1
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Luzzatto L. A Journey from Blood Cells to Genes and Back. Annu Rev Genomics Hum Genet 2023; 24:1-33. [PMID: 37217201 DOI: 10.1146/annurev-genom-101022-105018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
I was attracted to hematology because by combining clinical findings with the use of a microscope and simple laboratory tests, one could often make a diagnosis. I was attracted to genetics when I learned about inherited blood disorders, at a time when we had only hints that somatic mutations were also important. It seemed clear that if we understood not only what genetic changes caused what diseases but also the mechanisms through which those genetic changes contribute to cause disease, we could improve management. Thus, I investigated many aspects of the glucose-6-phosphate dehydrogenase system, including cloning of the gene, and in the study of paroxysmal nocturnal hemoglobinuria (PNH), I found that it is a clonal disorder; subsequently, we were able to explain how a nonmalignant clone can expand, and I was involved in the first trial of PNH treatment by complement inhibition. I was fortunate to do clinical and research hematology in five countries; in all of them, I learned from mentors, from colleagues, and from patients.
Collapse
Affiliation(s)
- Lucio Luzzatto
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, United Republic of Tanzania
- University of Florence, Florence, Italy;
| |
Collapse
|
3
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Rojas-Alarcón MA, Vázquez-Bautista M, Arreguin-Espinosa R, Pérez de la Cruz V, Castillo-Rodríguez RA, Canseco-Ávila LM, Vidal-Limón A, Gómez-Manzo S. An Overall View of the Functional and Structural Characterization of Glucose-6-Phosphate Dehydrogenase Variants in the Mexican Population. Int J Mol Sci 2023; 24:12691. [PMID: 37628871 PMCID: PMC10454679 DOI: 10.3390/ijms241612691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Miriam Abigail Rojas-Alarcón
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Montserrat Vázquez-Bautista
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | | | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico;
| | - Abraham Vidal-Limón
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (V.M.-R.); (L.M.-L.); (M.A.R.-A.); (M.V.-B.)
| |
Collapse
|
4
|
Alcántara-Ortigoza MA, Hernández-Ochoa B, González-Del Angel A, Ibarra-González I, Belmont-Martínez L, Gómez-Manzo S, Vela-Amieva M. Functional characterization of the p.(Gln195His) or Tainan and novel p.(Ser184Cys) or Toluca glucose-6-phosphate dehydrogenase (G6PD) gene natural variants identified through Mexican newborn screening for glucose-6-phosphate dehydrogenase deficiency. Clin Biochem 2022; 109-110:64-73. [PMID: 36089067 DOI: 10.1016/j.clinbiochem.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Newborn screening for glucose-6-phosphate dehydrogenase deficiency (G6PDd) was implemented in Mexico beginning in 2017. In a Mexican population, genotyping analysis of G6PD as a second-tier method identified a previously unreported missense variant, p.(Ser184Cys), which we propose to call "Toluca", and the extremely rare p.(Gln195His) or "Tainan" variant, which was previously described in the Taiwanese population as a Class II allele through in silico evaluations. Here, we sought to perform in vitro biochemical characterizations of the Toluca and Tainan G6PD natural variants and describe their associated phenotypes. METHODS The "Toluca" and "Tainan" variants were identified in three unrelated G6PDd newborn males, two of whom lacked evidence of acute hemolytic anemia (AHA) or neonatal hyperbilirubinemia (NHB). We constructed wild-type (WT), Tainan, and Toluca G6PD recombinant enzymes and performed in vitro assessments. RESULTS Both variants had diminished G6PD expression, decreased affinities for glucose-6-phosphate and NADP+ substrates, significant decreases in catalytic efficiency (∼97 % with respect to WT-G6PD), and diminished thermostabilities that were partially rescued by NADP+. In silico protein modeling predicted that the variants would have destabilizing effects on the protein tertiary structure, potentially reducing the enzyme half-lives and/or catalytic efficiencies. CONCLUSION Our data suggest that G6PD "Tainan" and "Toluca" are potential Class II natural variants, which agrees with the absence of chronic nonspherocytic hemolytic anemia (CNSHA) in our patients. It remains to be determined whether these variants represent high-risk genetic factors for developing CNSHA, AHA, and/or NHB.
Collapse
Affiliation(s)
- Miguel A Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, CP 06720, Ciudad de México, Mexico
| | - Ariadna González-Del Angel
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Pediatría, CP 04530, Ciudad de México, Mexico
| | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, CP 04530, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Molina Romero M, Yoldi Chaure A, Gañán Parra M, Navas Bastida P, del Pico Sánchez JL, Vaquero Argüelles Á, de la Fuente Vaquero P, Ramírez López JP, Castilla Alcalá JA. Probability of high-risk genetic matching with oocyte and semen donors: complete gene analysis or genotyping test? J Assist Reprod Genet 2022; 39:341-355. [PMID: 35091964 PMCID: PMC8956772 DOI: 10.1007/s10815-021-02381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE To estimate the probability of high-risk genetic matching when assisted reproductive techniques (ART) are applied with double gamete donation, following an NGS carrier test based on a complete study of the genes concerned. We then determine the results that would have been obtained if the genotyping tests most widely used in Spanish gamete banks had been applied. METHODS In this descriptive observational study, 1818 gamete donors were characterised by NGS. The pathogenic variants detected were analysed to estimate the probability of high-risk genetic matching and to determine the results that would have been obtained if the three most commonly used genotyping tests in ART had been applied. RESULTS The probability of high-risk genetic matching with gamete donation, screened by NGS and complete gene analysis, was 5.5%, versus the 0.6-2.7% that would have been obtained with the genotyping test. A total of 1741 variants were detected, including 607 different variants, of which only 22.6% would have been detected by all three genotyping tests considered and 44.7% of which would not have been detected by any of these tests. CONCLUSION Our study highlights the considerable heterogeneity of the genotyping tests, which present significant differences in their ability to detect pathogenic variants. The complete study of the genes by NGS considerably reduces reproductive risks when genetic matching is performed with gamete donors. Accordingly, we recommend that carrier screening in gamete donors be carried out using NGS and a complete study with nontargeted analysis of the variants of the screened genes.
Collapse
Affiliation(s)
- Marta Molina Romero
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain
| | | | | | | | | | | | | | | | - José Antonio Castilla Alcalá
- CEIFER Biobanco - NextClinics, Calle Maestro Bretón, 1, 18004 Granada, Spain ,U. Reproducción, UGC Obstetricia y Ginecología, HU Virgen de Las Nieves, Granada, Spain ,Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| |
Collapse
|
6
|
Rizo-delaTorre LDC, Herrera-Tirado IM, Hernández-Peña R, Ibarra-Cortés B, Perea-Díaz FJ. Hematological and molecular analysis of patients with G6PD deficiency revealed coexistent hereditary spherocytosis and alpha thalassemia. Ann Hum Genet 2021; 86:87-93. [PMID: 34844289 DOI: 10.1111/ahg.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency, hereditary spherocytosis (HS), and alpha thalassemia (α-thal) are frequent erythrocyte pathologies with different geographic distributions worldwide. Our aim is to report hematological and molecular findings of G6PD deficient Mexican patients in coinheritance with suggestive hereditary spherocytosis (sHS) and α-thal. METHODS We studied 78 G6PD deficiency patients. Hematological parameters, acidified glycerol lysis test, erythrocyte morphology, electrophoresis, and hemoglobin quantification were obtained. G6PD and HBA2/HBA1 variants were identified using ARMS-PCR, Gap-PCR, or Sanger sequencing. RESULTS Nine G6PD variants were identified; A-202A/376G , A-376G/968C , and A+376G as the most frequent. G6PD Santiago de Cuba1339A and Kamiube1387T were detected in Mexicans for first time. Hematological analysis revealed additional erythrocyte pathologies in 52 patients, 32 with positive osmotic fragility test and spherocytes in blood smear (suggestive hereditary spherocytosis, sHS), 12 with microcytosis and 8 with all three defects who had the most severe phenotype, with significantly lower hematological parameters (Hb, PCV, MCV, and MCH). α-thal variants (αHph α, α-59C>T α and -α3.7 ) were observed in 65% of patients with microcytosis. CONCLUSION Additional erythrocyte defects were observed in 69.3% of G6PD deficiency patients. We stress the importance of searching for the presence of additional erythrocyte hereditary diseases in patients with G6PD deficiency.
Collapse
Affiliation(s)
- Lourdes Del Carmen Rizo-delaTorre
- División de Medicina Molecular. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Isis Mariela Herrera-Tirado
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco, México.,División de Genética. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Rubiceli Hernández-Peña
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco, México.,División de Genética. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Bertha Ibarra-Cortés
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud. Universidad de Guadalajara, Guadalajara, Jalisco, México.,Instituto de Genética Humana "Dr Enrique Corona Rivera". Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Francisco Javier Perea-Díaz
- División de Genética. Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| |
Collapse
|
7
|
Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase from the Parasite Giardia lamblia. A Molecular and Biochemical Perspective of a Fused Enzyme. Microorganisms 2021; 9:microorganisms9081678. [PMID: 34442758 PMCID: PMC8399836 DOI: 10.3390/microorganisms9081678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Giardia lamblia is a single-celled eukaryotic parasite with a small genome and is considered an early divergent eukaryote. The pentose phosphate pathway (PPP) plays an essential role in the oxidative stress defense of the parasite and the production of ribose-5-phosphate. In this parasite, the glucose-6-phosphate dehydrogenase (G6PD) is fused with the 6-phosphogluconolactonase (6PGL) enzyme, generating the enzyme named G6PD::6PGL that catalyzes the first two steps of the PPP. Here, we report that the G6PD::6PGL is a bifunctional enzyme with two catalytically active sites. We performed the kinetic characterization of both domains in the fused G6PD::6PGL enzyme, as well as the individual cloned G6PD. The results suggest that the catalytic activity of G6PD and 6PGL domains in the G6PD::6PGL enzyme are more efficient than the individual proteins. Additionally, using enzymatic and mass spectrometry assays, we found that the final metabolites of the catalytic reaction of the G6PD::6PGL are 6-phosphoglucono-δ-lactone and 6-phosphogluconate. Finally, we propose the reaction mechanism in which the G6PD domain performs the catalysis, releasing 6-phosphoglucono-δ-lactone to the reaction medium. Then, this metabolite binds to the 6PGL domain catalyzing the hydrolysis reaction and generating 6-phosphogluconate. The structural difference between the G. lamblia fused enzyme G6PD::6PGL with the human G6PD indicate that the G6PD::6PGL is a potential drug target for the rational synthesis of novels anti-Giardia drugs.
Collapse
|
8
|
Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency. Proc Natl Acad Sci U S A 2021; 118:2022790118. [PMID: 33468660 PMCID: PMC7848525 DOI: 10.1073/pnas.2022790118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanism of the loss of activity of the most severe patient-derived mutants of glucose-6-phosphate dehydrogenase (G6PD) deficiency has remained elusive despite the availability of the G6PD structures for decades. Structural and biophysical investigations have revealed a common mechanism and dynamics of how these mutations hinder the substrate-binding site, reducing enzymatic activity. These are triggered by a long-distance propagation of structural defects at the dimer interface and the binding site of the noncatalytic cofactor. These structural distortions are found among all of the class I mutants investigated, providing critical clues for drug design to address G6PD deficiency by correcting the structural defects. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD. The crystal structure of G6PD reveals these mutations are located away from the active site, concentrating around the noncatalytic NADP+-binding site and the dimer interface. However, the molecular mechanisms of class I mutant dysfunction have remained elusive, hindering the development of efficient therapies. To resolve this, we performed integral structural characterization of five G6PD mutants, including four class I mutants, associated with the noncatalytic NADP+ and dimerization, using crystallography, small-angle X-ray scattering (SAXS), cryogenic electron microscopy (cryo-EM), and biophysical analyses. Comparisons with the structure and properties of the wild-type enzyme, together with molecular dynamics simulations, bring forward a universal mechanism for this severe G6PD deficiency due to the class I mutations. We highlight the role of the noncatalytic NADP+-binding site that is crucial for stabilization and ordering two β-strands in the dimer interface, which together communicate these distant structural aberrations to the active site through a network of additional interactions. This understanding elucidates potential paths for drug development targeting G6PD deficiency.
Collapse
|
9
|
Glucose-6-phosphate dehydrogenase deficiency. Blood 2021; 136:1225-1240. [PMID: 32702756 DOI: 10.1182/blood.2019000944] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is 1 of the commonest human enzymopathies, caused by inherited mutations of the X-linked gene G6PD. G6PD deficiency makes red cells highly vulnerable to oxidative damage, and therefore susceptible to hemolysis. Over 200 G6PD mutations are known: approximately one-half are polymorphic and therefore common in various populations. Some 500 million persons with any of these mutations are mostly asymptomatic throughout their lifetime; however, any of them may develop acute and sometimes very severe hemolytic anemia when triggered by ingestion of fava beans, by any of a number of drugs (for example, primaquine, rasburicase), or, more rarely, by infection. Approximately one-half of the G6PD mutations are instead sporadic: rare patients with these mutations present with chronic nonspherocytic hemolytic anemia. Almost all G6PD mutations are missense mutations, causing amino acid replacements that entail deficiency of G6PD enzyme activity: they compromise the stability of the protein, the catalytic activity is decreased, or a combination of both mechanisms occurs. Thus, genotype-phenotype correlations have been reasonably well clarified in many cases. G6PD deficiency correlates remarkably, in its geographic distribution, with past/present malaria endemicity: indeed, it is a unique example of an X-linked human polymorphism balanced through protection of heterozygotes from malaria mortality. Acute hemolytic anemia can be managed effectively provided it is promptly diagnosed. Reliable diagnostic procedures are available, with point-of-care tests becoming increasingly important where primaquine and its recently introduced analog tafenoquine are required for the elimination of malaria.
Collapse
|
10
|
Ramírez-Nava EJ, Hernández-Ochoa B, Navarrete-Vázquez G, Arreguín-Espinosa R, Ortega-Cuellar D, González-Valdez A, Martínez-Rosas V, Morales-Luna L, Martínez-Miranda J, Sierra-Palacios E, Rocha-Ramírez LM, De Franceschi L, Marcial-Quino J, Gómez-Manzo S. Novel inhibitors of human glucose-6-phosphate dehydrogenase (HsG6PD) affect the activity and stability of the protein. Biochim Biophys Acta Gen Subj 2020; 1865:129828. [PMID: 33347959 DOI: 10.1016/j.bbagen.2020.129828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pentose phosphate pathway (PPP) has received significant attention because of the role of NADPH and R-5-P in the maintenance of cancer cells, which are necessary for the synthesis of fatty acids and contribute to uncontrollable proliferation. The HsG6PD enzyme is the rate-limiting step in the oxidative branch of the PPP, leading to an increase in the expression levels in tumor cells; therefore, the protein has been proposed as a target for the development of new molecules for use in cancer. METHODS Through in vitro studies, we assayed the effects of 55 chemical compounds against recombinant HsG6PD. Here, we present the kinetic characterization of four new HsG6PD inhibitors as well as their functional and structural effects on the protein. Furthermore, molecular docking was performed to determine the interaction of the best hits with HsG6PD. RESULTS Four compounds, JMM-2, CCM-4, CNZ-3, and CNZ-7, were capable of reducing HsG6PD activity and showed noncompetitive and uncompetitive inhibition. Moreover, experiments using circular dichroism and fluorescence spectroscopy showed that the molecules affect the structure (secondary and tertiary) of the protein as well as its thermal stability. Computational docking analysis revealed that the interaction of the compounds with the protein does not occur at the active site. CONCLUSIONS We identified two new compounds (CNZ-3 and JMM-2) capable of inhibiting HsG6PD that, compared to other previously known HsG6PD inhibitors, showed different mechanisms of inhibition. GENERAL SIGNIFICANCE Screening of new inhibitors for HsG6PD with a future pharmacological approach for the study and treatment of cancer.
Collapse
Affiliation(s)
- Edson Jiovany Ramírez-Nava
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico; Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, 04530 Secretaría de Salud, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Josué Martínez-Miranda
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca, Morelos 62209, Mexico
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de México 09620, Mexico
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| |
Collapse
|
11
|
Gordeuk VR, Shah BN, Zhang X, Thuma PE, Zulu S, Moono R, Reading NS, Song J, Zhang Y, Nouraie M, Campbell A, Minniti CP, Rana SR, Darbari DS, Kato GJ, Niu M, Castro OL, Machado R, Gladwin MT, Prchal JT. The CYB5R3 c .350C>G and G6PD A alleles modify severity of anemia in malaria and sickle cell disease. Am J Hematol 2020; 95:1269-1279. [PMID: 32697331 PMCID: PMC8095369 DOI: 10.1002/ajh.25941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Genetic modifiers of anemia in Plasmodium falciparum infection and sickle cell disease (SCD) are not fully known. Both conditions are associated with oxidative stress, hemolysis and anemia. The CYB5R3 gene encodes cytochrome b5 reductase 3, which converts methemoglobin to hemoglobin through oxidation of NADH. CYB5R3c.350C > G encoding CYB5R3T117S , the most frequent recognized African-specific polymorphism, does not have known functional significance, but its high allele frequency (23% in African Americans) suggests a selection advantage. Glucose-6-phosphate dehydrogenase (G6PD) is essential for protection from oxidants; its African-polymorphic X-linked A+ and A- alleles, and other variants with reduced activity, coincide with endemic malaria distribution, suggesting protection from lethal infection. We examined the association of CYB5R3c.350C > G with severe anemia (hemoglobin <5 g/dL) in the context of G6PD A+ and A- status among 165 Zambian children with malaria. CYB5R3c.350C > G offered protection against severe malarial anemia in children without G6PD deficiency (G6PD wild type or A+/A- heterozygotes) (odds ratio 0.29, P = .022) but not in G6PD A+ or A- hemizygotes/homozygotes. We also examined the relationship of CYB5R3c.350C > G with hemoglobin concentration among 267 children and 321 adults and adolescents with SCD in the US and UK and found higher hemoglobin in SCD patients without G6PD deficiency (β = 0.29, P = .022 children; β = 0.33, P = .004 adults). Functional studies in SCD erythrocytes revealed mildly lower activity of native CYB5R3T117S compared to wildtype CYB5R3 and higher NADH/NAD+ ratios. In conclusion, CYB5R3c.350C > G appears to ameliorate anemia severity in malaria and SCD patients without G6PD deficiency, possibly accounting for CYB5R3c.350C > G selection and its high prevalence.
Collapse
Affiliation(s)
- Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Binal N. Shah
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | - Jihyun Song
- University of Utah and ARUP Laboratories, Salt Lake City, Utah
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew Campbell
- Children’s National Medical Center, Washington, District of Columbia
| | - Caterina P. Minniti
- Center for Sickle Cell Disease, Montefiore Medical Center, New York, New York
| | - Sohail R. Rana
- Department of Pediatrics and Child Health, Howard University Hospital, Washington, District of Columbia
| | | | | | - Mei Niu
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | - Oswaldo L. Castro
- Center for Sickle Cell Disease, Howard University, Washington, District of Columbia
| | | | - Mark T. Gladwin
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | |
Collapse
|
12
|
Morales-Luna L, Hernández-Ochoa B, Ramírez-Nava EJ, Martínez-Rosas V, Ortiz-Ramírez P, Fernández-Rosario F, González-Valdez A, Cárdenas-Rodríguez N, Serrano-Posada H, Centeno-Leija S, Arreguin-Espinosa R, Cuevas-Cruz M, Ortega-Cuellar D, Pérez de la Cruz V, Rocha-Ramírez LM, Sierra-Palacios E, Castillo-Rodríguez RA, Vega-García V, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Characterizing the Fused TvG6PD::6PGL Protein from the Protozoan Trichomonas vaginalis, and Effects of the NADP + Molecule on Enzyme Stability. Int J Mol Sci 2020; 21:E4831. [PMID: 32650494 PMCID: PMC7402283 DOI: 10.3390/ijms21144831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/30/2022] Open
Abstract
This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, 06720 Ciudad de México, Mexico;
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Edson Jiovany Ramírez-Nava
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico
| | - Paulina Ortiz-Ramírez
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Fabiola Fernández-Rosario
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, 28629 Colima, Mexico; (H.S.-P.); (S.C.-L.)
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico; (R.A.-E.); (M.C.-C.)
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, 04530 Secretaría de Salud, Mexico;
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Secretaria de Salud, 14269 Ciudad de México, Mexico;
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, 06720 Delegación Cuauhtémoc, Mexico;
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, 09620 Ciudad de México, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Vanesa Vega-García
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico;
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, 04530 Ciudad de México, Mexico; (L.M.-L.); (E.J.R.-N.); (V.M.-R.); (P.O.-R.); (F.F.-R.)
| |
Collapse
|
13
|
The New CIC Mutation Associates with Mental Retardation and Severity of Seizure in Turkish Child with a Rare Class I Glucose-6-Phosphate Dehydrogenase Deficiency. J Mol Neurosci 2020; 70:2077-2084. [PMID: 32535712 DOI: 10.1007/s12031-020-01614-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. Capicua transcriptional repressor (CIC) is an important gene associated with mental retardation, autosomal dominant 45. Affiliated tissues including skin, brain, bone, and related phenotypes are intellectual disability and seizures. Clinical, biochemical, and whole exome analysis are carried out in a Turkish family. Mutation analysis of G6PD and CIC genes by Sanger sequencing in the whole family was carried out to reveal the effect of these mutations on the patient's clinical outcome. Here, we present the case of epilepsy in an 8-year-old child with a hemizygous variation in G6PD gene and heterozygous mutation in CIC gene, resulting in focal epileptiform activity and hypsarrhythmia in electroencephalography (EEG), seizures, psychomotor retardation, speech impairment, intellectual disability, developmental regression, and learning difficulties. Whole exome sequencing confirmed the diagnosis of X-linked increased susceptibility for hemolytic anemia due to G6PD deficiency and mental retardation type 45 due to CIC variant, which explained the development of epileptic seizures. Considering CIC variant and relevant relation with the severity and course of the disease, G6PD mutations sustained through the family are defined as hereditary. Our findings could represent the importance of variants found in G6PD as well as CIC genes linked to the severity of epilepsy, which was presumed based on the significant changes in protein configuration.
Collapse
|
14
|
Effects of Single and Double Mutants in Human Glucose-6-Phosphate Dehydrogenase Variants Present in the Mexican Population: Biochemical and Structural Analysis. Int J Mol Sci 2020; 21:ijms21082732. [PMID: 32326520 PMCID: PMC7215812 DOI: 10.3390/ijms21082732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.
Collapse
|
15
|
Santos F, Marcial-Quino J, Gómez-Manzo S, Enríquez-Flores S, Nequiz-Avendaño M, Cortes A, De la Luz León-Avila G, Saavedra E, Pérez-Tamayo R, Olivos-García A. Functional characterization and subcellular distribution of two recombinant cytosolic HSP70 isoforms from Entamoeba histolytica under normal and stress conditions. Parasitol Res 2020; 119:1337-1351. [PMID: 32056023 DOI: 10.1007/s00436-020-06621-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 11/26/2022]
Abstract
Amoebiasis is a human intestinal disease caused by the parasite Entamoeba histolytica. It has been previously demonstrated that E. histolytica heat shock protein 70 (EhHSP70) plays an important role in amoebic pathogenicity by protecting the parasite from the dangerous effects of oxidative and nitrosative stresses. Despite its relevance, this protein has not yet been characterized. In this study, the EhHSP70 genes were cloned, and the two recombinant EhHSP70 proteins were expressed, purifying and biochemically characterized. Additionally, after being subjected to some host stressors, the intracellular distribution of the proteins in the parasite was documented. Two amoebic HSP70 isoforms, EhHSP70-A and EhHSP70-B, with 637 and 656 amino acids, respectively, were identified. Kinetic parameters of ATP hydrolysis showed low rates, which were in accordance with those of the HSP70 family members. Circular dichroism analysis showed differences in their secondary structures but similarities in their thermal stability. Immunocytochemistry in trophozoites detected EhHSP70 in the nuclei and cytoplasm as well as a slight overexpression when the parasites were subjected to oxidants and heat. The structural differences of amoebic HSP70s with their human counterparts may be used to design specific inhibitors to treat human amoebiasis.
Collapse
Affiliation(s)
- Fabiola Santos
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México, Mexico
| | - Jaime Marcial-Quino
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, 04530, México, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaria de Salud, 04530, México, Mexico
| | - Sergio Enríquez-Flores
- Grupo de Investigación en Biomoléculas y Salud Infantil, Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaria de Salud, 04530, México, Mexico
| | - Mario Nequiz-Avendaño
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, Mexico
| | - Azucena Cortes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, Mexico
| | - Gloria De la Luz León-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Secretaría de Salud, 14080, México, Mexico
| | - Ruy Pérez-Tamayo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, Mexico
| | - Alfonso Olivos-García
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, México, Mexico.
| |
Collapse
|
16
|
Morales-Luna L, González-Valdez A, Sixto-López Y, Correa-Basurto J, Hernández-Ochoa B, Cárdenas-Rodríguez N, Castillo-Rodríguez RA, Ortega-Cuellar D, Arreguin-Espinosa R, Pérez de la Cruz V, Serrano-Posada H, Centeno-Leija S, Rocha-Ramírez LM, Sierra-Palacios E, Montiel-González AM, Rufino-González Y, Marcial-Quino J, Gómez-Manzo S. Identification of the NADP + Structural Binding Site and Coenzyme Effect on the Fused G6PD::6PGL Protein from Giardia lamblia. Biomolecules 2019; 10:biom10010046. [PMID: 31892224 PMCID: PMC7022596 DOI: 10.3390/biom10010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/29/2022] Open
Abstract
Giardia lambia is a flagellated protozoan parasite that lives in the small intestine and is the causal agent of giardiasis. It has been reported that G. lamblia exhibits glucose-6-phosphate dehydrogenase (G6PD), the first enzyme in the pentose phosphate pathway (PPP). Our group work demonstrated that the g6pd and 6pgl genes are present in the open frame that gives rise to the fused G6PD::6PGL protein; where the G6PD region is similar to the 3D structure of G6PD in Homo sapiens. The objective of the present work was to show the presence of the structural NADP+ binding site on the fused G6PD::6PGL protein and evaluate the effect of the NADP+ molecule on protein stability using biochemical and computational analysis. A protective effect was observed on the thermal inactivation, thermal stability, and trypsin digestions assays when the protein was incubated with NADP+. By molecular docking, we determined the possible structural-NADP+ binding site, which is located between the Rossmann fold of G6PD and 6PGL. Finally, molecular dynamic (MD) simulation was used to test the stability of this complex; it was determined that the presence of both NADP+ structural and cofactor increased the stability of the enzyme, which is in agreement with our experimental results.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Yudibeth Sixto-López
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 06720, Mexico; (Y.S.-L.); (J.C.-B.)
| | - José Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 06720, Mexico; (Y.S.-L.); (J.C.-B.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de México 06720, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Rosa Angélica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Ciudad de México 14269, Mexico;
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, Colima 28629, Mexico; (H.S.-P.); (S.C.-L.)
| | - Sara Centeno-Leija
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, Colima 28629, Mexico; (H.S.-P.); (S.C.-L.)
| | - Luz María Rocha-Ramírez
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc 06720, Mexico;
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de México 09620, Mexico;
| | - Alba Mónica Montiel-González
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Aut. San Martín Texmelucan-Tlaxcala Km 10.5, San Felipe Ixtlacuixtla, 90120 Tlaxcala, Mexico;
- México de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de México 09620, Mexico
| | - Yadira Rufino-González
- Laboratorio de Parasitología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
- Correspondence: (J.M.-Q.); (S.G.-M.); Tel.: +52-55-1084-0900 (ext. 1442) (J.M.-Q. & S.G.-M.)
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico;
- Correspondence: (J.M.-Q.); (S.G.-M.); Tel.: +52-55-1084-0900 (ext. 1442) (J.M.-Q. & S.G.-M.)
| |
Collapse
|
17
|
Gene Cloning, Recombinant Expression, Characterization, and Molecular Modeling of the Glycolytic Enzyme Triosephosphate Isomerase from Fusarium oxysporum. Microorganisms 2019; 8:microorganisms8010040. [PMID: 31878282 PMCID: PMC7022633 DOI: 10.3390/microorganisms8010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium. Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for Km and Vmax using the substrate GAP were 0.47 ± 0.1 mM, and 5331 μmol min−1 mg−1, respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.
Collapse
|
18
|
Ramírez-Nava EJ, Ortega-Cuellar D, González-Valdez A, Castillo-Rodríguez RA, Ponce-Soto GY, Hernández-Ochoa B, Cárdenas-Rodríguez N, Martínez-Rosas V, Morales-Luna L, Serrano-Posada H, Sierra-Palacios E, Arreguin-Espinosa R, Cuevas-Cruz M, Rocha-Ramírez LM, Pérez de la Cruz V, Marcial-Quino J, Gómez-Manzo S. Molecular Cloning and Exploration of the Biochemical and Functional Analysis of Recombinant Glucose-6-Phosphate Dehydrogenase from Gluconoacetobacter diazotrophicus PAL5. Int J Mol Sci 2019; 20:ijms20215279. [PMID: 31652968 PMCID: PMC6862599 DOI: 10.3390/ijms20215279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 μM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant–microorganism interactions and a better use of GDI in new technological applications.
Collapse
Affiliation(s)
- Edson Jiovany Ramírez-Nava
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico.
| | - Rosa Angélica Castillo-Rodríguez
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico.
| | - Gabriel Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, 52428 Jülich, Germany.
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Ciudad de Mexico 06720, Mexico.
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| | - Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera los Limones-Loma de Juárez, Colima 28629, Mexico.
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Ciudad de Mexico 09620, Mexico.
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico.
| | - Miguel Cuevas-Cruz
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico.
| | - Luz María Rocha-Ramírez
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc 06720, Mexico.
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Ciudad de Mexico 14269, Mexico.
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de Mexico 04530, Mexico.
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico.
| |
Collapse
|
19
|
Cloning and biochemical characterization of three glucose‑6‑phosphate dehydrogenase mutants presents in the Mexican population. Int J Biol Macromol 2018; 119:926-936. [DOI: 10.1016/j.ijbiomac.2018.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 11/23/2022]
|
20
|
Biochemical Characterization and Structural Modeling of Fused Glucose-6-Phosphate Dehydrogenase-Phosphogluconolactonase from Giardia lamblia. Int J Mol Sci 2018; 19:ijms19092518. [PMID: 30149622 PMCID: PMC6165198 DOI: 10.3390/ijms19092518] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 11/17/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first enzyme in the pentose phosphate pathway and is highly relevant in the metabolism of Giardialamblia. Previous reports suggested that the G6PD gene is fused with the 6-phosphogluconolactonase (6PGL) gene (6pgl). Therefore, in this work, we decided to characterize the fused G6PD-6PGL protein in Giardialamblia. First, the gene of g6pd fused with the 6pgl gene (6gpd::6pgl) was isolated from trophozoites of Giardialamblia and the corresponding G6PD::6PGL protein was overexpressed and purified in Escherichia coli. Then, we characterized the native oligomeric state of the G6PD::6PGL protein in solution and we found a catalytic dimer with an optimum pH of 8.75. Furthermore, we determined the steady-state kinetic parameters for the G6PD domain and measured the thermal stability of the protein in both the presence and absence of guanidine hydrochloride (Gdn-HCl) and observed that the G6PD::6PGL protein showed alterations in the stability, secondary structure, and tertiary structure in the presence of Gdn-HCl. Finally, computer modeling studies revealed unique structural and functional features, which clearly established the differences between G6PD::6PGL protein from G. lamblia and the human G6PD enzyme, proving that the model can be used for the design of new drugs with antigiardiasic activity. These results broaden the perspective for future studies of the function of the protein and its effect on the metabolism of this parasite as a potential pharmacological target.
Collapse
|
21
|
Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant. Int J Mol Sci 2017; 18:ijms18112244. [PMID: 29072585 PMCID: PMC5713214 DOI: 10.3390/ijms18112244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/02/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A− (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.
Collapse
|
22
|
Functional and Biochemical Analysis of Glucose-6-Phosphate Dehydrogenase (G6PD) Variants: Elucidating the Molecular Basis of G6PD Deficiency. Catalysts 2017. [DOI: 10.3390/catal7050135] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Cunningham AD, Colavin A, Huang KC, Mochly-Rosen D. Coupling between Protein Stability and Catalytic Activity Determines Pathogenicity of G6PD Variants. Cell Rep 2017; 18:2592-2599. [PMID: 28297664 PMCID: PMC5396575 DOI: 10.1016/j.celrep.2017.02.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/08/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022] Open
Abstract
G6PD deficiency, an enzymopathy affecting 7% of the world population, is caused by over 160 identified amino acid variants in glucose-6-phosphate dehydrogenase (G6PD). The clinical presentation of G6PD deficiency is diverse, likely due to the broad distribution of variants across the protein and the potential for multidimensional biochemical effects. In this study, we use bioinformatic and biochemical analyses to interpret the relationship between G6PD variants and their clinical phenotype. Using structural information and statistical analyses of known G6PD variants, we predict the molecular phenotype of five uncharacterized variants from a reference population database. Through multidimensional analysis of biochemical data, we demonstrate that the clinical phenotypes of G6PD variants are largely determined by a trade-off between protein stability and catalytic activity. This work expands the current understanding of the biochemical underpinnings of G6PD variant pathogenicity and suggests a promising avenue for correcting G6PD deficiency by targeting essential structural features of G6PD.
Collapse
Affiliation(s)
- Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
24
|
Gómez-Manzo S, Marcial-Quino J, Vanoye-Carlo A, Serrano-Posada H, Ortega-Cuellar D, González-Valdez A, Castillo-Rodríguez RA, Hernández-Ochoa B, Sierra-Palacios E, Rodríguez-Bustamante E, Arreguin-Espinosa R. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World. Int J Mol Sci 2016; 17:ijms17122069. [PMID: 27941691 PMCID: PMC5187869 DOI: 10.3390/ijms17122069] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein.
Collapse
Affiliation(s)
- Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Jaime Marcial-Quino
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Hugo Serrano-Posada
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Bioingeniería, Universidad de Colima, Colima 28400, Mexico.
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud 04530, Mexico.
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | | | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico.
| | - Edgar Sierra-Palacios
- Colegio de Ciencias y Humanidades, Plantel Casa Libertad, Universidad Autónoma de la Ciudad de México, Mexico City 09620, Mexico.
| | - Eduardo Rodríguez-Bustamante
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico.
| |
Collapse
|
25
|
Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan. Int J Mol Sci 2016; 17:ijms17050787. [PMID: 27213370 PMCID: PMC4881603 DOI: 10.3390/ijms17050787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 04/21/2016] [Accepted: 05/16/2016] [Indexed: 11/29/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.
Collapse
|