1
|
Ce F, Mei J, Zhao Y, Li Q, Ren X, Song H, Qian W, Si J. Comparative Analysis of Transcriptomes Reveals Pathways and Verifies Candidate Genes for Clubroot Resistance in Brassica oleracea. Int J Mol Sci 2024; 25:9189. [PMID: 39273138 PMCID: PMC11395044 DOI: 10.3390/ijms25179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Clubroot, a soil-borne disease caused by Plasmodiophora brassicae, is one of the most destructive diseases of Brassica oleracea all over the world. However, the mechanism of clubroot resistance remains unclear. In this research, transcriptome sequencing was conducted on root samples from both resistant (R) and susceptible (S) B. oleracea plants infected by P. brassicae. Then the comparative analysis was carried out between the R and S samples at different time points during the infection stages to reveal clubroot resistance related pathways and candidate genes. Compared with 0 days after inoculation, a total of 4991 differential expressed genes were detected from the S pool, while only 2133 were found from the R pool. Gene function enrichment analysis found that the effector-triggered immunity played a major role in the R pool, while the pathogen-associated molecular pattern triggered immune response was stronger in the S pool. Simultaneously, candidate genes were identified through weighted gene co-expression network analysis, with Bol010786 (CNGC13) and Bol017921 (SD2-5) showing potential for conferring resistance to clubroot. The findings of this research provide valuable insights into the molecular mechanisms underlying clubroot resistance and present new avenues for further research aimed at enhancing the clubroot resistance of B. oleracea through breeding.
Collapse
Affiliation(s)
- Fuquan Ce
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Yu Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qinfei Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Xuesong Ren
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Hongyuan Song
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
- Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Southwest University, Chongqing 400716, China
| | - Jun Si
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400716, China
- Chongqing Key Laboratory of Olericulture, Chongqing 400716, China
| |
Collapse
|
2
|
Marchetti F, Distéfano AM, Cainzos M, Setzes N, Cascallares M, López GA, Zabaleta E, Carolina Pagnussat G. Cell death in bryophytes: emerging models to study core regulatory modules and conserved pathways. ANNALS OF BOTANY 2024; 134:367-384. [PMID: 38953500 PMCID: PMC11341678 DOI: 10.1093/aob/mcae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
This review summarizes recent progress in our current understanding of the mechanisms underlying the cell death pathways in bryophytes, focusing on conserved pathways and particularities in comparison to angiosperms. Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It is part of specific developmental programmes and maintains homeostasis of the organism in response to unfavourable environments. Bryophytes could provide valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to those present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programmes, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.
Collapse
Affiliation(s)
- Fernanda Marchetti
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Maximiliano Cainzos
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Nicolás Setzes
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
3
|
Dokka N, Tyagi S, Ramkumar MK, Rathinam M, Senthil K, Sreevathsa R. Genome-wide identification and characterization of DIRIGENT gene family (CcDIR) in pigeonpea (Cajanus cajan L.) provide insights on their spatial expression pattern and relevance to stress response. Gene 2024; 914:148417. [PMID: 38555003 DOI: 10.1016/j.gene.2024.148417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.
Collapse
Affiliation(s)
- Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - M K Ramkumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Kameshwaran Senthil
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
4
|
Jeong HM, Patterson H, Carella P. Bryo-FIGHTs: Emerging insights and principles acquired from non-vascular plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102484. [PMID: 37931549 DOI: 10.1016/j.pbi.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
Since the dawn of land plant evolution, pathogenic microbes have impacted plant health and threatened their survival. Though much of our knowledge on plant-pathogen interactions is derived from flowering plants, emerging research leveraging evolutionarily divergent non-vascular/non-seed bryophytes is beginning to shed light on the history and diversity of plant immune and infection processes. Here, we highlight key bryophyte-microbe pathosystems used to address fundamental questions on plant health. To this end, we outline the idea that core molecular aspects impacting plant infection and immunity are likely conserved across land plants. We discuss recent advances in the emerging field of Evo-MPMI (evolutionary molecular plant-microbe interactions) and highlight future opportunities that will clarify our understanding of the evolutionary framework that underpins host-pathogen interactions across the full spectrum of plant evolution.
Collapse
Affiliation(s)
- Hyeon-Min Jeong
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | - Henrietta Patterson
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | - Philip Carella
- Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
5
|
Alejo-Jacuinde G, Nájera-González HR, Chávez Montes RA, Gutierrez Reyes CD, Barragán-Rosillo AC, Perez Sanchez B, Mechref Y, López-Arredondo D, Yong-Villalobos L, Herrera-Estrella L. Multi-omic analyses reveal the unique properties of chia (Salvia hispanica) seed metabolism. Commun Biol 2023; 6:820. [PMID: 37550387 PMCID: PMC10406817 DOI: 10.1038/s42003-023-05192-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
Chia (Salvia hispanica) is an emerging crop considered a functional food containing important substances with multiple potential applications. However, the molecular basis of some relevant chia traits, such as seed mucilage and polyphenol content, remains to be discovered. This study generates an improved chromosome-level reference of the chia genome, resolving some highly repetitive regions, describing methylation patterns, and refining genome annotation. Transcriptomic analysis shows that seeds exhibit a unique expression pattern compared to other organs and tissues. Thus, a metabolic and proteomic approach is implemented to study seed composition and seed-produced mucilage. The chia genome exhibits a significant expansion in mucilage synthesis genes (compared to Arabidopsis), and gene network analysis reveals potential regulators controlling seed mucilage production. Rosmarinic acid, a compound with enormous therapeutic potential, was classified as the most abundant polyphenol in seeds, and candidate genes for its complex pathway are described. Overall, this study provides important insights into the molecular basis for the unique characteristics of chia seeds.
Collapse
Affiliation(s)
- Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Ricardo A Chávez Montes
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | | | - Alfonso Carlos Barragán-Rosillo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Benjamin Perez Sanchez
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA
| | - Lenin Yong-Villalobos
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.
- Unidad de Genómica Avanzada/Langebio, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., 36821, Mexico.
| |
Collapse
|
6
|
Quezada M, Giorello FM, Da Silva CC, Aguilar I, Balmelli G. Single-step genome-wide association study for susceptibility to Teratosphaeria nubilosa and precocity of vegetative phase change in Eucalyptus globulus. FRONTIERS IN PLANT SCIENCE 2023; 14:1124768. [PMID: 37465383 PMCID: PMC10350686 DOI: 10.3389/fpls.2023.1124768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/24/2023] [Indexed: 07/20/2023]
Abstract
Introduction Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.
Collapse
Affiliation(s)
- Marianella Quezada
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Facundo Matias Giorello
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Cecilia Corina Da Silva
- PDU Espacio de Biología Vegetal del Noreste, sede Tacuarembó, CENUR Noreste, Universidad de la República, Tacuarembó, Uruguay
| | - Ignacio Aguilar
- Programa Nacional de Investigación en Producción de Leche, Estación Experimental “Wilson Ferreira Adulnate”, Instituto Nacional de Investigación Agropecuaria, Canelones, Uruguay
| | - Gustavo Balmelli
- Programa Nacional de Investigación en Producción Forestal, Estación Experimental del Norte, Instituto Nacional de Investigación Agropecuaria, Tacuarembó, Uruguay
| |
Collapse
|
7
|
Pei Y, Cao W, Yu W, Peng C, Xu W, Zuo Y, Wu W, Hu Z. Identification and functional characterization of the dirigent gene family in Phryma leptostachya and the contribution of PlDIR1 in lignan biosynthesis. BMC PLANT BIOLOGY 2023; 23:291. [PMID: 37259047 DOI: 10.1186/s12870-023-04297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Furofuran lignans, the main insecticidal ingredient in Phryma leptostachya, exhibit excellent controlling efficacy against a variety of pests. During the biosynthesis of furofuran lignans, Dirigent proteins (DIRs) are thought to be dominant in the stereoselective coupling of coniferyl alcohol to form ( ±)-pinoresinol. There are DIR family members in almost every vascular plant, but members of DIRs in P. leptostachya are unknown. To identify the PlDIR genes and elucidate their functions in lignan biosynthesis, this study performed transcriptome-wide analysis and characterized the catalytic activity of the PlDIR1 protein. RESULTS Fifteen full-length unique PlDIR genes were identified in P. leptostachya. A phylogenetic analysis of the PlDIRs classified them into four subfamilies (DIR-a, DIR-b/d, DIR-e, and DIR-g), and 12 conserved motifs were found among them. In tissue-specific expression analysis, except for PlDIR7, which displayed the highest transcript abundance in seeds, the other PlDIRs showed preferential expression in roots, leaves, and stems. Furthermore, the treatments with signaling molecules demonstrated that PlDIRs could be significantly induced by methyl jasmonate (MeJA), salicylic acid (SA), and ethylene (ETH), both in the roots and leaves of P. leptostachya. In examining the tertiary structure of the protein and the critical amino acids, it was found that PlDIR1, one of the DIR-a subfamily members, might be involved in the region- and stereo-selectivity of the phenoxy radical. Accordingly, LC-MS/MS analysis demonstrated the catalytic activity of recombinant PlDIR1 protein from Escherichia coli to direct coniferyl alcohol coupling into ( +)-pinoresinol. The active sites and hydrogen bonds of the interaction between PlDIR1 and bis-quinone methide (bisQM), the intermediate in ( +)-pinoresinol formation, were analyzed by molecular docking. As a result, 18 active sites and 4 hydrogen bonds (Asp-42, Ala-113, Leu-138, Arg-143) were discovered in the PlDIR1-bisQM complex. Moreover, correlation analysis indicated that the expression profile of PlDIR1 was closely connected with lignan accumulations after SA treatment. CONCLUSIONS The results of this study will provide useful clues for uncovering P. leptostachya's lignan biosynthesis pathway as well as facilitate further studies on the DIR family.
Collapse
Affiliation(s)
- Yakun Pei
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenhan Cao
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenwen Yu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Chaoyang Peng
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Wenhao Xu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yayun Zuo
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenjun Wu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhaonong Hu
- Institute of Pesticide Science, College of Plant Protection, Northwest A & F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory for Botanical Pesticide R & D of Shaanxi Province, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Integrated Pest Management On Crops in Northwestern Loess Plateau, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
8
|
Kapoor P, Rakhra G, Kumar V, Joshi R, Gupta M, Rakhra G. Insights into the functional characterization of DIR proteins through genome-wide in silico and evolutionary studies: a systematic review. Funct Integr Genomics 2023; 23:166. [PMID: 37202648 DOI: 10.1007/s10142-023-01095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Dirigent proteins (DIRs) are a new class of proteins that were identified during the 8-8' lignan biosynthetic pathway and involves the formation of ( +) or ( -)-pinoresinol through stereoselective coupling from E-coniferyl alcohol. These proteins are known to play a vital role in the development and stress response in plants. Various studies have reported the functional and structural characterization of dirigent gene family in different plants using in silico approaches. Here, we have summarized the importance of dirigent proteins in plants and their role in plant stress tolerance by analyzing the genome-wide analysis including gene structure, mapping of chromosomes, phylogenetic evolution, conserved motifs, gene structure, and gene duplications in important plants. Overall, this review would help to compare and clarify the molecular and evolutionary characteristics of dirigent gene family in different plants.
Collapse
Affiliation(s)
- Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gurseen Rakhra
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ridhi Joshi
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Mahiti Gupta
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
9
|
Mamaeva A, Lyapina I, Knyazev A, Golub N, Mollaev T, Chudinova E, Elansky S, Babenko VV, Veselovsky VA, Klimina KM, Gribova T, Kharlampieva D, Lazarev V, Fesenko I. RALF peptides modulate immune response in the moss Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2023; 14:1077301. [PMID: 36818838 PMCID: PMC9933782 DOI: 10.3389/fpls.2023.1077301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND RAPID ALKALINIZATION FACTOR (RALFs) are cysteine-rich peptides that regulate multiple physiological processes in plants. This peptide family has considerably expanded during land plant evolution, but the role of ancient RALFs in modulating stress responses is unknown.Results: Here, we used the moss Physcomitrium patens as a model to gain insight into the role of RALF peptides in the coordination of plant growth and stress response in non-vascular plants. The quantitative proteomic analysis revealed concerted downregulation of M6 metalloprotease and some membrane proteins, including those involved in stress response, in PpRALF1, 2 and 3 knockout (KO) lines. The subsequent analysis revealed the role of PpRALF3 in growth regulation under abiotic and biotic stress conditions, implying the importance of RALFs in responding to various adverse conditions in bryophytes. We found that knockout of the PpRALF2 and PpRALF3 genes resulted in increased resistance to bacterial and fungal phytopathogens, Pectobacterium carotovorum and Fusarium solani, suggesting the role of these peptides in negative regulation of the immune response in P. patens. Comparing the transcriptomes of PpRALF3 KO and wild-type plants infected by F. solani showed that the regulation of genes in the phenylpropanoid pathway and those involved in cell wall modification and biogenesis was different in these two genotypes. CONCLUSION Thus, our study sheds light on the function of the previously uncharacterized PpRALF3 peptide and gives a clue to the ancestral functions of RALF peptides in plant stress response.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyapina
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Knyazev
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nina Golub
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur Mollaev
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Elena Chudinova
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Sergey Elansky
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav V. Babenko
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladimir A. Veselovsky
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ksenia M. Klimina
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana Gribova
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria Kharlampieva
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili Lazarev
- Laboratory of Genetic Engineering, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Department of Molecular and Translational Medicine, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow, Russia
| | - Igor Fesenko
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Jiang S, Tian X, Huang X, Xin J, Yan H. Physcomitrium patens CAD1 has distinct roles in growth and resistance to biotic stress. BMC PLANT BIOLOGY 2022; 22:518. [PMID: 36344936 PMCID: PMC9641914 DOI: 10.1186/s12870-022-03892-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/19/2022] [Indexed: 06/07/2023]
Abstract
BACKGROUND Physcomitrium patens provides an evolutionary link between green algae and vascular plants. Although the genome of P. patens includes orthologs of all the core lignin biosynthetic enzymes, the occurrence of lignin in moss is very controversial. Besides, little information is available about the lignin enzymes in moss to date. For example, cinnamyl alcohol dehydrogenase (CAD) is a crucial enzyme that catalyzes the last step of the lignin biosynthetic pathway, suggesting an ideal way to study the evolutionary process. By investigating the functions of CAD in evolution, this study will elucidate the evolutionary roles of lignin-like in the early stage of land colonization. RESULTS CAD multigene family in P. patens is composed of four genes. The PpCADs contain a conserved glycine-rich domain to catalyze NADPH-dependent reduction to their corresponding alcohols, indicating that PpCADs have the potential to synthesize monolignols by bioinformatics analysis. Even though PpCAD1 could produce lignin in theory, no conventional monomer was detected in the cell wall or cytoplasm of PpCAD1_OE plants. However, the phenylpropanoids were promoted in PpCAD1_OE transformants to modify gametophore architecture and development, making the distribution of phyllids more scarcity and the moss colony more giant, possibly due to the enhanced expression of the AUX-IAA family. The transcripts of at least one gene encoding the enzyme in the lignin biosynthetic pathway were increased in PpCAD1_OE plants. In addition, the PpCAD1_OE gametophore inhibited the Botrytis cinerea assault mainly by enhanced phenylpropanoids in the cell wall instead of influencing transcripts of defense genes pathogenesis-related 10 (PR10) and nonexpresser of PR genes 1 (NPR1). Likewise, ectopic expression of PpCAD1 in Arabidopsis led to a significant increase in lignin content, exhibiting chunky roots, robust seedlings, advanced flowering, and efficient resistance against pathogens. CONCLUSION PpCAD occurs in more than one copy, suggesting functional divergence in the ancestral plant. PpCAD1 catalyzes monolignol biosynthesis and has homologous functions with vascular plants. Despite no detected conventional monolignol, the increased phenylpropanoids in the PpCAD1_OE gametophore, possibly intermediate metabolites in the lignin pathway, had conserved functions during the evolution of terrestrial plants. The results inferred that the lignin enzyme of the early non-vascular plant played roles in stem elongation and resistance against pathogens of P. patens during the conquest of land.
Collapse
Affiliation(s)
- Shan Jiang
- School of Life Sciences, Guizhou Normal University, 550001 Guiyang, China
- School of International Education, Guizhou Normal University, 550001 Guiyang, China
| | - Xu Tian
- School of Life Sciences, Guizhou Normal University, 550001 Guiyang, China
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, 550001 Guiyang, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, 550001 Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Bioaffiliationersity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, 550001 Guiyang, China
| | - Jiankang Xin
- School of Life Sciences, Guizhou Normal University, 550001 Guiyang, China
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, 550001 Guiyang, China
| |
Collapse
|
11
|
Reboledo G, Agorio A, Vignale L, Alvarez A, Ponce De León I. The moss-specific transcription factor PpERF24 positively modulates immunity against fungal pathogens in Physcomitrium patens. FRONTIERS IN PLANT SCIENCE 2022; 13:908682. [PMID: 36186018 PMCID: PMC9520294 DOI: 10.3389/fpls.2022.908682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
APETALA2/ethylene response factors (AP2/ERFs) transcription factors (TFs) have greatly expanded in land plants compared to algae. In angiosperms, AP2/ERFs play important regulatory functions in plant defenses against pathogens and abiotic stress by controlling the expression of target genes. In the moss Physcomitrium patens, a high number of members of the ERF family are induced during pathogen infection, suggesting that they are important regulators in bryophyte immunity. In the current study, we analyzed a P. patens pathogen-inducible ERF family member designated as PpERF24. Orthologs of PpERF24 were only found in other mosses, while they were absent in the bryophytes Marchantia polymorpha and Anthoceros agrestis, the vascular plant Selaginella moellendorffii, and angiosperms. We show that PpERF24 belongs to a moss-specific clade with distinctive amino acids features in the AP2 domain that binds to the DNA. Interestingly, all P. patens members of the PpERF24 subclade are induced by fungal pathogens. The function of PpERF24 during plant immunity was assessed by an overexpression approach and transcriptomic analysis. Overexpressing lines showed increased defenses to infection by the fungal pathogens Botrytis cinerea and Colletotrichum gloeosporioides evidenced by reduced cellular damage and fungal biomass compared to wild-type plants. Transcriptomic and RT-qPCR analysis revealed that PpERF24 positively regulates the expression levels of defense genes involved in transcriptional regulation, phenylpropanoid and jasmonate pathways, oxidative burst and pathogenesis-related (PR) genes. These findings give novel insights into potential mechanism by which PpERF24 increases plant defenses against several pathogens by regulating important players in plant immunity.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Alfonso Alvarez
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la República, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
12
|
dos Santos C, Carmo LST, Távora FTPK, Lima RFC, da Nobrega Mendes P, Labuto. LBD, de Sá MEL, Grossi-de-Sa MF, Mehta A. Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode ( Meloidogyne incognita) infection. 3 Biotech 2022; 12:211. [PMID: 35945986 PMCID: PMC9357244 DOI: 10.1007/s13205-022-03282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022] Open
Abstract
Gossypium hirsutum L. represents the best cotton species for fiber production, thus computing the largest cultivated area worldwide. Meloidogyne incognita is a root-knot nematode (RKN) and one of the most important species of Meloidogyne genus, which has a wide host range, including cotton plants. Phytonematode infestations can only be partially controlled by conventional agricultural methods, therefore, more effective strategies to improve cotton resistance to M. incognita disease are highly desirable. The present study employed functional genomics to validate the involvement of two previously identified candidate genes, encoding dirigent protein 4-GhDIR4 and peroxiredoxin-2-GhPRXIIB, in cotton defense against M. incognita. Transgenic A. thaliana plant lines overexpressing GhDIR4 and GhPRXIIB genes were generated and displayed significantly improved resistance against M. incognita infection in terms of female nematode abundance in the roots when compared to wild-type control plants. For our best target-gene GhDIR4, an in-silico functional analysis, including multiple sequence alignment, phylogenetic relationship, and search for specific protein motifs unveiled potential orthologs in other relevant crop plants, including monocots and dicots. Our findings provide valuable information for further understanding the roles of GhDIR and GhPRXIIB genes in cotton defense response against RKN nematode. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03282-4.
Collapse
Affiliation(s)
- Cristiane dos Santos
- Universidade Católica Dom Bosco, Mato Grosso Do Sul, MS Brazil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| | | | - Fabiano T. P. K. Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Embrapa Agroenergia, Brasília, DF Brazil
- Universidade de Brasília, Brasília, DF Brazil
| | | | | | | | - Maria Eugênia L. de Sá
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Empresa de Pesquisa Agropecuária de Minas Gerais, Minas Gerais, MG Brazil
| | - Maria F. Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
- Universidade Católica de Brasília, Brasília, DF Brazil
- Instituto Nacional de Ciência e Tecnologia – INCT, PlantStress Biotech, Embrapa, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF Brazil
| |
Collapse
|
13
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
14
|
Characterization, expression, and functional analysis of the pathogenesis-related gene PtDIR11 in transgenic poplar. Int J Biol Macromol 2022; 210:182-195. [PMID: 35545137 DOI: 10.1016/j.ijbiomac.2022.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022]
Abstract
Lignins and lignans are important for plant resistance to pathogens. Dirigent (DIR) proteins control the regio- and stereo-selectivity of coniferyl alcohol in lignan and lignin biosynthesis. DIR genes have been implicated in defense-related responses in several plant species, but their role in poplar immunity is unclear. We cloned PtDIR11 from Populus trichocarpa; we found that overexpression of PtDIR11 in poplar improved the lignan biosynthesis and enhanced the resistance of poplar to Septotis populiperda. PtDIR11 has a typical DIR domain; it belongs to the DIR-b/d family and is expressed in the cell membrane. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis showed that PtDIR11 expression was highest in stems, followed by leaves and roots. Furthermore, PtDIR11 expression was induced by S. populiperda, salicylic acid (SA), jasmonate (JA), and ethylene (ET) stresses. The recombinant PtDIR11 protein inhibited the growth of S. populiperda in vitro. Overexpressing (OE) PtDIR11 in "Nanlin 895" poplar enhanced growth. The OE lines exhibited minimal changes in lignin content, but their total lignan and flavonoid contents were significantly greater than in the wild-type (WT) lines. Overexpression of PtDIR11 affected multiple biological pathways of poplar, such as phenylpropanoid biosynthesis. The methanol extracts of OE-PtDIR11 lines showed greater anti-S. populiperda activity than did lignin extracts from the WT lines. Furthermore, OE-PtDIR11 lines upregulated genes that were related to phenylpropanoid biosynthesis and genes associated with the JA and ET signal transduction pathways; it downregulated genes that were related to SA signal transduction compared with the WT line under S. populiperda stress. Therefore, the OE transgenic plants analysis revealed that PtDIR11 is a good candidate gene for breeding of disease resistant poplar.
Collapse
|
15
|
Kim IJ, Bayer T, Terholsen H, Bornscheuer U. α-Dioxygenases (α-DOXs): Promising biocatalysts for the environmentally friendly production of aroma compounds. Chembiochem 2022; 23:e202100693. [PMID: 35107200 PMCID: PMC9305512 DOI: 10.1002/cbic.202100693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Indexed: 11/14/2022]
Abstract
Fatty aldehydes (FALs) can be derived from fatty acids (FAs) and related compounds and are frequently used as flavors and fragrances. Although chemical methods have been conventionally used, their selective biotechnological production aiming at more efficient and eco‐friendly synthetic routes is in demand. α‐Dioxygenases (α‐DOXs) are heme‐dependent oxidative enzymes biologically involved in the initial step of plant FA α‐oxidation during which molecular oxygen is incorporated into the Cα‐position of a FA (Cn) to generate the intermediate FA hydroperoxide, which is subsequently converted into the shortened corresponding FAL (Cn‐1). α‐DOXs are promising biocatalysts for the flavor and fragrance industries, they do not require NAD(P)H as cofactors or redox partner proteins, and they have a broad substrate scope. Here, we highlight recent advances in the biocatalytic utilization of α‐DOXs with emphasis on newly discovered cyanobacterial α‐DOXs as well as analytical methods to measure α‐DOX activity in vitro and in vivo.
Collapse
Affiliation(s)
- In Jung Kim
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Thomas Bayer
- University of Greifswald: Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Henrik Terholsen
- Universitat Greifswald, Biotechnology & Enzyme Catalysis, GERMANY
| | - Uwe Bornscheuer
- Greifswald University, Dept. of Biotechnology & Enzyme Catalysis, Felix-Hausdorff-Str. 4, 17487, Greifswald, GERMANY
| |
Collapse
|
16
|
Sudha M, Karthikeyan A, Madhumitha B, Veera Ranjani R, Kanimoli Mathivathana M, Dhasarathan M, Murukarthick J, Samu Shihabdeen MN, Eraivan Arutkani Aiyanathan K, Pandiyan M, Senthil N, Raveendran M. Dynamic Transcriptome Profiling of Mungbean Genotypes Unveil the Genes Respond to the Infection of Mungbean Yellow Mosaic Virus. Pathogens 2022; 11:pathogens11020190. [PMID: 35215133 PMCID: PMC8874377 DOI: 10.3390/pathogens11020190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/13/2022] Open
Abstract
Yellow mosaic disease (YMD), incited by mungbean yellow mosaic virus (MYMV), is a primary viral disease that reduces mungbean production in South Asia, especially in India. There is no detailed knowledge regarding the genes and molecular mechanisms conferring resistance of mungbean to MYMV. Therefore, disclosing the genetic and molecular bases related to MYMV resistance helps to develop the mungbean genotypes with MYMV resistance. In this study, transcriptomes of mungbean genotypes, VGGRU-1 (resistant) and VRM (Gg) 1 (susceptible) infected with MYMV were compared to those of uninfected controls. The number of differentially expressed genes (DEGs) in the resistant and susceptible genotypes was 896 and 506, respectively. Among them, 275 DEGs were common between the resistant and susceptible genotypes. Functional annotation of DEGs revealed that the DEGs belonged to the following categories defense and pathogenesis, receptor-like kinases; serine/threonine protein kinases, hormone signaling, transcription factors, and chaperons, and secondary metabolites. Further, we have confirmed the expression pattern of several DEGs by quantitative real-time PCR (qRT-PCR) analysis. Collectively, the information obtained in this study unveils the new insights into characterizing the MYMV resistance and paved the way for breeding MYMV resistant mungbean in the future.
Collapse
Affiliation(s)
- Manickam Sudha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
- Correspondence:
| | - Adhimoolam Karthikeyan
- Department of Biotechnology, Centre of Innovation, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Balasubramaniam Madhumitha
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Rajagopalan Veera Ranjani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| | - Mayalagu Kanimoli Mathivathana
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, Tamil Nadu, India;
| | - Manickam Dhasarathan
- Agroclimate Research Centre, Directorate of Crop Management, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Jayakodi Murukarthick
- Gene Bank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Stadt See land, 06466 Seeland, OT Gatersleben, Germany;
| | - Madiha Natchi Samu Shihabdeen
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| | | | - Muthaiyan Pandiyan
- Regional Research Station, Tamil Nadu Agricultural University, Virudhachalam 606001, Tamil Nadu, India;
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India;
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; (R.V.R.); (M.N.S.S.); (M.R.)
| |
Collapse
|
17
|
Reboledo G, Agorio AD, Vignale L, Batista-García RA, Ponce De León I. Transcriptional profiling reveals conserved and species-specific plant defense responses during the interaction of Physcomitrium patens with Botrytis cinerea. PLANT MOLECULAR BIOLOGY 2021; 107:365-385. [PMID: 33521880 DOI: 10.1007/s11103-021-01116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astri D Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Lucía Vignale
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
18
|
Physcomitrium patens Infection by Colletotrichum gloeosporioides: Understanding the Fungal-Bryophyte Interaction by Microscopy, Phenomics and RNA Sequencing. J Fungi (Basel) 2021; 7:jof7080677. [PMID: 34436216 PMCID: PMC8401727 DOI: 10.3390/jof7080677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.
Collapse
|
19
|
D'Esposito D, Manzo D, Ricciardi A, Garonna AP, De Natale A, Frusciante L, Pennacchio F, Ercolano MR. Tomato transcriptomic response to Tuta absoluta infestation. BMC PLANT BIOLOGY 2021; 21:358. [PMID: 34348650 PMCID: PMC8336066 DOI: 10.1186/s12870-021-03129-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The South America pinworm, Tuta absoluta, is a destructive pest of tomato that causes important losses worldwide. Breeding of resistant/tolerant tomato cultivars could be an effective strategy for T. absoluta management but, despite the economic importance of tomato, very limited information is available about its response to this treat. To elucidate the defense mechanisms to herbivore feeding a comparative analysis was performed between a tolerant and susceptible cultivated tomato at both morphological and transcriptome level to highlight constitutive leaf barriers, molecular and biochemical mechanisms to counter the effect of T. absoluta attack. RESULTS The tolerant genotype showed an enhanced constitutive barrier possibly as result of the higher density of trichomes and increased inducible reactions upon mild infestation thanks to the activation/repression of key transcription factors regulating genes involved in cuticle formation and cell wall strength as well as of antinutritive enzymes, and genes involved in the production of chemical toxins and bioactive secondary metabolites. CONCLUSIONS Overall, our findings suggest that tomato resilience to the South America pinworm is achieved by a combined strategy between constitutive and induced defense system. A well-orchestrated modulation of plant transcription regulation could ensure a trade-off between defense needs and fitness costs. Our finding can be further exploited for developing T. absoluta tolerant cultivars, acting as important component of integrated pest management strategy for more sustainable production.
Collapse
Affiliation(s)
- Daniela D'Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Daniele Manzo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Alessandro Ricciardi
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonio Pietro Garonna
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Monte Sant' Angelo, Via Cinthia 26, 80126, Naples, Italy
| | - Luigi Frusciante
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy
| | - Maria Raffaella Ercolano
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, Portici, 80055, Naples, Italy.
| |
Collapse
|
20
|
Lyapina I, Filippova A, Kovalchuk S, Ziganshin R, Mamaeva A, Lazarev V, Latsis I, Mikhalchik E, Panasenko O, Ivanov O, Ivanov V, Fesenko I. Possible role of small secreted peptides (SSPs) in immune signaling in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 106:123-143. [PMID: 33713297 DOI: 10.1007/s11103-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Ivanov
- V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
21
|
Yang X, Zhong S, Zhang Q, Ren Y, Sun C, Chen F. A loss-of-function of the dirigent gene TaDIR-B1 improves resistance to Fusarium crown rot in wheat. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:866-868. [PMID: 33567136 PMCID: PMC8131038 DOI: 10.1111/pbi.13554] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 05/06/2023]
Affiliation(s)
- Xia Yang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/CIMMYT‐China (Henan) Joint Center of Wheat and MaizeHenan Agricultural UniversityZhengzhouChina
| | - Shaobin Zhong
- Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA
| | - Qijun Zhang
- Department of Plant PathologyNorth Dakota State UniversityFargoNDUSA
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/CIMMYT‐China (Henan) Joint Center of Wheat and MaizeHenan Agricultural UniversityZhengzhouChina
| | - Congwei Sun
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/CIMMYT‐China (Henan) Joint Center of Wheat and MaizeHenan Agricultural UniversityZhengzhouChina
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/CIMMYT‐China (Henan) Joint Center of Wheat and MaizeHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
22
|
Genome-Wide Characterization of Dirigent Proteins in Populus: Gene Expression Variation and Expression Pattern in Response to Marssonina brunnea and Phytohormones. FORESTS 2021. [DOI: 10.3390/f12040507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Marssonina brunnea causes a major disease that limits poplar growth. Lignin and lignan play essential roles in protecting plants from various biological stresses. Dirigent (DIR) proteins are thought to control the stereoselective coupling of coniferyl alcohol in the formation of lignan and lignin. DIR family members have been well studied in several plant species, but no previous detailed genome-wide analysis has been carried out in forest trees, such as poplar. We identified 40 PtDIR genes in Populus trichocarpa and classified them into three subgroups (DIR-a, DIR-b/d, and DIR-e) based on phylogenetic analyses. These genes are distributed on 11 poplar chromosomes, and 80% of PtDIRs (32/40) are intronless. The cis-element analysis inferred that PtDIRs possess many types of biological and abiotic stress-response cis-elements. We also analyzed intra- and inter-specific collinearity, which provided deep insights into the evolutionary characteristics of the poplar DIR genes. Analyses of the protein tertiary structure and critical amino acid residues showed that PtDIR7–10 and PtDIR13–16, which belong to the DIR-a subfamily, might be involved in the regio- and stereo-selectivity of bimolecular phenoxy radical coupling in poplars. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis revealed different expression patterns for the PtDIR genes of P. trichocarpa and the PeDIR genes of ‘Nanlin 895’ in various tissues. Additionally, we analyzed responses of PeDIRs to M. brunnea and different phytohormone treatments (abscisic acid, salicylic acid, methyl jasmonate, and ethylene) in ‘Nanlin 895’. The results showed that at least 18 genes responded strongly to M. brunnea, and these PeDIRs also showed significant responses to phytohormones. These results suggest that DIR genes are involved in the poplar defense response against M. brunnea, and this study will provide fundamental insights for future research on poplar DIR genes.
Collapse
|
23
|
Yadav V, Wang Z, Yang X, Wei C, Changqing X, Zhang X. Comparative Analysis, Characterization and Evolutionary Study of Dirigent Gene Family in Cucurbitaceae and Expression of Novel Dirigent Peptide against Powdery Mildew Stress. Genes (Basel) 2021; 12:genes12030326. [PMID: 33668231 PMCID: PMC7996225 DOI: 10.3390/genes12030326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified in six species, and 61 genes from major cultivated species were analyzed. DIRs were analyzed using various bioinformatics tools and complemented by expression profiling. Phylogenetic analysis segregated the putative DIRs into six distinctively known subgroups. Chromosomal mapping revealed uneven distribution of genes, whereas synteny analysis exhibited that duplication events occurred during gene evolution. Gene structure analysis suggested the gain of introns during gene diversification. Gene ontology (GO) enrichment analysis indicates the participation of proteins in lignification and pathogen resistance activities. We also determined their organ-specific expression levels in three species revealing preferential expression in root and leaves. Furthermore, the number of CmDIR (CmDIR1, 6, 7 and 12) and ClDIR (ClDIR2, 5, 8, 9 and 17) genes exhibited higher expression in resistant cultivars after powdery mildew (PM) inoculation. In summary, based on the expression and in-silico analysis, we propose a role of DIRs in disease resistance mechanisms.
Collapse
Affiliation(s)
- Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
| | - Zhongyuan Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
| | - Xiaozhen Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
- Xi’an Agriculture Technology, Extension Center, Xi’an 710000, China
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
| | - Xuan Changqing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling 712100, China; (V.Y.); (Z.W.); (X.Y.); (C.W.); (X.C.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
- Correspondence: ; Tel.: +86-186-2909-2147
| |
Collapse
|
24
|
Commisso M, Guarino F, Marchi L, Muto A, Piro A, Degola F. Bryo-Activities: A Review on How Bryophytes Are Contributing to the Arsenal of Natural Bioactive Compounds against Fungi. PLANTS (BASEL, SWITZERLAND) 2021; 10:203. [PMID: 33494524 PMCID: PMC7911284 DOI: 10.3390/plants10020203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/05/2023]
Abstract
Usually regarded as less evolved than their more recently diverged vascular sisters, which currently dominate vegetation landscape, bryophytes seem having nothing to envy to the defensive arsenal of other plants, since they had acquired a suite of chemical traits that allowed them to adapt and persist on land. In fact, these closest modern relatives of the ancestors to the earliest terrestrial plants proved to be marvelous chemists, as they traditionally were a popular remedy among tribal people all over the world, that exploit their pharmacological properties to cure the most different diseases. The phytochemistry of bryophytes exhibits a stunning assortment of biologically active compounds such as lipids, proteins, steroids, organic acids, alcohols, aliphatic and aromatic compounds, polyphenols, terpenoids, acetogenins and phenylquinones, thus it is not surprising that substances obtained from various species belonging to such ancestral plants are widely employed as antitumor, antipyretic, insecticidal and antimicrobial. This review explores in particular the antifungal potential of the three Bryophyta divisions-mosses (Musci), hornworts (Anthocerotae) and liverworts (Hepaticae)-to be used as a sources of interesting bioactive constituents for both pharmaceutical and agricultural areas, providing an updated overview of the latest relevant insights.
Collapse
Affiliation(s)
- Mauro Commisso
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona (VR), Italy;
| | - Francesco Guarino
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma (PR), Italy;
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Via Ponte P. Bucci 6b, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Amalia Piro
- Laboratory of Plant Biology and Plant Proteomics (Lab.Bio.Pro.Ve), Department of Chemistry and Chemical Technologies, University of Calabria, Ponte P. Bucci 12 C, Arcavacata di Rende, 87036 Cosenza (CS), Italy;
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco delle Scienze 11/A, 43124 Parma (PR), Italy
| |
Collapse
|
25
|
Pontes JGDM, Fernandes LS, Dos Santos RV, Tasic L, Fill TP. Virulence Factors in the Phytopathogen-Host Interactions: An Overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7555-7570. [PMID: 32559375 DOI: 10.1021/acs.jafc.0c02389] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.
Collapse
Affiliation(s)
| | - Laura Soler Fernandes
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
| | | | - Ljubica Tasic
- Laboratório de Quı́mica Biológica (LQB), IQ-UNICAMP, Campinas, SP, Brazil
| | - Taicia Pacheco Fill
- Laboratório de Biologia Quı́mica Microbiana (LaBioQuiMi), IQ-UNICAMP, Campinas, SP, Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), P.O. Box 6154, 13083970 Campinas, SP, Brazil
| |
Collapse
|
26
|
Davies KM, Jibran R, Zhou Y, Albert NW, Brummell DA, Jordan BR, Bowman JL, Schwinn KE. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:7. [PMID: 32117358 PMCID: PMC7010833 DOI: 10.3389/fpls.2020.00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
The flavonoid pathway is one of the best characterized specialized metabolite pathways of plants. In angiosperms, the flavonoids have varied roles in assisting with tolerance to abiotic stress and are also key for signaling to pollinators and seed dispersal agents. The pathway is thought to be specific to land plants and to have arisen during the period of land colonization around 550-470 million years ago. In this review we consider current knowledge of the flavonoid pathway in the bryophytes, consisting of the liverworts, hornworts, and mosses. The pathway is less characterized for bryophytes than angiosperms, and the first genetic and molecular studies on bryophytes are finding both commonalities and significant differences in flavonoid biosynthesis and pathway regulation between angiosperms and bryophytes. This includes biosynthetic pathway branches specific to each plant group and the apparent complete absence of flavonoids from the hornworts.
Collapse
Affiliation(s)
- Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Rubina Jibran
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Yanfei Zhou
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - David A. Brummell
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Brian R. Jordan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Kathy E. Schwinn
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
27
|
Matsui H, Iwakawa H, Hyon GS, Yotsui I, Katou S, Monte I, Nishihama R, Franzen R, Solano R, Nakagami H. Isolation of Natural Fungal Pathogens from Marchantia polymorpha Reveals Antagonism between Salicylic Acid and Jasmonate during Liverwort-Fungus Interactions. PLANT & CELL PHYSIOLOGY 2020; 61:265-275. [PMID: 31560390 DOI: 10.1093/pcp/pcz187] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/15/2019] [Indexed: 05/16/2023]
Abstract
The evolution of adaptive interactions with beneficial, neutral and detrimental microbes was one of the key features enabling plant terrestrialization. Extensive studies have revealed conserved and unique molecular mechanisms underlying plant-microbe interactions across different plant species; however, most insights gleaned to date have been limited to seed plants. The liverwort Marchantia polymorpha, a descendant of early diverging land plants, is gaining in popularity as an advantageous model system to understand land plant evolution. However, studying evolutionary molecular plant-microbe interactions in this model is hampered by the small number of pathogens known to infect M. polymorpha. Here, we describe four pathogenic fungal strains, Irpex lacteus Marchantia-infectious (MI)1, Phaeophlebiopsis peniophoroides MI2, Bjerkandera adusta MI3 and B. adusta MI4, isolated from diseased M. polymorpha. We demonstrate that salicylic acid (SA) treatment of M. polymorpha promotes infection of the I. lacteus MI1 that is likely to adopt a necrotrophic lifestyle, while this effect is suppressed by co-treatment with the bioactive jasmonate in M. polymorpha, dinor-cis-12-oxo-phytodienoic acid (dn-OPDA), suggesting that antagonistic interactions between SA and oxylipin pathways during plant-fungus interactions are ancient and were established already in liverworts.
Collapse
Affiliation(s)
- Hidenori Matsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidekazu Iwakawa
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gang-Su Hyon
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Izumi Yotsui
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano, 399-4598 Japan
| | - Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Rainer Franzen
- Central Microscopy, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, Kanagawa, 230-0045 Japan
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|
28
|
Singh D, Yadav R, Kaushik S, Wadhwa N, Kapoor S, Kapoor M. Transcriptome Analysis of ppdnmt2 and Identification of Superoxide Dismutase as a Novel Interactor of DNMT2 in the Moss Physcomitrella patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1185. [PMID: 32849734 PMCID: PMC7419982 DOI: 10.3389/fpls.2020.01185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 05/07/2023]
Abstract
DNMT2 is a DNA/tRNA cytosine methyltransferase that is highly conserved in structure and function in eukaryotes. In plants however, limited information is available on the function of this methyltransferase. We have previously reported that in the moss Physcomitrella patens, DNMT2 plays a crucial role in stress recovery and tRNAAsp transcription/stability under salt stress. To further investigate the role of PpDNMT2 at genome level, in this study we have performed RNA sequencing of ppdnmt2. Transcriptome analysis reveals a number of genes and pathways to function differentially and suggests a close link between PpDNMT2 function and osmotic and ionic stress tolerance. We propose PpDNMT2 to play a pivotal role in regulating salt tolerance by affecting molecular networks involved in stress perception and signal transduction that underlie maintenance of ion homeostasis in cells. We also examined interactome of PpDNMT2 using affinity purification (AP) coupled to mass spectrometry (AP-MS). Quantitative proteomic analysis reveals several chloroplast proteins involved in light reactions and carbon assimilation and proteins involved in stress response and some not implicated in stress to co-immunoprecipitate with PpDNMT2. Comparison between transcriptome and interactome datasets has revealed novel association between PpDNMT2 activity and the antioxidant enzyme Superoxide dismutase (SOD), protein turnover mediated by the Ubiquitin-proteasome system and epigenetic gene regulation. PpDNMT2 possibly exists in complex with CuZn-SODs in vivo and the two proteins also directly interact in the yeast nucleus as observed by yeast two-hybrid assay. Taken together, the work presented in this study sheds light on diverse roles of PpDNMT2 in maintaining molecular and physiological homeostasis in P. patens. This is a first report describing transcriptome and interactome of DNMT2 in any land plant.
Collapse
Affiliation(s)
- Darshika Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Radha Yadav
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited Green Park Mains, New Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
- *Correspondence: Meenu Kapoor,
| |
Collapse
|
29
|
Carella P, Gogleva A, Hoey DJ, Bridgen AJ, Stolze SC, Nakagami H, Schornack S. Conserved Biochemical Defenses Underpin Host Responses to Oomycete Infection in an Early-Divergent Land Plant Lineage. Curr Biol 2019; 29:2282-2294.e5. [PMID: 31303485 DOI: 10.1016/j.cub.2019.05.078] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/28/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]
Abstract
The expansion of plants onto land necessitated the evolution of robust defense strategies to protect against a wide array of microbial invaders. Whereas host responses to microbial colonization are extensively explored in evolutionarily young land plant lineages such as angiosperms, we know relatively little about plant-pathogen interactions in early-diverging land plants thought to better represent the ancestral state. Here, we define the transcriptional and proteomic response of the early-divergent liverwort Marchantia polymorpha to infection with the oomycete pathogen Phytophthora palmivora. We uncover a robust molecular response to oomycete colonization in Marchantia that consists of conserved land plant gene families. Direct macroevolutionary comparisons of host infection responses in Marchantia and the model angiosperm Nicotiana benthamiana further reveal a shared set of orthologous microbe-responsive genes that include members of the phenylpropanoid metabolic pathway. In addition, we identify a role for the Marchantia R2R3-MYB transcription factor MpMyb14 in activating phenylpropanoid (flavonoid) biosynthesis during oomycete infection. Mpmyb14 mutants infected with P. palmivora fail to activate phenylpropanoid biosynthesis gene expression and display enhanced disease susceptibility compared to wild-type plants. Conversely, the ectopic induction of MpMyb14 led to the accumulation of anthocyanin-like pigments and dramatically enhanced liverwort resistance to P. palmivora infection. Collectively, our results demonstrate that the Marchantia response to oomycete infection displays evolutionarily conserved features indicative of an ancestral pathogen deterrence strategy centered on phenylpropanoid-mediated biochemical defenses.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Anna Gogleva
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - David John Hoey
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Anthony John Bridgen
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg, Cologne 50829, Germany
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 EA3, UK.
| |
Collapse
|
30
|
Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, Auguin D, Hano C, Fuss E, Lainé E. Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. PLANTA 2019; 249:1695-1714. [PMID: 30895445 DOI: 10.1007/s00425-019-03137-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
This paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols. They catalyze two successive reduction steps leading to the production of lariciresinol or secoisolariciresinol from pinoresinol. Two secoisolariciresinol enantiomers can be synthetized with different fates. Depending on the plant species, these enantiomers are either final products (e.g., in the flaxseed where it is stored after glycosylation) or are the starting point for the synthesis of a wide range of lignans, among which the aryltetralin type lignans are used to semisynthesize anticancer drugs such as Etoposide®. Thus, the regulation of the gene expression of PLRs as well as the possible specificities of these reductases for one reduction step or one enantiomer are key factors to fine-tune the lignan synthesis. Results published in the last decade have shed light on the presence of more than one PLR in each plant and revealed various modes of action. Nevertheless, there are not many results published on the PLRs and most of them were obtained in a limited range of species. Indeed, a number of them deal with wild and cultivated flax belonging to the genus Linum. Despite the occurrence of lignans in bryophytes, pteridophytes and monocots, data on PLRs in these taxa are still missing and indeed the whole diversity of PLRs is still unknown. This review summarizes the data, published mainly in the last decade, on the PLR gene expression, enzymatic activity and biological function.
Collapse
Affiliation(s)
| | | | | | - Samantha Drouet
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Laurent Gutierrez
- Centre Régional de Ressources en Biologie Moléculaire (CRRBM), Université Picardie Jules Verne, 33 rue Saint-Leu, 80039, Amiens, France
| | - Ivan Mateljak
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | - Daniel Auguin
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France
| | | | - Elisabeth Fuss
- Interfaculty Institute of Biochemistry, Hoppe-Seyler-St. 4, 72076, Tübingen, Germany
| | - Eric Lainé
- LBLGC, INRA USC 1328 Université d'Orléans, Orléans, France.
- LBLGC, INRA USC 1328 Antenne Scientifique Universitaire de Chartres, 21 rue de Loigny, 28000, Chartres, France.
| |
Collapse
|
31
|
Carella P, Evangelisti E, Schornack S. Sticking to it: phytopathogen effector molecules may converge on evolutionarily conserved host targets in green plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:175-180. [PMID: 30071474 PMCID: PMC6119762 DOI: 10.1016/j.pbi.2018.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/06/2018] [Accepted: 04/28/2018] [Indexed: 05/26/2023]
Abstract
•Phytopathogen effectors converge on similar sets of host proteins in angiosperms. •Effectors may target host proteins and processes present across the green plant lineage. •Bryophyte model plants are promising systems to investigate effector–target relationships. Plant-associated microbes secrete effector proteins that subvert host cellular machinery to facilitate the colonization of plant tissues and cells. Accumulating data suggests that independently evolved effectors from bacterial, fungal, and oomycete pathogens may converge on a similar set of host proteins in certain angiosperm models, however, whether this concept is relevant throughout the green plant lineage is unknown. Here, we explore the idea that pathogen effector molecules target host proteins present across evolutionarily distant land plant lineages to promote disease. We discuss that host proteins targeted by phytopathogens or integrated into angiosperm immune receptors are likely found across green plant genomes, from early diverging non-vascular lineages (bryophytes) to flowering plants (angiosperms). This would suggest that independently evolved pathogens might manipulate their hosts by targeting `vulnerability’ hubs that are present across land plants. Future work focusing on accessible early divergent land plant model systems may therefore provide an insightful evolutionary backdrop for effector–target research.
Collapse
Affiliation(s)
- Philip Carella
- University of Cambridge, Sainsbury Laboratory, Cambridge, United Kingdom
| | | | | |
Collapse
|
32
|
Carella P, Schornack S. Manipulation of Bryophyte Hosts by Pathogenic and Symbiotic Microbes. PLANT & CELL PHYSIOLOGY 2018; 59:651-660. [PMID: 29177478 PMCID: PMC6018959 DOI: 10.1093/pcp/pcx182] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
The colonization of plant tissues by pathogenic and symbiotic microbes is associated with a strong and directed effort to reprogram host cells in order to permit, promote and sustain microbial growth. In response to colonization, hosts accommodate or sequester invading microbes by activating a set of complex regulatory programs that initiate symbioses or bolster defenses. Extensive research has elucidated a suite of molecular and physiological responses occurring in plant hosts and their microbial partners; however, this information is mostly limited to model systems representing evolutionarily young plant lineages such as angiosperms. The extent to which these processes are conserved across land plants is therefore poorly understood. In this review, we outline key aspects of host reprogramming that occur during plant-microbe interactions in early diverging land plants belonging to the bryophytes (liverworts, hornworts and mosses). We discuss how further knowledge of bryophyte-microbe interactions will advance our understanding of how plants and microbes co-operated and clashed during the conquest of land.
Collapse
Affiliation(s)
- Philip Carella
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| | - Sebastian Schornack
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, UK
| |
Collapse
|
33
|
Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, Wang L, Chen X, Zhang C, Lu W, Xu P, Zhang S. A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. FRONTIERS IN PLANT SCIENCE 2017; 8:1185. [PMID: 28725237 PMCID: PMC5495835 DOI: 10.3389/fpls.2017.01185] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 05/20/2023]
Abstract
Phytophthora root and stem rot caused by the oomycete pathogen Phytophthora sojae is a destructive disease of soybean worldwide. Plant dirigent proteins (DIR) are proposed to have roles in biosynthesis of either lignan or lignin-like molecules, and are important for defense responses, secondary metabolism, and pathogen resistance. In the present work, a novel DIR gene expressed sequence tag is identified as up-regulated in the highly resistant soybean cultivar 'Suinong 10' inoculated with P. sojae. The full length cDNA is isolated using rapid amplification of cDNA ends, and designated GmDIR22 (GenBank accession no. HQ_993047). The full length GmDIR22 is 789 bp and contains a 567 bp open reading frame encoding a polypeptide of 188 amino acids. The sequence analysis indicated that GmDIR22 contains a conserved dirigent domain at amino acid residues 43-187. The quantitative real-time reverse transcription PCR demonstrated that soybean GmDIR22 mRNA is expressed most highly in stems, followed by roots and leaves. The treatments with stresses demonstrated that GmDIR22 is significantly induced by P. sojae and gibberellic acid (GA3), and also responds to salicylic acid, methyl jasmonic acid, and abscisic acid. The GmDIR22 is targeted to the cytomembrane when transiently expressed in Arabidopsis protoplasts. Moreover, The GmDIR22 recombinant protein purified from Escherichia coli could effectively direct E-coniferyl alcohol coupling into lignan (+)-pinoresinol. Accordingly, the overexpression of GmDIR22 in transgenic soybean increased total lignan accumulation. Moreover, the lignan extracts from GmDIR22 transgenic plants effectively inhibits P. sojae hyphal growth. Furthermore, the transgenic overexpression of GmDIR22 in the susceptible soybean cultivar 'Dongnong 50' enhances its resistance to P. sojae. Collectively, these data suggested that the primary role of GmDIR22 is probably involved in the regulation of lignan biosynthesis, and which contributes to resistance to P. sojae.
Collapse
Affiliation(s)
- Ninghui Li
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
- Jiamusi Branch of Heilongjiang Academy of Agricultural SciencesJiamusi, China
| | - Ming Zhao
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Tengfei Liu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Lidong Dong
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Qun Cheng
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture China, Soybean Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Le Wang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Xi Chen
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Chuanzhong Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Wencheng Lu
- Heihe Branch of Heilongjiang Academy of Agricultural SciencesHeihe, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Soybean Research Institute, Northeast Agricultural UniversityHarbin, China
| |
Collapse
|
34
|
Paniagua C, Bilkova A, Jackson P, Dabravolski S, Riber W, Didi V, Houser J, Gigli-Bisceglia N, Wimmerova M, Budínská E, Hamann T, Hejatko J. Dirigent proteins in plants: modulating cell wall metabolism during abiotic and biotic stress exposure. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3287-3301. [PMID: 28472349 DOI: 10.1093/jxb/erx141] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dirigent (DIR) proteins were found to mediate regio- and stereoselectivity of bimolecular phenoxy radical coupling during lignan biosynthesis. Here we summarize the current knowledge of the importance of DIR proteins in lignan and lignin biosynthesis and highlight their possible importance in plant development. We focus on the still rather enigmatic Arabidopsis DIR gene family, discussing the few members with known functional importance. We comment on recent discoveries describing the detailed structure of two DIR proteins with implications in the mechanism of DIR-mediated catalysis. Further, we summarize the ample evidence for stress-induced dirigent gene expression, suggesting the role of DIRs in adaptive responses. In the second part of our work, we present a preliminary bioinformatics-based characterization of the AtDIR family. The phylogenetic analysis of AtDIRs complemented by comparison with DIR proteins of mostly known function from other species allowed us to suggest possible roles for several members of this family and identify interesting AtDIR targets for further study. Finally, based on the available metadata and our in silico analysis of AtDIR promoters, we hypothesize about the existence of specific transcriptional controls for individual AtDIR genes and implicate them in various stress responses, hormonal regulations, and developmental processes.
Collapse
Affiliation(s)
- Candelas Paniagua
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Anna Bilkova
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Phil Jackson
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Siarhei Dabravolski
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Willi Riber
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Vojtech Didi
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Josef Houser
- Glycobiochemistry, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Nora Gigli-Bisceglia
- Department of Biology, Norwegian University of Science and Technology 5, Hogskoleringen, N-7491 Trondheim, Norway
| | - Michaela Wimmerova
- Glycobiochemistry, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Eva Budínská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Thorsten Hamann
- Department of Biology, Norwegian University of Science and Technology 5, Hogskoleringen, N-7491 Trondheim, Norway
| | - Jan Hejatko
- Laboratory of Molecular Plant Physiology and Functional Genomics and Proteomics of Plants, CEITEC-Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University Kamenice 5, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Chitin-Induced Responses in the Moss Physcomitrella patens. Methods Mol Biol 2017. [PMID: 28220437 DOI: 10.1007/978-1-4939-6859-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A MAP kinase pathway below a chitin receptor in the moss Physcomitrella patens induces immune responses including rapid growth inhibition, a novel fluorescence burst, and cell wall depositions. The molecular mechanisms producing these three responses are currently unknown but warrant further investigation in this simple model system. Here we describe qualitative, time-lapse, and quantitative assays to monitor and measure these responses.
Collapse
|
36
|
Ponce de León I, Montesano M. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes. FRONTIERS IN PLANT SCIENCE 2017; 8:366. [PMID: 28360923 PMCID: PMC5350094 DOI: 10.3389/fpls.2017.00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| | - Marcos Montesano
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| |
Collapse
|
37
|
Overdijk EJR, DE Keijzer J, DE Groot D, Schoina C, Bouwmeester K, Ketelaar T, Govers F. Interaction between the moss Physcomitrella patens and Phytophthora: a novel pathosystem for live-cell imaging of subcellular defence. J Microsc 2016; 263:171-80. [PMID: 27027911 DOI: 10.1111/jmi.12395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/10/2016] [Indexed: 12/27/2022]
Abstract
Live-cell imaging of plant-pathogen interactions is often hampered by the tissue complexity and multicell layered nature of the host. Here, we established a novel pathosystem with the moss Physcomitrella patens as host for Phytophthora. The tip-growing protonema cells of this moss are ideal for visualizing interactions with the pathogen over time using high-resolution microscopy. We tested four Phytophthora species for their ability to infect P. patens and showed that P. sojae and P. palmivora were only rarely capable to infect P. patens. In contrast, P. infestans and P. capsici frequently and successfully penetrated moss protonemal cells, showed intracellular hyphal growth and formed sporangia. Next to these successful invasions, many penetration attempts failed. Here the pathogen was blocked by a barrier of cell wall material deposited in papilla-like structures, a defence response that is common in higher plants. Another common response is the upregulation of defence-related genes upon infection and also in moss we observed this upregulation in tissues infected with Phytophthora. For more advanced analyses of the novel pathosystem we developed a special set-up that allowed live-cell imaging of subcellular defence processes by high-resolution microscopy. With this set-up, we revealed that Phytophthora infection of moss induces repositioning of the nucleus, accumulation of cytoplasm and rearrangement of the actin cytoskeleton, but not of microtubules.
Collapse
Affiliation(s)
- Elysa J R Overdijk
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.,Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Jeroen DE Keijzer
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Deborah DE Groot
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Charikleia Schoina
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands.,Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
38
|
Alvarez A, Montesano M, Schmelz E, Ponce de León I. Activation of Shikimate, Phenylpropanoid, Oxylipins, and Auxin Pathways in Pectobacterium carotovorum Elicitors-Treated Moss. FRONTIERS IN PLANT SCIENCE 2016; 7:328. [PMID: 27047509 PMCID: PMC4801897 DOI: 10.3389/fpls.2016.00328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/03/2016] [Indexed: 05/22/2023]
Abstract
Plants have developed complex defense mechanisms to cope with microbial pathogens. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are perceived by pattern recognition receptors (PRRs), leading to the activation of defense. While substantial progress has been made in understanding the activation of plant defense by PAMPs and DAMPs recognition in tracheophytes, far less information exists on related processes in early divergent plants like mosses. The aim of this study was to identify genes that were induced in P. patens in response to elicitors of Pectobacterium carotovorum subsp. carotovorum, using a cDNA suppression subtractive hybridization (SSH) method. A total of 239 unigenes were identified, including genes involved in defense responses related to the shikimate, phenylpropanoid, and oxylipin pathways. The expression levels of selected genes related to these pathways were analyzed using quantitative RT-PCR, confirming their rapid induction by P.c. carotovorum derived elicitors. In addition, P. patens induced cell wall reinforcement after elicitor treatment by incorporation of phenolic compounds, callose deposition, and elevated expression of Dirigent-like encoding genes. Small molecule defense markers and phytohormones such as cinnamic acid, 12-oxo-phytodienoic acid, and auxin levels all increased in elicitor-treated moss tissues. In contrast, salicylic acid levels decreased while abscisic acid levels remained unchanged. P. patens reporter lines harboring an auxin-inducible promoter fused to β-glucuronidase revealed GUS activity in protonemal and gametophores tissues treated with elicitors of P.c. carotovorum, consistent with a localized activation of auxin signaling. These results indicate that P. patens activates the shikimate, phenylpropanoid, oxylipins, and auxin pathways upon treatment with P.c. carotovorum derived elicitors.
Collapse
Affiliation(s)
- Alfonso Alvarez
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la RepúblicaMontevideo, Uruguay
| | - Marcos Montesano
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias, Centro de Investigaciones Nucleares, Universidad de la RepúblicaMontevideo, Uruguay
| | - Eric Schmelz
- Section of Cell and Developmental Biology, University of CaliforniaSan Diego, La Jolla, CA, USA
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León
| |
Collapse
|
39
|
Castro A, Vidal S, Ponce de León I. Moss Pathogenesis-Related-10 Protein Enhances Resistance to Pythium irregulare in Physcomitrella patens and Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:580. [PMID: 27200053 PMCID: PMC4850436 DOI: 10.3389/fpls.2016.00580] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/14/2016] [Indexed: 05/09/2023]
Abstract
Plants respond to pathogen infection by activating signaling pathways leading to the accumulation of proteins with diverse roles in defense. Here, we addressed the functional role of PpPR-10, a pathogenesis-related (PR)-10 gene, of the moss Physcomitrella patens, in response to biotic stress. PpPR-10 belongs to a multigene family and encodes a protein twice the usual size of PR-10 proteins due to the presence of two Bet v1 domains. Moss PR-10 genes are differentially regulated during development and inoculation with the fungal pathogen Botrytis cinerea. Specifically, PpPR-10 transcript levels increase significantly by treatments with elicitors of Pectobacterium carotovorum subsp. carotovorum, spores of B. cinerea, and the defense hormone salicylic acid. To characterize the role of PpPR-10 in plant defense against pathogens, we conducted overexpression analysis in P. patens and in Arabidopsis thaliana. We demonstrate that constitutive expression of PpPR-10 in moss tissues increased resistance against the oomycete Pythium irregulare. PpPR-10 overexpressing moss plants developed less symptoms and decreased mycelium growth than wild type plants. In addition, PpPR-10 overexpressing plants constitutively produced cell wall depositions in protonemal tissue. Ectopic expression of PpPR-10 in Arabidopsis resulted in increased resistance against P. irregulare as well, evidenced by smaller lesions and less cellular damage compared to wild type plants. These results indicate that PpPR-10 is functionally active in the defense against the pathogen P. irregulare, in both P. patens and Arabidopsis, two evolutionary distant plants. Thus, P. patens can serve as an interesting source of genes to improve resistance against pathogen infection in flowering plants.
Collapse
Affiliation(s)
- Alexandra Castro
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay
| | - Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente EstableMontevideo, Uruguay
- *Correspondence: Inés Ponce de León,
| |
Collapse
|