2-14-3 Nagatachou, Chiyoda-ku, Tokyo, 100-0014, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| | - Takeshi Tadano
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.,Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kanazawa, 920-8640, Japan
| |
Collapse
|
40
|
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin Neurosci 2019; 73:613-627. [PMID: 31215725 PMCID: PMC6851782 DOI: 10.1111/pcn.12902] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is one of the most disabling psychiatric disorders. Approximately one-third of the patients with MDD are treatment resistant to the current antidepressants. There is also a significant therapeutic time lag of weeks to months. Furthermore, depression in patients with bipolar disorder (BD) is typically poorly responsive to antidepressants. Therefore, there exists an unmet medical need for rapidly acting antidepressants with beneficial effects in treatment-resistant patients with MDD or BD. Accumulating evidence suggests that the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine produces rapid and sustained antidepressant effects in treatment-resistant patients with MDD or BD. Ketamine is a racemic mixture comprising equal parts of (R)-ketamine (or arketamine) and (S)-ketamine (or esketamine). Because (S)-ketamine has higher affinity for NMDAR than (R)-ketamine, esketamine was developed as an antidepressant. On 5 March 2019, esketamine nasal spray was approved by the US Food and Drug Administration. However, preclinical data suggest that (R)-ketamine exerts greater potency and longer-lasting antidepressant effects than (S)-ketamine in animal models of depression and that (R)-ketamine has less detrimental side-effects than (R,S)-ketamine or (S)-ketamine. In this article, the author reviews the historical overview of the antidepressant actions of enantiomers of ketamine and its major metabolites norketamine and hydroxynorketamine. Furthermore, the author discusses the other potential rapid-acting antidepressant candidates (i.e., NMDAR antagonists and modulators, low-voltage-sensitive T-type calcium channel inhibitor, potassium channel Kir4.1 inhibitor, negative modulators of γ-aminobutyric acid, and type A [GABAA ] receptors) to compare them with ketamine. Moreover, the molecular and cellular mechanisms of ketamine's antidepressant effects are discussed.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
41
|
Sun LJ, Zhang LM, Liu D, Xue R, Liu YQ, Li L, Guo Y, Shang C, Yao JQ, Zhang YZ, Li YF. The faster-onset antidepressant effects of hypidone hydrochloride (YL-0919). Metab Brain Dis 2019; 34:1375-1384. [PMID: 31236807 DOI: 10.1007/s11011-019-00439-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Hypidone hydrochloride (YL-0919), is a novel structural antidepressant candidate as a triple selective serotonin re-uptake inhibitor (SSRI), 5-HT1A partial agonist and 5-HT6 agonist. Here, we investigated the rapid onset antidepressant-like effects of YL-0919 and the possible mechanism in rats exposed to a chronic unpredictable stress (CUS) paradigm. In the CUS rats, it was found that fluoxetine (FLX, 10 mg/kg) treatment exerted antidepressant actions on 20-22d, while YL-0919 or vilazodone (VLZ, a dual 5-HT1A partial agonist and SSRI) administrated once daily exerted faster antidepressant-like behaviors [4 days in the sucrose preference test (SPT) and 6 days in the novelty suppressed feeding test (NSF)]. Thereafter, the serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels were reversed by treatment with YL-0919 for 7 days. Furthermore, YL-0919 treatment for 5 days reversed the brain derived neurotrophic factor (BDNF)-mammalian target of rapamycin (mTOR) signaling and the key synaptic proteins, such as post-synaptic density (PSD95), GluR1 and presynaptic protein synapsin1. Meanwhile, the dendritic complexity of pyramidal neurons in prefrontal cortex (PFC) were also increased in the CUS rats. These data suggest that YL-0919 exerts a faster antidepressant-like effect on behaviors and this effect maybe at least partially mediated by the BDNF-mTOR signaling related dendritic complexity increase in the PFC.
Collapse
Affiliation(s)
- Li-Jun Sun
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - Li-Ming Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - Dan Liu
- Central Blood Station of Hengshui, Hengshui, 053000, China
| | - Rui Xue
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - Yan-Qin Liu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - Lei Li
- Department of Anesthesiology, Beijing Chuiyangliu Hospital, Beijing, 10022, China
| | - Ying Guo
- Department of Anesthesiology, General Hospital of PLA, Beijing, 100853, China
| | - Chao Shang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - Jun-Qi Yao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China
| | - You-Zhi Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian, Beijing, 100850, China.
| |
Collapse
|
42
|
Muscular and mitochondrial effects of long-term fluoxetine treatment in mice, combined with physical endurance exercise on treadmill. Life Sci 2019; 232:116508. [DOI: 10.1016/j.lfs.2019.05.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023]
|
43
|
Feng J, Wang M, Li M, Yang J, Jia J, Liu L, Zhou J, Zhang C, Wang X. Serum miR-221-3p as a new potential biomarker for depressed mood in perioperative patients. Brain Res 2019; 1720:146296. [PMID: 31211948 DOI: 10.1016/j.brainres.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) modulate various genes associated with brain disorders and circulating miRNAs may therefore serve as biomarkers for these neurological diseases. We previously found that the miRNA miR-221-3p was highly expressed in cerebrospinal fluid and the serum of major depressive disorder (MDD) patients. Here, we examined whether miR-221-3p could be used as a biomarker for depressed mood in perioperative patients. We first examined the relative expression of serum miR-221-3p by real-time quantitative PCR in perioperative patients with different degrees of depressive mood assessed by the Patient Health Questionnaire-9 (PHQ-9) diagnostic form. We found that miR-221-3p expression in the mild depressive mood group (PHQ-9 scores 5-9) was 2.21 fold that of the normal group (PHQ-9 scores 0-4) and the moderate&severe depressive mood group (PHQ-9 scores ≥ 10) showed miR-221-3p expression levels 3.66 fold that of the normal group. Then the absolute quantification of serum miR-221-3p was obtained using an miRNA standard curve. We found that the amount of serum miR-221-3p was positively correlated with depressed mood; when serum miR-221-3p > 1.7 × 107 copies/μg RNA, all indicated PHQ-9 scores were higher than 6. Subsequently, we found that miR-221-3p could indirectly increase the expression of IFN-α (Interferon alpha) in astrocytes by targeting IRF2 (Interferon Regulatory Factor 2) and that miR-221-3p participated in the anti-neuroinflammatory signaling cascades induced by ketamine and paroxetine via the IRF2/IFN-α pathway. Our results indicate that elevated serum miR-221-3p can be used as a biomarker for depressed mood in perioperative patients and that IFN-α-induced NF-κB activation in astrocytes mediated by miR-221-3p targeting of IRF2 may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Jianguo Feng
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Maozhou Wang
- Department of Intensive Care Unit, The Affiliated Chaoyang Hospital of Capital Medical University, Beijing, China
| | - Mao Li
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jimei Yang
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Laboratory of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
44
|
Ren Q. Soluble Epoxide Hydrolase Inhibitor: A Novel Potential Therapeutic or Prophylactic Drug for Psychiatric Disorders. Front Pharmacol 2019; 10:420. [PMID: 31105566 PMCID: PMC6492054 DOI: 10.3389/fphar.2019.00420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Psychiatric disorders, including depression and schizophrenia, affect millions of individuals worldwide. However, the precise neurobiology of psychiatric disorders remains unclear. Accumulating evidence suggests that various inflammatory processes play a key role in depression and schizophrenia, and that anti-inflammatory drugs exert a therapeutic effect in patients with psychiatric disorders. Epoxyeicosatrienoic acids (EETs) and epoxydocosapentaenoic acids (EDPs) have potent anti-inflammatory properties. These mediators are broken down into their corresponding diols by soluble epoxide hydrolase (sEH), and inhibition of sEH enhances the anti-inflammatory effects of EETs. Therefore, sEH may play a key role in inflammation, which is involved in psychiatric disorders. Recent studies have shown that abnormal levels of sEH may be involved in the pathogenesis of certain psychiatric diseases, and that sEH inhibitors exhibit antidepressant and antipsychotic activity. The present review discusses the extensive evidence supporting sEH as a therapeutic target for psychiatric diseases, and the clinical value of sEH inhibitors as therapeutic or prophylactic drugs.
Collapse
Affiliation(s)
- Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, China.,Center of Stem Cell and Immune Cell Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
García-Marchena N, Barrera M, Mestre-Pintó JI, Araos P, Serrano A, Pérez-Mañá C, Papaseit E, Fonseca F, Ruiz JJ, Rodríguez de Fonseca F, Farré M, Pavón FJ, Torrens M. Inflammatory mediators and dual depression: Potential biomarkers in plasma of primary and substance-induced major depression in cocaine and alcohol use disorders. PLoS One 2019; 14:e0213791. [PMID: 30870525 PMCID: PMC6417778 DOI: 10.1371/journal.pone.0213791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent comorbid mental disorder among people with substance use disorders. The MDD can be both primary and substance-induced and its accurate diagnosis represents a challenge for clinical practice and treatment response. Recent studies reported alterations in the circulating expression of inflammatory mediators in patients with psychiatric disorders, including those related to substance use. The aim of the study was to explore TNF-α, IL-1β, CXCL12, CCL2, CCL11 (eotaxin-1) and CX3CL1 (fractalkine) as potential biomarkers to identify comorbid MDD and to distinguish primary MDD from substance-induced MDD in patients with substance disorders. Patients diagnosed with cocaine (CUD, n = 64) or alcohol (AUD, n = 65) use disorders with/without MDD were recruited from outpatient treatment programs [CUD/non-MDD (n = 31); CUD/primary MDD (n = 18); CUD/cocaine-induced MDD (N = 15); AUD/non-MDD (n = 27); AUD/primary MDD (n = 16) and AUD/alcohol-induced MDD (n = 22)]. Sixty-two healthy subjects were also recruited as control group. Substance and mental disorders were assessed according to "Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision" (DSM-IV-TR) and a blood sample was collected for determinations in the plasma. The cocaine group showed lower TNF-α (p<0.05) and CCL11 (p<0.05), and higher IL-1β (p<0.01) concentrations than the control group. In contrast, the alcohol group showed higher IL-1β (p<0.01) and lower CXCL12 (p<0.01) concentrations than the control group. Regarding MDD, we only observed alterations in the cocaine group. Thus, CUD/MDD patients showed lower IL-1β (p<0.05), CXCL12 (p<0.05) and CCL11 (p<0.05), and higher CXC3CL1 (p<0.05) concentrations than CUD/non-MDD patients. Moreover, while CUD/primary MDD patients showed higher CCL11 (p<0.01) concentrations than both CUD/non-MDD and CUD/cocaine-induced MDD patients, CUD/cocaine-induced MDD patients showed lower CXCL12 (p<0.05) concentrations than CUD/non-MDD patients. Finally, a logistic regression model in the cocaine group identified CXCL12, CCL11 and sex to distinguish primary MDD from cocaine-induced MDD providing a high discriminatory power. The present data suggest an association between changes in inflammatory mediators and the diagnosis of primary and substance-induced MDD, namely in CUD patients.
Collapse
Affiliation(s)
- Nuria García-Marchena
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
- Addiction Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marta Barrera
- Addiction Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Joan Ignasi Mestre-Pintó
- Addiction Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Pedro Araos
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga (UMA), Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Clara Pérez-Mañá
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Esther Papaseit
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francina Fonseca
- Addiction Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut de Neuropsiquiatria i Addiccions (INAD), Barcelona, Spain
| | - Juan Jesús Ruiz
- Centro Provincial de Drogodependencias, Diputación Provincial de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Magí Farré
- Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga/Universidad de Málaga, Málaga, Spain
| | - Marta Torrens
- Addiction Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Institut de Neuropsiquiatria i Addiccions (INAD), Barcelona, Spain
| |
Collapse
|
46
|
Hashimoto K. Role of Soluble Epoxide Hydrolase in Metabolism of PUFAs in Psychiatric and Neurological Disorders. Front Pharmacol 2019; 10:36. [PMID: 30761004 PMCID: PMC6363819 DOI: 10.3389/fphar.2019.00036] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays a key role in the pathogenesis of a number of psychiatric and neurological disorders. Soluble epoxide hydrolases (sEH), enzymes present in all living organisms, metabolize epoxy fatty acids (EpFAs) to corresponding 1,2-diols by the addition of a molecule of water. Accumulating evidence suggests that sEH in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation. Preclinical studies demonstrated that protein expression of sEH in the prefrontal cortex, striatum, and hippocampus from mice with depression-like phenotype was higher than control mice. Furthermore, protein expression of sEH in the parietal cortex from patients with major depressive disorder was higher than controls. Interestingly, Ephx2 knock-out (KO) mice exhibit stress resilience after chronic social defeat stress. Furthermore, the sEH inhibitors have antidepressant effects in animal models of depression. In addition, pharmacological inhibition or gene KO of sEH protected against dopaminergic neurotoxicity in the striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in an animal model of Parkinson’s disease (PD). Protein expression of sEH in the striatum from MPTP-treated mice was higher than control mice. A number of studies using postmortem brain samples showed that the deposition of protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of patients from PD and dementia with Lewy bodies (DLB). Moreover, the expression of the sEH protein in the striatum from patients with DLB was significantly higher compared with controls. Interestingly, there was a positive correlation between sEH expression and the ratio of phosphorylated α-synuclein to α-synuclein in the striatum. In the review, the author discusses the role of sEH in the metabolism of PUFAs in inflammation-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| |
Collapse
|
47
|
Fukuda T, Ohya R, Kobayashi K, Ano Y. Matured Hop Bitter Acids in Beer Improve Lipopolysaccharide-Induced Depression-Like Behavior. Front Neurosci 2019; 13:41. [PMID: 30760978 PMCID: PMC6362420 DOI: 10.3389/fnins.2019.00041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/15/2019] [Indexed: 01/08/2023] Open
Abstract
Recent studies have demonstrated a close association between neural inflammation and development of mental illnesses, such as depression. Clinical trials have reported that treatment with non-steroidal anti-inflammatory drugs is associated with reduced risk of depression. Moreover, nutritional approaches for the prevention and management of depression have garnered significant attention in recent years. We have previously demonstrated that iso-α-acids (IAAs)—the bitter components in beer—suppress hippocampal microglial inflammation, thereby improving cognitive decline. However, effects of hop-derived components other than IAAs on inflammation have not been elucidated. In the present study, we demonstrated that consumption of matured hop bitter acids (MHBAs) generated from α- and β-acids, which show a high similarity with the chemical structure of IAAs, suppress lipopolysaccharide (LPS)-induced cytokine productions in the brain. MHBAs administration increased norepinephrine (NE) secretion and reduced immobility time which represents depression-like behavior in the tail suspension test. Moreover, MHBAs components, including hydroxyallohumulinones and hydroxyalloisohumulones, reduced LPS-induced immobility time. Although further researches are needed to clarify the underlying mechanisms, these findings suggest that MHBAs reduce inflammatory cytokine productions and increase NE secretion, thereby improving depression-like behavior. Similarly, inoculation with LPS induced loss of dendritic spines, which was improved upon MHBAs administration. Additionally, vagotomized mice showed attenuated improvement of immobility time, increase in NE level, and improvement of dendrite spine density following MHBAs administration. Therefore, MHBAs activate the vagus nerve and suppress neuronal damage and depression-like behavior induced by inflammation.
Collapse
Affiliation(s)
- Takafumi Fukuda
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Rena Ohya
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Keiko Kobayashi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| | - Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Ltd., Yokohama, Japan
| |
Collapse
|
48
|
Perlman K, Benrimoh D, Israel S, Rollins C, Brown E, Tunteng JF, You R, You E, Tanguay-Sela M, Snook E, Miresco M, Berlim MT. A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. J Affect Disord 2019; 243:503-515. [PMID: 30286415 DOI: 10.1016/j.jad.2018.09.067] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/29/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The heterogeneity of symptoms and complex etiology of depression pose a significant challenge to the personalization of treatment. Meanwhile, the current application of generic treatment approaches to patients with vastly differing biological and clinical profiles is far from optimal. Here, we conduct a meta-review to identify predictors of response to antidepressant therapy in order to select robust input features for machine learning models of treatment response. These machine learning models will allow us to learn associations between patient features and treatment response which have predictive value at the individual patient level; this learning can be optimized by selecting high-quality input features for the model. While current research is difficult to directly apply to the clinic, machine learning models built using knowledge gleaned from current research may become useful clinical tools. METHODS The EMBASE and MEDLINE/PubMed online databases were searched from January 1996 to August 2017, using a combination of MeSH terms and keywords to identify relevant literature reviews. We identified a total of 1909 articles, wherein 199 articles met our inclusion criteria. RESULTS An array of genetic, immune, endocrine, neuroimaging, sociodemographic, and symptom-based predictors of treatment response were extracted, varying widely in clinical utility. LIMITATIONS Due to heterogeneous sample sizes, effect sizes, publication biases, and methodological disparities across reviews, we could not accurately assess the strength and directionality of every predictor. CONCLUSION Notwithstanding our cautious interpretation of the results, we have identified a multitude of predictors that can be used to formulate a priori hypotheses regarding the input features for a computational model. We highlight the importance of large-scale research initiatives and clinically accessible biomarkers, as well as the need for replication studies of current findings. In addition, we provide recommendations for future improvement and standardization of research efforts in this field.
Collapse
Affiliation(s)
- Kelly Perlman
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada.
| | - David Benrimoh
- Department of Psychiatry, McGill University, Montreal, Canada; Faculty of Medicine, McGill University, Montreal, Canada
| | - Sonia Israel
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada
| | - Colleen Rollins
- Department of Psychiatry, University of Cambridge, Cambridge, England, UK
| | - Eleanor Brown
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada
| | - Jingla-Fri Tunteng
- Montreal Children's Hospital, McGill University Health Center, Montreal, Canada
| | - Raymond You
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Eunice You
- Faculty of Medicine, McGill University, Montreal, Canada
| | - Myriam Tanguay-Sela
- Montreal Neurological Institute, McGill University, 3801 Rue Université, Montréal, QC H3A 2B4, Canada
| | - Emily Snook
- Douglas Mental Health University Institute, Montreal, Canada
| | - Marc Miresco
- Department of Psychiatry, Jewish General Hospital, Montreal, Canada
| | - Marcelo T Berlim
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada
| |
Collapse
|
49
|
Suh JS, Schneider MA, Minuzzi L, MacQueen GM, Strother SC, Kennedy SH, Frey BN. Cortical thickness in major depressive disorder: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:287-302. [PMID: 30118825 DOI: 10.1016/j.pnpbp.2018.08.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023]
Abstract
Neuroimaging studies assessing neurobiological differences between patients with major depressive disorder (MDD) and healthy controls (HC) are often hindered by small sample sizes and heterogeneity of the patient sample. We performed a comprehensive literature search for studies assessing cortical thickness between patient and control groups, including studies investigating treatment effects on cortical thickness. We identified 34 studies meeting criteria for the systematic review and used Seed-based d Mapping to meta-analyze 24 of those that met additional criteria. Analysis of the full sample of subjects (MDD = 1073; HC = 936) revealed significant thinning in the MDD group in the bilateral orbitofrontal gyrus (BA 11), left pars opercularis (BA 45) and left calcarine fissure/lingual gyrus (BA 17), as well as an area of significant thickening in the left supramarginal gyrus (BA 40). These results support other imaging modalities that report disruptions in various frontal and temporal areas in MDD and identify additional areas in all major cerebral lobes likely to be significant when parsing for biomarkers of treatment or relapse.
Collapse
Affiliation(s)
- Jee Su Suh
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Maiko Abel Schneider
- Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Minuzzi
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Canadian Biomarker Integration Network for Depression, St. Michael's Hospital, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Arthur Sommer Rotenberg Chair in Suicide & Depression Studies, St. Michael's Hospital, Toronto, ON, Canada
| | - Benicio N Frey
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
50
|
He S, Zeng D, Xu F, Zhang J, Zhao N, Wang Q, Shi J, Lin Z, Yu W, Li H. Baseline Serum Levels of Beclin-1, but Not Inflammatory Factors, May Predict Antidepressant Treatment Response in Chinese Han Patients With MDD: A Preliminary Study. Front Psychiatry 2019; 10:378. [PMID: 31244689 PMCID: PMC6563849 DOI: 10.3389/fpsyt.2019.00378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Currently, the choice of medical treatment for major depressive disorder (MDD) is primarily based on a trial-and-error process. Thus, identification of individual factors capable of predicting treatment response is of great clinical relevance. Recent work points towards beclin-1 and inflammatory factors as potential biomarkers of antidepressant treatment response. The primary aim of the study was to investigate whether pre-treatment serum levels of beclin-1 and inflammatory factors could predict antidepressant treatment response in Chinese Han patients with MDD. Forty patients with MDD were treated with either a selective serotonin reuptake inhibitor (SSRI) (paroxetine in 20 cases) or a serotonin-norepinephrine reuptake inhibitor (SNRI) (duloxetine in 13 cases and venlafaxine in 7 cases). Depression scores and serum levels of beclin-1 were measured at the baseline and after 8 weeks of antidepressant treatment. Serum C-reactive protein (CRP), interleukin (IL)-1B, and IL-6 levels were determined using enzyme-linked immunosorbent assay kits at the baseline. Twenty-seven patients were identified as treatment responders, whereas 13 were identified as non-responders after 8 weeks of antidepressant treatment. Baseline serum beclin-1 levels were significantly higher in non-responders than in responders (p = 0.001), whereas no differences were found in baseline serum CRP, IL-1B, or IL-6 levels between responders and non-responders. There were no significant correlations between baseline levels of beclin-1 and baseline IL-1β, IL-6, and CRP levels-neither in the total sample nor in responder and non-responder groups. Moreover, logistic regression models and a random forest model showed that baseline serum beclin-1, but not inflammatory factors, was an independent and the most important predictor for antidepressant treatment response. Furthermore, serum beclin-1 levels were significantly increased in responders (p = 0.027) but not in non-responders after 8 weeks of treatment (p = 0.221). Baseline serum beclin-1 levels may be a predictive biomarker of antidepressant response in patients with MDD. Moreover, beclin-1 may be involved in the therapeutic effect of antidepressant drugs.
Collapse
Affiliation(s)
- Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feikang Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Zhang
- Psychiatry Research, Zucker Hillside Hospital, Northwell Health System, Glen Oaks, NY, United States
| | - Nan Zhao
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Qiang Wang
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jiali Shi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguang Lin
- Biochemistry Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|