1
|
Li Y, Wang W, Xu D, Liang H, Yu H, Zhou Y, Liang J, Sun H, Liu X, Xue M, Ling B, Feng D. PIWIL2/PDK1 Axis Promotes the Progression of Cervical Epithelial Lesions via Metabolic Reprogramming to Maintain Tumor-Initiating Cell Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410756. [PMID: 39499767 DOI: 10.1002/advs.202410756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Indexed: 11/07/2024]
Abstract
When PIWIL2 expression is restored via heterogeneous integration of human papillomavirus, cellular reprogramming is initiated to form tumor-initiating cells (TICs), which triggers cervical squamous intraepithelial lesions (SIL). TIC stemness is critical for the prognosis of SIL. However, the mechanisms underlying TIC stemness maintenance and tumorigenicity remain unclear. Here, it is revealed that aberrant pyruvate dehydrogenase kinase 1 (PDK1) expression is closely related to aerobic glycolysis in SIL and poor survival in patients with cervical cancer. Mechanistically, that PIWIL2, which induced by stable transfection of either PIWIL2 or HPV16 oncogene E6 in human primary cervical basal epithelial cells and keratinocyte cell line HaCaT, upregulates PDK1 expression via the LIN28/let-7 axis, hence reprogramming metabolism to activate glycolysis and synchronize with TIC formation. It is further demonstrate that PDK1 is critical for TIC stemness maintenance and tumorigenicity via the PI3K/AKT/mTOR pathway both in vitro and in vivo, revealing a previously unclear mechanism for SIL progression, regression or relapse. Therefore, this findings suggest a potential rationale for prognostic predictions and selecting targeted therapy for cervical lesions.
Collapse
Affiliation(s)
| | - Wenhui Wang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huan Yu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Heming Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaodie Liu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ming Xue
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
2
|
Jiang Z, Chen L, Wang T, Zhao J, Liu S, He Y, Wang L, Wu H. Autophagy accompanying the developmental process of male germline stem cells. Cell Tissue Res 2024; 398:1-14. [PMID: 39141056 DOI: 10.1007/s00441-024-03910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Germline stem cells are a crucial type of stem cell that can stably pass on genetic information to the next generation, providing the necessary foundation for the reproduction and survival of organisms. Male mammalian germline stem cells are unique cell types that include primordial germ cells and spermatogonial stem cells. They can differentiate into germ cells, such as sperm and eggs, thereby facilitating offspring reproduction. In addition, they continuously generate stem cells through self-renewal mechanisms to support the normal function of the reproductive system. Autophagy involves the use of lysosomes to degrade proteins and organelles that are regulated by relevant genes. This process plays an important role in maintaining the homeostasis of germline stem cells and the synthesis, degradation, and recycling of germline stem cell products. Recently, the developmental regulatory mechanism of germline stem cells has been further elucidated, and autophagy has been shown to be involved in the regulation of self-renewal and differentiation of germline stem cells. In this review, we introduce autophagy accompanying the development of germline stem cells, focusing on the autophagy process accompanying the development of male spermatogonial stem cells and the roles of related genes and proteins. We also briefly outline the effects of autophagy dysfunction on germline stem cells and reproduction.
Collapse
Affiliation(s)
- Zhuofei Jiang
- Department of Gynecology, Foshan Woman and Children Hospital, Foshan, China
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Reproductive Medicine, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Tao Wang
- Department of Surgery, Longjiang Hospital of Shunde District, Foshan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Shuxian Liu
- Department of Science and Education, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China
| | - Yating He
- Department of Obstetrics, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Liyun Wang
- Department of Reproductive Medicine, Guangzhou Huadu District Maternal and Child Health Care Hospital (Huzhong Hospital of Huadu District), Guangzhou, China.
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
3
|
Choi J, Kang S, An HI, Kim CE, Lee S, Pack CG, Yoon YI, Jin H, Cho YP, Kim CJ, Namgoong JM, Kim JK, Tak E. Fasudil and viscosity of gelatin promote hepatic differentiation by regulating organelles in human umbilical cord matrix-mesenchymal stem cells. Stem Cell Res Ther 2024; 15:229. [PMID: 39075621 PMCID: PMC11288082 DOI: 10.1186/s13287-024-03851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells originating from umbilical cord matrix are a promising therapeutic resource, and their differentiated cells are spotlighted as a tissue regeneration treatment. However, there are limitations to the medical use of differentiated cells from human umbilical cord matrix-mesenchymal stem cells (hUCM-MSCs), such as efficient differentiation methods. METHODS To effectively differentiate hUCM-MSCs into hepatocyte-like cells (HLCs), we used the ROCK inhibitor, fasudil, which is known to induce endoderm formation, and gelatin, which provides extracellular matrix to the differentiated cells. To estimate a differentiation efficiency of early stage according to combination of gelatin and fasudil, transcription analysis was conducted. Moreover, to demonstrate that organelle states affect differentiation, we performed transcription, tomographic, and mitochondrial function analysis at each stage of hepatic differentiation. Finally, we evaluated hepatocyte function based on the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4 in mature HLCs. RESULTS Fasudil induced endoderm-related genes (GATA4, SOX17, and FOXA2) in hUCM-MSCs, and it also induced lipid droplets (LDs) inside the differentiated cells. However, the excessive induction of LDs caused by fasudil inhibited mitochondrial function and prevented differentiation into hepatoblasts. To prevent the excessive LDs formation, we used gelatin as a coating material. When hUCM-MSCs were induced into hepatoblasts with fasudil on high-viscosity (1%) gelatin-coated dishes, hepatoblast-related genes (AFP and HNF4A) showed significant upregulation on high-viscosity gelatin-coated dishes compared to those treated with low-viscosity (0.1%) gelatin. Moreover, other germline cell fates, such as ectoderm and mesoderm, were repressed under these conditions. In addition, LDs abundance was also reduced, whereas mitochondrial function was increased. On the other hand, unlike early stage of the differentiation, low viscosity gelatin was more effective in generating mature HLCs. In this condition, the accumulation of LDs was inhibited in the cells, and mitochondria were activated. Consequently, HLCs originated from hUCM-MSCs were genetically and functionally more matured in low-viscosity gelatin. CONCLUSIONS This study demonstrated an effective method for differentiating hUCM-MSCs into hepatic cells using fasudil and gelatin of varying viscosities. Moreover, we suggest that efficient hepatic differentiation and the function of hepatic cells differentiated from hUCM-MSCs depend not only on genetic changes but also on the regulation of organelle states.
Collapse
Affiliation(s)
- Jiwan Choi
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye-In An
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chae-Eun Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sanghwa Lee
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea
| | - Chan-Gi Pack
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hana Jin
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Pil Cho
- Division of Vascular Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, Asan-Minnesota Institute for Innovating Transplantation (AMIT), University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul, Republic of Korea.
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Maslanka R, Bednarska S, Zadrag-Tecza R. Virtually identical does not mean exactly identical: Discrepancy in energy metabolism between glucose and fructose fermentation influences the reproductive potential of yeast cells. Arch Biochem Biophys 2024; 756:110021. [PMID: 38697344 DOI: 10.1016/j.abb.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
The physiological efficiency of cells largely depends on the possibility of metabolic adaptations to changing conditions, especially on the availability of nutrients. Central carbon metabolism has an essential role in cellular function. In most cells is based on glucose, which is the primary energy source, provides the carbon skeleton for the biosynthesis of important cell macromolecules, and acts as a signaling molecule. The metabolic flux between pathways of carbon metabolism such as glycolysis, pentose phosphate pathway, and mitochondrial oxidative phosphorylation is dynamically adjusted by specific cellular economics responding to extracellular conditions and intracellular demands. Using Saccharomyces cerevisiae yeast cells and potentially similar fermentable carbon sources i.e. glucose and fructose we analyzed the parameters concerning the metabolic status of the cells and connected with them alteration in cell reproductive potential. Those parameters were related to the specific metabolic network: the hexose uptake - glycolysis and activity of the cAMP/PKA pathway - pentose phosphate pathway and biosynthetic capacities - the oxidative respiration and energy generation. The results showed that yeast cells growing in a fructose medium slightly increased metabolism redirection toward respiratory activity, which decreased pentose phosphate pathway activity and cellular biosynthetic capabilities. These differences between the fermentative metabolism of glucose and fructose, lead to long-term effects, manifested by changes in the maximum reproductive potential of cells.
Collapse
Affiliation(s)
- Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
5
|
Zheng QY, Tao Y, Geng L, Ren P, Ni M, Zhang GQ. Non-traumatic osteonecrosis of the femoral head induced by steroid and alcohol exposure is associated with intestinal flora alterations and metabolomic profiles. J Orthop Surg Res 2024; 19:236. [PMID: 38609952 PMCID: PMC11015587 DOI: 10.1186/s13018-024-04713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Osteonecrosis of the femoral head (ONFH) is a severe disease that primarily affects the middle-aged population, imposing a significant economic and social burden. Recent research has linked the progression of non-traumatic osteonecrosis of the femoral head (NONFH) to the composition of the gut microbiota. Steroids and alcohol are considered major contributing factors. However, the relationship between NONFH caused by two etiologies and the microbiota remains unclear. In this study, we examined the gut microbiota and fecal metabolic phenotypes of two groups of patients, and analyzed potential differences in the pathogenic mechanisms from both the microbial and metabolic perspectives. METHODS Utilizing fecal samples from 68 NONFH patients (32 steroid-induced, 36 alcohol-induced), high-throughput 16 S rDNA sequencing and liquid chromatography with tandem mass spectrometry (LC-MS/MS) metabolomics analyses were conducted. Univariate and multivariate analyses were applied to the omics data, employing linear discriminant analysis effect size to identify potential biomarkers. Additionally, functional annotation of differential metabolites and associated pathways was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Subsequently, Spearman correlation analysis was employed to assess the potential correlations between differential gut microbiota and metabolites. RESULTS High-throughput 16 S rDNA sequencing revealed significant gut microbial differences. At the genus level, the alcohol group had higher Lactobacillus and Roseburia, while the steroid group had more Megasphaera and Akkermansia. LC-MS/MS metabolomic analysis indicates significant differences in fecal metabolites between steroid- and alcohol-induced ONFH patients. Alcohol-induced ONFH (AONFH) showed elevated levels of L-Lysine and Oxoglutaric acid, while steroid-induced ONFH(SONFH) had increased Gluconic acid and Phosphoric acid. KEGG annotation revealed 10 pathways with metabolite differences between AONFH and SONFH patients. Correlation analysis revealed the association between differential gut flora and differential metabolites. CONCLUSIONS Our results suggest that hormones and alcohol can induce changes in the gut microbiota, leading to alterations in fecal metabolites. These changes, driven by different pathways, contribute to the progression of the disease. The study opens new research directions for understanding the pathogenic mechanisms of hormone- or alcohol-induced NONFH, suggesting that differentiated preventive and therapeutic approaches may be needed for NONFH caused by different triggers.
Collapse
Affiliation(s)
- Qing-Yuan Zheng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, the First Medical Center, Chinese People's Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ye Tao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, the First Medical Center, Chinese People's Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lei Geng
- Department of Orthopedics, the First Medical Center, Chinese People's Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100853, China
| | - Peng Ren
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming Ni
- Department of Orthopedics, the First Medical Center, Chinese People's Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guo-Qiang Zhang
- Department of Orthopedics, the First Medical Center, Chinese People's Liberation Army General Hospital, Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Li X, Xu Y, Zhang J, Xu K, Zheng X, Luo J, Lu J. Integrative physiology and transcriptome reveal salt-tolerance differences between two licorice species: Ion transport, Casparian strip formation and flavonoids biosynthesis. BMC PLANT BIOLOGY 2024; 24:272. [PMID: 38605293 PMCID: PMC11007891 DOI: 10.1186/s12870-024-04911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ying Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiade Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Ke Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xuerong Zheng
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiafen Luo
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jiahui Lu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Li Z, Yang B, Yang Z, Xie X, Guo Z, Zhao J, Wang R, Fu H, Zhao P, Zhao X, Chen G, Li G, Wei F, Bian L. Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307176. [PMID: 38295393 DOI: 10.1002/adma.202307176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid β-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Boguang Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ruinan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guosong Chen
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| |
Collapse
|
8
|
Guo W, Wang Y, Qi G, Wang J, Ren J, Jin Y, Wang E. Dual-signal readout sensing of ATP content in single dental pulp stem cells during differentiation via functionalized glass nanopipettes. Anal Chim Acta 2024; 1293:342200. [PMID: 38331549 DOI: 10.1016/j.aca.2024.342200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024]
Abstract
Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.
Collapse
Affiliation(s)
- Wenting Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Podinić T, MacAndrew A, Raha S. Trophoblast Syncytialization: A Metabolic Crossroads. Results Probl Cell Differ 2024; 71:101-125. [PMID: 37996675 DOI: 10.1007/978-3-031-37936-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
During placentation, villous cytotrophoblast (CTB) stem cells proliferate and fuse, giving rise to the multinucleated syncytiotrophoblast (STB), which represents the terminally differentiated villous layer as well as the maternal-fetal interface. The syncytiotrophoblast is at the forefront of nutrient, gas, and waste exchange while also harboring essential endocrine functions to support pregnancy and fetal development. Considering that mitochondrial dynamics and respiration have been implicated in stem cell fate decisions of several cell types and that the placenta is a mitochondria-rich organ, we will highlight the role of mitochondria in facilitating trophoblast differentiation and maintaining trophoblast function. We discuss both the process of syncytialization and the distinct metabolic characteristics associated with CTB and STB sub-lineages prior to and during syncytialization. As mitochondrial respiration is tightly coupled to redox homeostasis, we emphasize the adaptations of mitochondrial respiration to the hypoxic placental environment. Furthermore, we highlight the critical role of mitochondria in conferring the steroidogenic potential of the STB following differentiation. Ultimately, mitochondrial function and morphological changes centrally regulate respiration and influence trophoblast fate decisions through the production of reactive oxygen species (ROS), whose levels modulate the transcriptional activation or suppression of pluripotency or commitment genes.
Collapse
Affiliation(s)
- Tina Podinić
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andie MacAndrew
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Zitter RC, Chugh RM, Bhanja P, Kimler BF, Saha S. LGR5+ Intestinal Stem Cells Display Sex-Dependent Radiosensitivity. Cells 2023; 13:46. [PMID: 38201250 PMCID: PMC10778194 DOI: 10.3390/cells13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Tissue radiosensitivity plays a critical role in the overall outcome of radiation therapy. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data have suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In a mouse model of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity were not dependent on sex hormones, as we demonstrated similar sex-specific radiosensitivity differences in pre-pubescent mice. In an ex vivo study, we found that patient-derived intestinal organoid (PID) from males showed higher sensitivity to radiation compared to females as evident from loss of budding crypts, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation-induced upregulation of mitochondrial oxidative metabolism in males compared to females, a possible mechanism for radiosensitivity differences.
Collapse
Affiliation(s)
- Ryan C. Zitter
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.C.Z.); (R.M.C.); (P.B.); (B.F.K.)
| | - Rishi Man Chugh
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.C.Z.); (R.M.C.); (P.B.); (B.F.K.)
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.C.Z.); (R.M.C.); (P.B.); (B.F.K.)
| | - Bruce F. Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.C.Z.); (R.M.C.); (P.B.); (B.F.K.)
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.C.Z.); (R.M.C.); (P.B.); (B.F.K.)
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Zitter RC, Chugh RM, Bhanja P, Saha S. LGR5+ Intestinal Stem Cells Display Sex Dependent Radiosensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570158. [PMID: 38106083 PMCID: PMC10723330 DOI: 10.1101/2023.12.05.570158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Radiosensitivity, the susceptibility of cells to ionizing radiation, plays a critical role in understanding the effects of radiation therapy and exposure on tissue health and regeneration. Identifying characteristics that predict how a patient may respond to radiotherapy enables clinicians to maximize the therapeutic window. Limited clinical data suggested a difference in male and female radiotherapy outcomes. Radiotherapy for gastrointestinal malignancy is still a challenge due to intestinal sensitivity to radiation toxicity. In this manuscript, we demonstrated sex-specific differences in intestinal epithelial radiosensitivity. In mice models of abdominal irradiation, we observed a significant increase in oxidative stress and injury in males compared to females. Lgr5+ve intestinal stem cells from male mice showed higher sensitivity to radiation-induced toxicity. However, sex-specific differences in intestinal radiosensitivity are not dependent on sex hormones as we demonstrated similar sex-specific radiosensitivity differences in pediatric mice. In an ex-vivo study, we found that human patient-derived intestinal organoids (PID) derived from males showed higher sensitivity to irradiation compared to females as evidenced by loss of budding crypt, organoid size, and membrane integrity. Transcriptomic analysis of human Lgr5+ intestinal stem cells suggested radiation induced upregulation of mitochondrial oxidative metabolism in males compared to females' possible mechanism for radiosensitivity differences.
Collapse
|
12
|
Yang C, Gao Q, Xu N, Yang K, Bian Z. Human Dental Pulp Stem Cells Are Subjected to Metabolic Reprogramming and Repressed Proliferation and Migration by the Sympathetic Nervous System via α1B-Adrenergic Receptor. J Endod 2023; 49:1641-1651.e6. [PMID: 37769871 DOI: 10.1016/j.joen.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Human dental pulp stem cells (hDPSCs) reside in specialized microenvironments in the dental pulp, termed "niches," which are composed of diverse cellular components including nerves. Sensory nerves can positively regulate the expansion and differentiation of pulp cells, while the biological effects of the sympathetic nervous system (SNS) on hDPSCs remain elusive. This study is devoted to investigating the effects and underlying mechanisms of the SNS on the proliferation and migration of hDPSCs. METHODS The distribution of sympathetic nerve fibers in human dental pulp was examined by immunofluorescence staining of tyrosine hydroxylase. The concentration of norepinephrine in healthy and carious human dental pulp tissues was detected using enzyme-linked immunosorbent assay. RNA-sequencing was applied to identify the dominant sympathetic neurotransmitter receptor in hDPSCs. Seahorse metabolic assay, adenosine triphosphate assay, lactate assay, and mitochondrial DNA copy number were performed to determine the level of glycometabolism. Transwell assay, wound healing assay, 5-ethynyl-2'-deoxyuridine staining assay, cell cycle assay, and Cell Counting Kit-8 assay were conducted to analyze the migratory and proliferative capacities of hDPSCs. RESULTS Sprouting of sympathetic nerve fibers and an increased concentration of norepinephrine were observed in inflammatory pulp tissues. Sympathetic nerve fibers were mainly distributed along blood vessels, and aldehyde dehydrogenase 1-positive hDPSCs resided in close proximity to neurovascular bundles. ADRA1B was identified as the major sympathetic neurotransmitter receptor expressed in hDPSCs, and its expression was enhanced in inflammatory pulp tissues. In addition, the SNS inhibited the proliferation and migration of hDPSCs through metabolic reprogramming via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways. CONCLUSIONS This study demonstrates that the SNS can shift the metabolism of hDPSCs from oxidative phosphorylation to anaerobic glycolysis via ADRA1B and its crosstalk with serine-threonine kinase and p38 mitogen-activated protein kinase signaling pathways, thereby inhibiting the proliferative and migratory abilities of hDPSCs. This metabolic shift may facilitate the maintenance of the quiescent state of hDPSCs.
Collapse
Affiliation(s)
- Chengcan Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Qian Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Nuo Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Kai Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Burov AV, Rodin AA, Karpov VL, Morozov AV. The Role of Ubiquitin-Proteasome System in the Biology of Stem Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2043-2053. [PMID: 38462448 DOI: 10.1134/s0006297923120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/12/2024]
Abstract
Selective degradation of cellular proteins by the ubiquitin-proteasome system (UPS) is one of the key regulatory mechanisms in eukaryotic cells. A growing body of evidence indicates that UPS is involved in the regulation of fundamental processes in mammalian stem cells, including proliferation, differentiation, cell migration, aging, and programmed cell death, via proteolytic degradation of key transcription factors and cell signaling proteins and post-translational modification of target proteins with ubiquitin. Studying molecular mechanisms of proteostasis in stem cells is of great importance for the development of new therapeutic approaches aimed at the treatment of autoimmune and neurodegenerative diseases, cancer, and other socially significant pathologies. This review discusses current data on the UPS functions in stem cells.
Collapse
Affiliation(s)
- Alexander V Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Andrey A Rodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
14
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
15
|
Yan RG, He Z, Wang FC, Li S, Shang QB, Yang QE. Transcription factor E4F1 dictates spermatogonial stem cell fate decisions by regulating mitochondrial functions and cell cycle progression. Cell Biosci 2023; 13:177. [PMID: 37749649 PMCID: PMC10521505 DOI: 10.1186/s13578-023-01134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.
Collapse
Affiliation(s)
- Rong-Ge Yan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei-Chen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuang Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Bang Shang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining, 810001, China.
| |
Collapse
|
16
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
17
|
Ahmadzadeh‐Gavahan L, Hosseinkhani A, Hamidian G, Jarolmasjed S, Yousefi‐Tabrizi R. Restricted maternal nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride during late pregnancy does not affect muscle fibre characteristics of offspring. Vet Med Sci 2023; 9:2260-2268. [PMID: 37556348 PMCID: PMC10508547 DOI: 10.1002/vms3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Grazing in arid and semi-arid regions faces pregnant ewes with feed restrictions and hence affects the offspring muscle fibre characteristics. Using feed additives that enhance nutrient availability during foetal muscle development is expected to alter offspring skeletal muscle characteristics. OBJECTIVES This study evaluated the effect of maternal restricted nutrition and supplementation of propylene glycol, monensin sodium and rumen-protected choline chloride on lamb's muscle fibre characteristics. METHODS Forty-eight Ghezel ewes were randomly allocated to one of six diets (N = 8) during the last 6 weeks of gestation: ad libitum feed intake (AL); restricted feeding (RF); restricted feeding containing propylene glycol (PG); restricted feeding containing propylene glycol and monensin sodium (MS); restricted feeding containing propylene glycol and rumen-protected choline chloride (RPC); restricted feeding containing propylene glycol, monensin sodium and rumen-protected choline chloride (PMC). The muscle samples were obtained from the semitendinosus muscle of 2-week-old male lambs (n = 5/treatment) via biopsy and were stained and classified as fibre types I, IIA and IIB. RESULTS Pre-parturient maternal feed restriction and administration of propylene glycol, monensin sodium and rumen-protected choline chloride had no significant effect on fibre-type composition, fibre density of muscle, muscle cross-sectional area and volume density of fibres (p > 0.05). CONCLUSIONS Either maternal dietary restriction or supplementation of nutrient flux-involved additives during late pregnancy did not alter muscle fibre development and had no short-term effects on muscle properties of the resulting offspring as myogenesis occurs in early and mid-gestation, not late gestation. Therefore, maternal nutrition may not be a problematic issue in sheep production in arid and semi-arid areas.
Collapse
Affiliation(s)
| | - Ali Hosseinkhani
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Gholamreza Hamidian
- Department of Basic Sciences, Faculty of Veterinary MedicineUniversity of TabrizTabrizIran
| | | | - Reza Yousefi‐Tabrizi
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
18
|
Rossi V, Govoni M, Di Stefano G. Lactate Can Modulate the Antineoplastic Effects of Doxorubicin and Relieve the Drug's Oxidative Damage on Cardiomyocytes. Cancers (Basel) 2023; 15:3728. [PMID: 37509389 PMCID: PMC10378253 DOI: 10.3390/cancers15143728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Doxorubicin (DOXO) is currently administered as the first-choice therapy for a variety of malignancies. Cancer cells exhibit enhanced glycolysis and lactate production. This metabolite affects gene expression and can play a role in chemoresistance. AIM OF THIS STUDY We investigated whether the enhanced lactate levels that characterize neoplastic tissues can modify the response of cancer cells to DOXO. METHODS After exposing cancer cells to increased lactate levels, we examined whether this metabolite could interfere with the principal mechanisms responsible for the DOXO antineoplastic effect. RESULTS Increased lactate levels did not affect DOXO-induced topoisomerase poisoning but offered protection against the oxidative damage caused by the drug. This protection was related to changes in gene expression caused by the combined action of DOXO and lactate. Oxidative damage significantly contributed to the heavy cardiotoxicity following DOXO treatment. In cultured cardiomyocytes, we confirmed that DOXO-induced DNA damage and oxidative stress can be significantly mitigated by exposing the cells to increased lactate levels. CONCLUSIONS In addition to contributing to elucidating the effects of the combined action of DOXO and lactate, our results suggest a possible method to reduce the heavy drug cardiotoxicity, a major side effect leading to therapy discontinuation.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Jia Y, Yin C, Ke W, Liu J, Guo B, Wang X, Zhao P, Hu S, Zhang C, Li X, Liu R, Zheng X, Wang Y, Wang G, Pan H, Hu W, Song Z. Alpha-ketoglutarate alleviates cadmium-induced inflammation by inhibiting the HIF1A-TNFAIP3 pathway in hepatocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163069. [PMID: 36996991 DOI: 10.1016/j.scitotenv.2023.163069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
The threat to public health posed by rapidly increasing levels of cadmium (Cd) in the environment is receiving worldwide attention. Although, Cd is known to be absorbed into the body and causes non-negligible damage to the liver, the detailed mechanisms underlying its hepatoxicity are incompletely understood. In the present study, investigated the effect of TNFAIP3 and α-ketoglutarate (AKG) on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were exposed to cadmium chloride (1.0 mg/kg) while being fed a diet with 2 % AKG for two weeks. We found that Cd induced hepatocyte injury and inflammatory infiltration. In addition, TNFAIP3 expression was inhibited in the liver tissues and cells of CdCl2-treated mice. Mouse hepatocyte-specific TNFAIP3 overexpression by tail vein injection of an adeno-associated virus (AAV) vector effectively alleviated Cd-induced hepatic necrosis and inflammation, which was mediated by the NF-κB signaling pathway. Notably, this inhibitory effect of TNFAIP3 on Cd-induced liver injury was dependent on AKG. Exogenous addition of AKG prevented Cd exposure-induced increases in serum ALT, AST and LDH levels, production of pro-inflammatory cytokines, activation of the NF-κB signaling pathway, and even significantly reduced Cd-induced oxidative stress and hepatocyte death. Mechanistically, AKG exerted its anti-inflammatory effect by promoting the hydroxylation and degradation of HIF1A to reduce its Cd-induced overexpression in vivo and in vitro, avoiding the inhibition of the TNFAIP3 promoter by HIF1A. Moreover, the protective effect of AKG was significantly weaker in Cd-treated primary hepatocytes transfected with HIF1A pcDNA. Overall, our results reveal a novel mechanism of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yinzhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenbo Ke
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030000, China
| | - Bing Guo
- Insitute for Genome Sciences, University of Maryland School of Medical, Baltimore, MD 21201, United States
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Peng Zhao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shaobo Hu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Gengqiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wenjun Hu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China.
| |
Collapse
|
20
|
Victor AK, Hedgecock T, Donaldson M, Johnson D, Rand CM, Weese-Mayer DE, Reiter LT. Analysis and comparisons of gene expression changes in patient- derived neurons from ROHHAD, CCHS, and PWS. Front Pediatr 2023; 11:1090084. [PMID: 37234859 PMCID: PMC10206321 DOI: 10.3389/fped.2023.1090084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare neurocristopathy with no known genetic or environmental etiology. Rapid-onset obesity over a 3-12 month period with onset between ages 1.5-7 years of age is followed by an unfolding constellation of symptoms including severe hypoventilation that can lead to cardiorespiratory arrest in previously healthy children if not identified early and intervention provided. Congenital Central Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have overlapping clinical features with ROHHAD and known genetic etiologies. Here we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS, and PWS) and neurotypical control subjects to identify molecular overlap that may explain the clinical similarities. Methods Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and CCHS subjects were differentiated into neuronal cultures for RNA sequencing (RNAseq). Differential expression analysis identified transcripts variably regulated in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used previously published PWS transcript data to compare both groups to PWS patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq data and downstream protein expression analysis was performed using immunoblotting. Results We identified three transcripts differentially regulated in all three syndromes vs. neurotypical control subjects. Gene ontology analysis on the ROHHAD dataset revealed enrichments in several molecular pathways that may contribute to disease pathology. Importantly, we found 58 transcripts differentially expressed in both ROHHAD and CCHS patient neurons vs. control neurons. Finally, we validated transcript level changes in expression of ADORA2A, a gene encoding for an adenosine receptor, at the protein level in CCHS neurons and found variable, although significant, changes in ROHHAD neurons. Conclusions The molecular overlap between CCHS and ROHHAD neurons suggests that the clinical phenotypes in these syndromes likely arise from or affect similar transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from different molecular mechanisms. The data presented here describes important preliminary findings that warrant further validation.
Collapse
Affiliation(s)
- A. Kaitlyn Victor
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Tayler Hedgecock
- IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Martin Donaldson
- Department of Pediatric Dentistry and Community Oral Health, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Casey M. Rand
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
| | - Debra E. Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s Research Institute, Chicago, IL, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lawrence T. Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
21
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Kaplin V, Epifanov E, Minaev N, Bardakova K, Solovieva A, Timashev P, Zagaynova E, Kuznetsova D. FLIM imaging revealed spontaneous osteogenic differentiation of stem cells on gradient pore size tissue-engineered constructs. Stem Cell Res Ther 2023; 14:81. [PMID: 37046354 PMCID: PMC10091689 DOI: 10.1186/s13287-023-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND There is an urgent clinical need for targeted strategies aimed at the treatment of bone defects resulting from fractures, infections or tumors. 3D scaffolds represent an alternative to allogeneic MSC transplantation, due to their mimicry of the cell niche and the preservation of tissue structure. The actual structure of the scaffold itself can affect both effective cell adhesion and its osteoinductive properties. Currently, the effects of the structural heterogeneity of scaffolds on the behavior of cells and tissues at the site of damage have not been extensively studied. METHODS Both homogeneous and heterogeneous scaffolds were generated from poly(L-lactic acid) methacrylated in supercritical carbon dioxide medium and were fabricated by two-photon polymerization. The homogeneous scaffolds consist of three layers of cylinders of the same diameter, whereas the heterogeneous (gradient pore sizes) scaffolds contain the middle layer of cylinders of increased diameter, imitating the native structure of spongy bone. To evaluate the osteoinductive properties of both types of scaffold, we performed in vitro and in vivo experiments. Multiphoton microscopy with fluorescence lifetime imaging microscopy was used for determining the metabolic states of MSCs, as a sensitive marker of cell differentiation. The results obtained from this approach were verified using standard markers of osteogenic differentiation and based on data from morphological analysis. RESULTS The heterogeneous scaffolds showed improved osteoinductive properties, accelerated the metabolic rearrangements associated with osteogenic differentiation, and enhanced the efficiency of bone tissue recovery, thereby providing for both the development of appropriate morphology and mineralization. CONCLUSIONS The authors suggest that the heterogeneous tissue constructs are a promising tool for the restoration of bone defects. And, furthermore, that our results demonstrate that the use of label-free bioimaging methods can be considered as an effective approach for intravital assessment of the efficiency of differentiation of MSCs on scaffolds.
Collapse
Affiliation(s)
- Svetlana Rodimova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022.
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000.
| | - Artem Mozherov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Ilya Shchechkin
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Kozlov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Dmitry Krylov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Alena Gavrina
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Vladislav Kaplin
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Evgenii Epifanov
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
| | - Nikita Minaev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Ksenia Bardakova
- Research Center "Crystallography and Photonics", Institute of Photonic Technologies, Russian Academy of Sciences, 2 Pionerskaya St, Troitsk, Moscow, Russia, 108840
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Anna Solovieva
- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 4 Kosygina St, Moscow, Russia, 119991
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya Str, Moscow, Russia, 119991
| | - Elena Zagaynova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| | - Daria Kuznetsova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., Nizhny Novgorod, Russia, 603022
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russia, 603000
| |
Collapse
|
22
|
Augustyniak J, Kozlowska H, Buzanska L. Genes Involved in DNA Repair and Mitophagy Protect Embryoid Bodies from the Toxic Effect of Methylmercury Chloride under Physioxia Conditions. Cells 2023; 12:cells12030390. [PMID: 36766732 PMCID: PMC9913246 DOI: 10.3390/cells12030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The formation of embryoid bodies (EBs) from human pluripotent stem cells resembles the early stages of human embryo development, mimicking the organization of three germ layers. In our study, EBs were tested for their vulnerability to chronic exposure to low doses of MeHgCl (1 nM) under atmospheric (21%O2) and physioxia (5%O2) conditions. Significant differences were observed in the relative expression of genes associated with DNA repair and mitophagy between the tested oxygen conditions in nontreated EBs. When compared to physioxia conditions, the significant differences recorded in EBs cultured at 21% O2 included: (1) lower expression of genes associated with DNA repair (ATM, OGG1, PARP1, POLG1) and mitophagy (PARK2); (2) higher level of mtDNA copy number; and (3) higher expression of the neuroectodermal gene (NES). Chronic exposure to a low dose of MeHgCl (1 nM) disrupted the development of EBs under both oxygen conditions. However, only EBs exposed to MeHgCl at 21% O2 revealed downregulation of mtDNA copy number, increased oxidative DNA damage and DNA fragmentation, as well as disturbances in SOX17 (endoderm) and TBXT (mesoderm) genes expression. Our data revealed that physioxia conditions protected EBs genome integrity and their further differentiation.
Collapse
Affiliation(s)
- Justyna Augustyniak
- Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Technique, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (J.A.); (L.B.); Tel.: +48-668500988 (L.B.)
| |
Collapse
|
23
|
Deng Y, Luo N, Xie M, He L, Jiang R, Hu N, Wen J, Jiang X. Transcriptome landscape comparison of periodontium in developmental and renewal stages. Front Endocrinol (Lausanne) 2023; 14:1154931. [PMID: 37008900 PMCID: PMC10050752 DOI: 10.3389/fendo.2023.1154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
OBJECTIVES Periodontium regeneration remains a significant challenge in clinics and research, and it is essential to understand the stage-specific biological process in situ. However, differing findings have been reported, and the mechanism has yet to be elucidated. The periodontium of adult mice molars is considered to be stable remodeling tissue. At the same time, the continuously growing incisors and the developing dental follicle (DF) of postnatal mice highly represent fast remodeling tissue. In this study, we attempted to explore different clues of temporal and spatial comparisons to provide improved references for periodontal regeneration. METHODS Periodontal tissues from the developing periodontium (DeP) of postnatal mice, and continuously growing periodontium (CgP) and stable remodeling periodontium (ReP) of adult mice were isolated and compared using RNA sequencing. Based on the Dep and CgP separately compared with the ReP, differentially expressed genes and signaling pathways were analyzed using GO, KEGG databases, and Ingenuity Pathway Analysis (IPA). The results and validation were obtained by immunofluorescence staining and RT-PCR assays. Data were expressed as means ± standard deviation (SD) and analyzed by GraphPad Prism 8 software package, and one-way ANOVA was used to test multiple groups. RESULTS Principal component analysis showed that the three groups of periodontal tissue were successfully isolated and had distinct expression profiles. A total of 792 and 612 DEGs were identified in the DeP and CgP groups compared with the ReP. Upregulated DEGs in the DeP were closely related to developmental processes, while the CgP showed significantly enhanced cellular energy metabolism. The DeP and CgP showed a common downregulation of the immune response, with activation, migration, and recruitment of immune cells. IPA and further validation jointly suggested that the MyD88/p38 MAPK pathway played an essential regulatory role in periodontium remodeling. CONCLUSION Tissue development, energy metabolism, and immune response were critical regulatory processes during periodontal remodeling. Developmental and adult stages of periodontal remodeling showed different expression patterns. These results contribute to a deeper understanding of periodontal development and remodeling and may provide references for periodontal regeneration.
Collapse
Affiliation(s)
- Yuwei Deng
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Luo
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Preventive Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xie
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ruixue Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Hu
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Endodontics, Ninth People’ Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Wen
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| | - Xinquan Jiang
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Prosthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xinquan Jiang, ; Jin Wen,
| |
Collapse
|
24
|
Barzegari A, Omidi Y, Gueguen V, Meddahi-Pellé A, Letourneur D, Pavon-Djavid G. Nesting and fate of transplanted stem cells in hypoxic/ischemic injured tissues: The role of HIF1α/sirtuins and downstream molecular interactions. Biofactors 2023; 49:6-20. [PMID: 32939878 DOI: 10.1002/biof.1674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The nesting mechanisms and programming for the fate of implanted stem cells in the damaged tissue have been critical issues in designing and achieving cell therapies. The fracture site can induce senescence or apoptosis based on the surrounding harsh conditions, hypoxia, and oxidative stress (OS). Respiration deficiency, disruption in energy metabolism, and consequently OS induction change the biophysical, biochemical, and cellular components of the native tissue. Additionally, the homeostatic molecular players and cell signaling might be changed. Despite all aforementioned issues, in the native stem cell niche, physiological hypoxia is not toxic; rather, it is vitally required for homing, self-renewal, and differentiation. Hence, the key macromolecular players involved in the support of stem cell survival and re-adaptation to a new dysfunctional niche must be understood for managing the cell therapy outcome. Hypoxia-inducible factor 1-alpha is the master transcriptional regulator, involved in the cell response to hypoxia and the adaptation of stem cells to a new niche. This protein is regulated by interaction with sirtuins. Sirtuins are highly conserved NAD+-dependent enzymes that monitor the cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals to modulate the homing and fate of stem cells. Herein, new insights into the nesting of stem cells in hypoxic-ischemic injured tissues were provided and their programming in a new dysfunctional niche along with the involved complex macromolecular players were critically discussed.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Anne Meddahi-Pellé
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
25
|
Bustamante-Barrientos FA, Méndez-Ruette M, Molina L, Koning T, Ehrenfeld P, González CB, Wyneken U, Henzi R, Bátiz LF. Alpha-SNAP (M105I) mutation promotes neuronal differentiation of neural stem/progenitor cells through overactivation of AMPK. Front Cell Dev Biol 2023; 11:1061777. [PMID: 37113766 PMCID: PMC10127105 DOI: 10.3389/fcell.2023.1061777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype.
Collapse
Affiliation(s)
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos B. González
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Ursula Wyneken
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Roberto Henzi
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Laboratorio de Reproducción Animal, Escuela de Medicina Veterinaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- *Correspondence: Luis Federico Bátiz, ; Roberto Henzi,
| |
Collapse
|
26
|
Park JH, Koh EB, Seo YJ, Oh HS, Won JY, Hwang SC, Byun JH. Tiron Has Negative Effects on Osteogenic Differentiation via Mitochondrial Dysfunction in Human Periosteum-Derived Cells. Int J Mol Sci 2022; 23:ijms232214040. [PMID: 36430519 PMCID: PMC9693013 DOI: 10.3390/ijms232214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tiron is a potent antioxidant that counters the pathological effects of reactive oxygen species (ROS) production due to oxidative stress in various cell types. We examined the effects of tiron on mitochondrial function and osteoblastic differentiation in human periosteum-derived cells (hPDCs). Tiron increased mitochondrial activity and decreased senescence-associated β-galactosidase activity in hPDCs; however, it had a detrimental effect on osteoblastic differentiation by reducing alkaline phosphatase (ALP) activity and alizarin red-positive mineralization, regardless of H2O2 treatment. Osteoblast-differentiating hPDCs displayed increased ROS production compared with non-differentiating hPDCs, and treatment with tiron reduced ROS production in the differentiating cells. Antioxidants decreased the rates of oxygen consumption and ATP production, which are increased in hPDCs during osteoblastic differentiation. In addition, treatment with tiron reduced the levels of most mitochondrial proteins, which are increased in hPDCs during culture in osteogenic induction medium. These results suggest that tiron exerts negative effects on the osteoblastic differentiation of hPDCs by causing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Byeol Koh
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hye-Seong Oh
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ju-Yeong Won
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
27
|
Rossi V, Govoni M, Farabegoli F, Di Stefano G. Lactate is a potential promoter of tamoxifen resistance in MCF7 cells. Biochim Biophys Acta Gen Subj 2022; 1866:130185. [PMID: 35661802 DOI: 10.1016/j.bbagen.2022.130185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Tamoxifen is a widely used estrogen receptor inhibitor, whose clinical success is limited by the development of acquired resistance. This compound was also found to inhibit mitochondrial function, causing increased glycolysis and lactate production. Lactate has been widely recognized as a signaling molecule, showing the potential of modifying gene expression. These metabolic effects of tamoxifen can by hypothesized to contribute in driving drug resistance. METHODS To test this hypothesis, we used MCF7 cells together with a tamoxifen resistant cell line (MCF7-TAM). Experiments were aimed at verifying whether enhanced lactate exposure can affect the phenotype of MCF7 cells, conferring them features mirroring those observed in the tamoxifen resistant culture. RESULTS The obtained results suggested that enhanced lactate in MCF7 cells medium can increase the expression of tafazzin (TAZ) and telomerase complex (TERC, TERT) genes, reducing the cells' attitude to undergo senescence. In long term lactate-exposed cells, signs of EGFR activation, a pathway related to acquired tamoxifen resistance, was also observed. CONCLUSIONS The obtained results suggested lactate as a potential promoter of tamoxifen resistance. The off-target effects of this compound could play a role in hindering its therapeutic efficacy. GENERAL SIGNIFICANCE The features of acquired tamoxifen resistance have been widely characterized at the molecular level; in spite of their heterogeneity, poorly responsive cells were often found to display upregulated glycolysis. Our results suggest that this metabolic asset is not simply a result of neoplastic progression, but can play an active part in driving this process.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
28
|
Chen A, Kristiansen CK, Høyland LE, Ziegler M, Wang J, Sullivan GJ, Li X, Bindoff LA, Liang KX. POLG mutations lead to abnormal mitochondrial remodeling during neural differentiation of human pluripotent stem cells via SIRT3/AMPK pathway inhibition. Cell Cycle 2022; 21:1178-1193. [PMID: 35298342 PMCID: PMC9103491 DOI: 10.1080/15384101.2022.2044136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We showed previously that POLG mutations cause major changes in mitochondrial function, including loss of mitochondrial respiratory chain (MRC) complex I, mitochondrial DNA (mtDNA) depletion and an abnormal NAD+/NADH ratio in both neural stem cells (NSCs) and astrocytes differentiated from induced pluripotent stem cells (iPSCs). In the current study, we looked at mitochondrial remodeling as stem cells transit pluripotency and during differentiation from NSCs to both dopaminergic (DA) neurons and astrocytes comparing the process in POLG-mutated and control stem cells. We saw that mitochondrial membrane potential (MMP), mitochondrial volume, ATP production and reactive oxygen species (ROS) changed in similar ways in POLG and control NSCs, but mtDNA replication, MRC complex I and NAD+ metabolism failed to remodel normally. In DA neurons differentiated from NSCs, we saw that POLG mutations caused failure to increase MMP and ATP production and blunted the increase in mtDNA and complex I. Interestingly, mitochondrial remodeling during astrocyte differentiation from NSCs was similar in both POLG-mutated and control NSCs. Further, we showed downregulation of the SIRT3/AMPK pathways in POLG-mutated cells, suggesting that POLG mutations lead to abnormal mitochondrial remodeling in early neural development due to the downregulation of these pathways. [Figure: see text].
Collapse
Affiliation(s)
- Anbin Chen
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Cecilie Katrin Kristiansen
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | - Jian Wang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Institute of Immunology, Oslo University Hospital, Oslo, Norway,Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway,Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China,Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong Province, China,CONTACT Kristina Xiao Liang Department of Clinical Medicine (K1, University of Bergen, Jonas Lies vei 87, P. O. Box 7804, Jinan5021 Bergen, Norway
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway,Laurence A. Bindoff Department of Clinical Medicine, University of Bergen,Norway
| | - Kristina Xiao Liang
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway,Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Department of Neurology, Haukeland University Hospital, Bergen, Norway,Kristina Xiao Liang Department of Clinical Medicine (K1), University of Bergen, Jonas Lies veg 87, N-5021 Bergen, Norway
| |
Collapse
|
29
|
Zipper L, Batchu S, Kaya NH, Antonello ZA, Reiff T. The MicroRNA miR-277 Controls Physiology and Pathology of the Adult Drosophila Midgut by Regulating the Expression of Fatty Acid β-Oxidation-Related Genes in Intestinal Stem Cells. Metabolites 2022; 12:315. [PMID: 35448502 PMCID: PMC9028014 DOI: 10.3390/metabo12040315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cell division, growth, and differentiation are energetically costly and dependent processes. In adult stem cell-based epithelia, cellular identity seems to be coupled with a cell's metabolic profile and vice versa. It is thus tempting to speculate that resident stem cells have a distinct metabolism, different from more committed progenitors and differentiated cells. Although investigated for many stem cell types in vitro, in vivo data of niche-residing stem cell metabolism is scarce. In adult epithelial tissues, stem cells, progenitor cells, and their progeny have very distinct functions and characteristics. In our study, we hypothesized and tested whether stem and progenitor cell types might have a distinctive metabolic profile in the intestinal lineage. Here, taking advantage of the genetically accessible adult Drosophila melanogaster intestine and the availability of ex vivo single cell sequencing data, we tested that hypothesis and investigated the metabolism of the intestinal lineage from stem cell (ISC) to differentiated epithelial cell in their native context under homeostatic conditions. Our initial in silico analysis of single cell RNAseq data and functional experiments identify the microRNA miR-277 as a posttranscriptional regulator of fatty acid β-oxidation (FAO) in the intestinal lineage. Low levels of miR-277 are detected in ISC and progressively rising miR-277 levels are found in progenitors during their growth and differentiation. Supporting this, miR-277-regulated fatty acid β-oxidation enzymes progressively declined from ISC towards more differentiated cells in our pseudotime single-cell RNAseq analysis and in functional assays on RNA and protein level. In addition, in silico clustering of single-cell RNAseq data based on metabolic genes validates that stem cells and progenitors belong to two independent clusters with well-defined metabolic characteristics. Furthermore, studying FAO genes in silico indicates that two populations of ISC exist that can be categorized in mitotically active and quiescent ISC, of which the latter relies on FAO genes. In line with an FAO dependency of ISC, forced expression of miR-277 phenocopies RNAi knockdown of FAO genes by reducing ISC size and subsequently resulting in stem cell death. We also investigated miR-277 effects on ISC in a benign and our newly developed CRISPR-Cas9-based colorectal cancer model and found effects on ISC survival, which as a consequence affects tumor growth, further underlining the importance of FAO in a pathological context. Taken together, our study provides new insights into the basal metabolic requirements of intestinal stem cell on β-oxidation of fatty acids evolutionarily implemented by a sole microRNA. Gaining knowledge about the metabolic differences and dependencies affecting the survival of two central and cancer-relevant cell populations in the fly and human intestine might reveal starting points for targeted combinatorial therapy in the hope for better treatment of colorectal cancer in the future.
Collapse
Affiliation(s)
- Lisa Zipper
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Sai Batchu
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
| | - Nida Hatice Kaya
- Institute for Zoology and Organismic Interactions, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| | - Zeus Andrea Antonello
- Cooper Medical School, Rowan University, Camden, NJ 08102, USA; (S.B.); (Z.A.A.)
- Cooper University Hospital, Cooper University Health Care, Cooper Medical School, Rowan University, Camden, NJ 08102, USA
| | - Tobias Reiff
- Institute of Genetics, Department of Biology, The Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
30
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
31
|
Chandramoorthy HC, Dera AA, Al-Hakami A, Eid RA, Patel A, Mahmoud Faris N, Devaraj A, Kumar A, Alshahrani MY, Zaman GS, Rajagopalan P. Glucose and oleic acid mediate cellular alterations in GLP-1-induced insulin-positive differentiating UCBMSCs. J Food Biochem 2022; 46:e14087. [PMID: 35246864 DOI: 10.1111/jfbc.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Coordinated effects of glucose and oleic acid on glucagon-like peptide-1 (GLP-1) mediated differentiation of insulin-positive differentiating umbilical cord mesenchymal stromal cells (dUCBMSCs) was studied using a co-culture of NCI-H716 (GLP-1+) and UCBMSCs (insulin+). The addition of 2.5 mM glucose increased the proliferation of NCI-H716 cells by 30% and induced transformation of UCBMSCs into insulin-secreting cells in 18 days as compared to 22 days in control cells. Oleic acid (25 μM) showed decrease in cell proliferation, autophagy, and apoptosis in NCI-H716 cells while no effect was observed in dUCBMSCs. Prolonged glucose and oleic acid resulted in apoptosis and cell cycle changes in dUCBMSCs after day 18 while higher concentrations resulted in cell death. Additionally, the expression of FAS and ACC mRNA was observed in NCI-H716 and dUCBMSCs post 24-hr addition of glucose and/or oleic acid. Absorption of oleic acid was high in NCI-H716 compared to dUCBMSCs. Taken together, optimal concentrations of glucose and oleic acid could be a key factor in stimulating intrinsic GLP-1, which in turn stimulates differentiating MSCs in a glucose-dependent manner. PRACTICAL APPLICATIONS: The aim of this article was to study whether differentiating or differentiated MSCs after mobilization or post-transplant would require optimal glucose and oleic acid to naturally stimulate intrinsic GLP-1, or otherwise, the high or long-term overload of glucose or oleic acid could result in inhibition of differentiated cells resulting in failure of insulin secretion.
Collapse
Affiliation(s)
- Harish C Chandramoorthy
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Al-Hakami
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayyub Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Nouraldeen Mahmoud Faris
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Anantharam Devaraj
- Centre for Stem Cell Research, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Gaffar S Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
32
|
Emanuelli G, Zoccarato A, Reumiller CM, Papadopoulos A, Chong M, Rebs S, Betteridge K, Beretta M, Streckfuss-Bömeke K, Shah AM. A roadmap for the characterization of energy metabolism in human cardiomyocytes derived from induced pluripotent stem cells. J Mol Cell Cardiol 2022; 164:136-147. [PMID: 34923199 DOI: 10.1016/j.yjmcc.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.
Collapse
Affiliation(s)
- Giulia Emanuelli
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom; Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Anna Zoccarato
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| | - Christina M Reumiller
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Angelos Papadopoulos
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Mei Chong
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Sabine Rebs
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Kai Betteridge
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Matteo Beretta
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumonology, University Medical Center Göttingen, Germany and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom.
| |
Collapse
|
33
|
Maslov DL, Zemskaya NV, Trifonova OP, Lichtenberg S, Balashova EE, Lisitsa AV, Moskalev AA, Lokhov PG. Comparative Metabolomic Study of Drosophila Species with Different Lifespans. Int J Mol Sci 2021; 22:ijms222312873. [PMID: 34884677 PMCID: PMC8657752 DOI: 10.3390/ijms222312873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
Collapse
Affiliation(s)
- Dmitry L. Maslov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Correspondence: ; Tel.: +7-499-246-6980
| | - Nadezhda V. Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Oxana P. Trifonova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Steven Lichtenberg
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Metabometrics Inc., 651 N Broad Street, Suite 205 #1370, Middletown, DE 19709, USA
| | - Elena E. Balashova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Andrey V. Lisitsa
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Petr G. Lokhov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| |
Collapse
|
34
|
Abd Rahman F. Gene expression profiling on effect of aspirin on osteogenic differentiation of periodontal ligament stem cells. BDJ Open 2021; 7:35. [PMID: 34531365 PMCID: PMC8446061 DOI: 10.1038/s41405-021-00090-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Periodontal ligament (PDL) contains a unique population of mesenchymal stem cells (MSCs), also known as PDL stem cells (PDLSCs). The regenerative properties of PDLSCs hold great potential for its use in stem cells based therapy, particularly for periodontal or bone regeneration. The present study investigated the global gene expression profile in PDLSCs during osteogenic differentiation. MSCs from PDL were isolated from normal permanent human teeth (n = 3). Microarray analysis was used to study the effects of ASA (200, 500, and 1000 μM) on the gene expression profiles in PDLSCs during osteogenic differentiation. Microarray study revealed that ASA was able to modulate PDLSCs gene expression profile. At 200 µM, 315 genes were dysregulated genes (DE), involving 151 upregulated and 164 downregulated genes. At 500 µM, 794 genes were DE, involving of 364 upregulated and 430 downregulated genes. At 1000 µM, the number of DE genes increased to 2035, of which 735 were upregulated and 1300 were downregulated. Bioinformatics analyses of the gene expression data revealed that the majority of DE genes (for 500 and 1000 µM ASA treatment) are involved in osteogenic differentiation. The gene network analysis was carried out using Ingenuity Pathway Analysis (IPA) software, and this revealed that the number of gene groups involved in cell adhesion and extracellular matrix components were increased. This study indicated that ASA could enhance PDLSCs functions and provide evidence for the potential use of ASA with PDLSCs for regenerative dentistry applications, particularly in the areas of periodontal health and regeneration. Periodontal ligament stem cells (PDLSCs) Aspirin (ASA) Microarray Osteogenic.
Collapse
Affiliation(s)
- Fazliny Abd Rahman
- Faculty of Dentistry, SEGi University, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
35
|
Oxygen as a Master Regulator of Human Pluripotent Stem Cell Function and Metabolism. J Pers Med 2021; 11:jpm11090905. [PMID: 34575682 PMCID: PMC8466012 DOI: 10.3390/jpm11090905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) offer numerous possibilities in science and medicine, particularly when combined with precise genome editing methods. hiPSCs are artificially generated equivalents of human embryonic stem cells (hESCs), which possess an unlimited ability to self-renew and the potential to differentiate into any cell type of the human body. Importantly, generating patient-specific hiPSCs enables personalized drug testing or autologous cell therapy upon differentiation into a desired cell line. However, to ensure the highest standard of hiPSC-based biomedical products, their safety and reliability need to be proved. One of the key factors influencing human pluripotent stem cell (hPSC) characteristics and function is oxygen concentration in their microenvironment. In recent years, emerging data have pointed toward the beneficial effect of low oxygen pressure (hypoxia) on both hiPSCs and hESCs. In this review, we examine the state-of-the-art research on the oxygen impact on hiPSC functions and activity with an emphasis on their niche, metabolic state, reprogramming efficiency, and differentiation potential. We also discuss the similarities and differences between PSCs and cancer stem cells (CSCs) with respect to the role of oxygen in both cell types.
Collapse
|
36
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
37
|
Russo E, Lee JY, Nguyen H, Corrao S, Anzalone R, La Rocca G, Borlongan CV. Energy Metabolism Analysis of Three Different Mesenchymal Stem Cell Populations of Umbilical Cord Under Normal and Pathologic Conditions. Stem Cell Rev Rep 2021; 16:585-595. [PMID: 32185666 PMCID: PMC7253397 DOI: 10.1007/s12015-020-09967-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a pivotal source of therapeutically active cells for regenerative medicine due to their multipotent differentiation potential, immunomodulatory and anti-inflammatory proprieties, as well as logistical collection advantages without ethical concerns. However, it remains poorly understood whether MSCs from different compartments of the human umbilical cord are therapeutically superior than others. In this study, MSCs were isolated from Wharton’s jelly (WJ-MSCs), perivascular region (PV-MSCs) and cord lining (CL-MSCs) of hUC. These cells expressed the mesenchymal markers (CD90, CD73), stemness marker (OCT4), endothelial cell adhesion molecular marker (CD146), and the monocyte/macrophage marker (CD14) found within the MSC population implicated as a key regulator of inflammatory responses to hypoxia, was displayed by WJ-, PV-, and CL-MSCs respectively. A direct consequence of oxygen and glucose deprivation during stroke and reperfusion is impaired mitochondrial function that contributes to cellular death. Emerging findings of mitochondria transfer provide the basis for the replenishment of healthy mitochondria as a strategy for the treatment of stroke. Cell Energy Phenotype and Mito Stress tests were performed the energy metabolic profile of the three MSC populations and their mitochondrial function in both ambient and OGD cell culture conditions. PV-MSCs showed the highest mitochondrial activity. CL-MSCs were the least affected by OGD/R condition, suggesting their robust survival in ischemic environment. In this study, MSC populations in UC possess comparable metabolic capacities and good survival under normal and hypoxic conditions suggesting their potential as transplantable cells for mitochondrial-based stem cell therapy in stroke and other ischemic diseases.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.,Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Hung Nguyen
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Simona Corrao
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy.
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.
| |
Collapse
|
38
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
39
|
Perottoni S, Neto NGB, Di Nitto C, Dmitriev RI, Raimondi MT, Monaghan MG. Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip. LAB ON A CHIP 2021; 21:1395-1408. [PMID: 33605282 DOI: 10.1039/d0lc01034k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
Collapse
Affiliation(s)
- Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Cozene BM, Russo E, Anzalone R, Rocca GL, Borlongan CV. Mitochondrial activity of human umbilical cord mesenchymal stem cells. Brain Circ 2021; 7:33-36. [PMID: 34084975 PMCID: PMC8057105 DOI: 10.4103/bc.bc_15_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) serve as a potential cell-based therapy for degenerative disease. They provide immunomodulatory and anti-inflammatory properties, multipotent differentiation potential and are harvested with no ethical concern. It is unknown whether MSCs collected from different areas of the human umbilical cord elicit more favorable effects than others. Three MSC populations were harvested from various regions of the human umbilical cord: cord lining (CL-MSCs), perivascular region (PV-MSCs), and Wharton's jelly (WJ-MSCs). Mesenchymal markers (CD90 and CD73) were expressed by all three cell populations. Stemness marker (OCT4), endothelial cell adhesion molecular marker (CD146), and monocyte-macrophage marker (CD14) were expressed by WJ-MSCs, PV-MSCs, and CL-MSCs, respectively. Stroke presents with oxygen and glucose deprivation and leads to dysfunctional mitochondria and consequently cell death. Targeting the restoration of mitochondrial function in the stroke brain through mitochondrial transfer may be effective in treating stroke. In vitro exposure to ambient and OGD conditions resulted in CL-MSCs number decreasing the least post-OGD/R exposure, and PV-MSCs exhibiting the greatest mitochondrial activity. All three hUC-MSC populations presented similar metabolic activity and survival in normal and pathologic environments. These characteristics indicate hUC-MSCs potential as a potent therapeutic in regenerative medicine.
Collapse
Affiliation(s)
- Blaise M Cozene
- School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Cesario V Borlongan
- Department of Cell and Molecular Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
41
|
Otsu K, Ida-Yonemochi H, Ikezaki S, Ema M, Hitomi J, Ohshima H, Harada H. Oxygen regulates epithelial stem cell proliferation via RhoA-actomyosin-YAP/TAZ signal in mouse incisor. Development 2021; 148:dev.194787. [PMID: 33472844 DOI: 10.1242/dev.194787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are maintained in specific niches that strictly regulate their proliferation and differentiation for proper tissue regeneration and renewal. Molecular oxygen (O2) is an important component of the niche microenvironment, but little is known about how O2 governs epithelial stem cell (ESC) behavior. Here, we demonstrate that O2 plays a crucial role in regulating the proliferation of ESCs using the continuously growing mouse incisors. We have revealed that slow-cycling cells in the niche are maintained under relatively hypoxic conditions compared with actively proliferating cells, based on the blood vessel distribution and metabolic status. Mechanistically, we have demonstrated that, during hypoxia, HIF1α upregulation activates the RhoA signal, thereby promoting cortical actomyosin and stabilizing the adherens junction complex, including merlin. This leads to the cytoplasmic retention of YAP/TAZ to attenuate cell proliferation. These results shed light on the biological significance of blood-vessel geometry and the signaling mechanism through microenvironmental O2 to orchestrate ESC behavior, providing a novel molecular basis for the microenvironmental O2-mediated stem cell regulation during tissue development and renewal.
Collapse
Affiliation(s)
- Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Jiro Hitomi
- Division of Human Embryology, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, 1-1-1, Idaidori, Yahaba, Iwate 028-3694, Japan
| |
Collapse
|
42
|
Müller WEG, Ackermann M, Al-Nawas B, Righesso LAR, Muñoz-Espí R, Tolba E, Neufurth M, Schröder HC, Wang X. Amplified morphogenetic and bone forming activity of amorphous versus crystalline calcium phosphate/polyphosphate. Acta Biomater 2020; 118:233-247. [PMID: 33075552 DOI: 10.1016/j.actbio.2020.10.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 01/11/2023]
Abstract
Amorphous Ca-phosphate (ACP) particles stabilized by inorganic polyphosphate (polyP) were prepared by co-precipitation of calcium and phosphate in the presence of polyP (15% [w/w]). These hybrid nanoparticles showed no signs of crystallinity according to X-ray diffraction analysis, in contrast to the particles obtained at a lower (5% [w/w]) polyP concentration or to hydroxyapatite. The ACP/15% polyP particles proved to be a suitable matrix for cell growth and attachment and showed pronounced osteoblastic and vasculogenic activity in vitro. They strongly stimulated mineralization of the human osteosarcoma cell line SaOS-2, as well as cell migration/microvascularization, as demonstrated in the scratch assay and the in vitro angiogenesis tube forming assay. The possible involvement of an ATP gradient, generated by polyP during tube formation of human umbilical vein endothelial cells, was confirmed by ATP-depletion experiments. In order to assess the morphogenetic activity of the hybrid particles in vivo, experiments in rabbits using the calvarial bone defect model were performed. The particles were encapsulated in poly(d,l-lactide-co-glycolide) microspheres. In contrast, to crystalline Ca-phosphate (containing only 5% [w/w] polyP) or to crystalline β-tricalcium phosphate, amorphous ACP/15% polyP particles caused pronounced osteoinductive activity already after a six-week healing period. The synthesis of new bone tissue was accompanied by an intense vascularization and an increased expression of mineralization/vascularization marker genes. The data show that amorphous polyP-stabilized ACP, which combines osteoinductive activity with the ability to act as a precursor of hydroxyapatite formation both in vitro and in vivo, is a promising material for bone regeneration.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY.
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University, Johann Joachim Becher Weg 13, 55099 Mainz, Germany
| | - Bilal Al-Nawas
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, GERMANY
| | - Leonardo A R Righesso
- Clinic for Oral and Maxillofacial Surgery and Plastic Surgery, University Medical Center of the Johannes Gutenberg University, Augustusplatz 2, 55131 Mainz, GERMANY
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, C/Catedràtic José Beltrán 2, 46980 Paterna, València, Spain
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, GERMANY
| |
Collapse
|
43
|
Zhu Z, Umehara T, Tsujita N, Kawai T, Goto M, Cheng B, Zeng W, Shimada M. Itaconate regulates the glycolysis/pentose phosphate pathway transition to maintain boar sperm linear motility by regulating redox homeostasis. Free Radic Biol Med 2020; 159:44-53. [PMID: 32745767 DOI: 10.1016/j.freeradbiomed.2020.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/21/2022]
Abstract
Mammalian cells improve redox homeostasis under reactive oxygen species (ROS) stress conditions via the enhancement of the pentose phosphate pathway (PPP). However, it is not clear how the cell reprograms glucose metabolism from glycolysis to the PPP. Hence, in the present study, we used boar sperm as a model to elucidate the mechanism by which the glycolysis/PPP transition occurs under ROS stress. The boar sperm treated with moderate glucose levels for 3 h exhibited increased sperm linear motility patterns, ATP levels and GSH/GSSG ratios and decreased ROS levels compared to the boar sperm treated without glucose. In addition, the hexokinase activity, glucose-6-phosphate dehydrogenase (G6PD) activity, NADPH level, NADPH/NADP+ ratio and mitochondrial activity were higher in the sperm treated with moderate glucose than in those not treated with glucose. Interestingly, the enzyme activity of fructose-1,6-bisphosphate aldolase (ALDOA) was not significantly changed during the incubation. The sperm linear motility patterns were decreased by treatment with the G6PD inhibitor 6-aminonicotinamide. Moreover, moderate glucose treatment significantly increased the itaconate levels in sperm. Both endogenous and exogenous itaconate increased the total itaconate modifications and the itaconate-modified ALDOA levels in sperm, suggesting that under moderate-glucose conditions, glycolysis in the sperm was suppressed by an increase in the itaconate levels. Furthermore, the addition of itaconate improved the sperm linear motility patterns by suppressing glycolysis and enhancing oxidative phosphorylation (OXPHOS). Therefore, the itaconate generated from OXPHOS regulates the glycolysis/PPP transition to maintain redox homeostasis. In sperm, this itaconate-dependent mechanism plays an important role in maintaining their high linear motility.
Collapse
Affiliation(s)
- Zhendong Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Natsumi Tsujita
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tomoko Kawai
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masaaki Goto
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan; Livestock Research Institute, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Bo Cheng
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.
| | - Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
44
|
Craig JE, Miller JN, Rayavarapu RR, Hong Z, Bulut GB, Zhuang W, Sakurada SM, Temirov J, Low JA, Chen T, Pruett-Miller SM, Huang LJS, Potts MB. MEKK3-MEK5-ERK5 signaling promotes mitochondrial degradation. Cell Death Discov 2020; 6:107. [PMID: 33101709 PMCID: PMC7576125 DOI: 10.1038/s41420-020-00342-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondria are vital organelles that coordinate cellular energy homeostasis and have important roles in cell death. Therefore, the removal of damaged or excessive mitochondria is critical for maintaining proper cellular function. The PINK1-Parkin pathway removes acutely damaged mitochondria through a well-characterized mitophagy pathway, but basal mitochondrial turnover occurs via distinct and less well-understood mechanisms. Here we report that the MEKK3-MEK5-ERK5 kinase cascade is required for mitochondrial degradation in the absence of exogenous damage. We demonstrate that genetic or pharmacological inhibition of the MEKK3-MEK5-ERK5 pathway increases mitochondrial content by reducing lysosome-mediated degradation of mitochondria under basal conditions. We show that the MEKK3-MEK5-ERK5 pathway plays a selective role in basal mitochondrial degradation but is not required for non-selective bulk autophagy, damage-induced mitophagy, or restraint of mitochondrial biogenesis. This illuminates the MEKK3-MEK5-ERK5 pathway as a positive regulator of mitochondrial degradation that acts independently of exogenous mitochondrial stressors.
Collapse
Affiliation(s)
- Jane E Craig
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Joseph N Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA.,Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, Tennessee 38163 USA
| | - Raju R Rayavarapu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Zhenya Hong
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA.,Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gamze B Bulut
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Wei Zhuang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Sadie Miki Sakurada
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Jonathan A Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 USA
| | - Malia B Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105 USA
| |
Collapse
|
45
|
Baumann HJ, Betonio P, Abeywickrama CS, Shriver LP, Leipzig ND. Metabolomic and Signaling Programs Induced by Immobilized versus Soluble IFN γ in Neural Stem Cells. Bioconjug Chem 2020; 31:2125-2135. [PMID: 32820900 DOI: 10.1021/acs.bioconjchem.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) provide a strategy to replace damaged neurons following traumatic central nervous system injuries. A major hurdle to translation of this therapy is that direct application of NSCs to CNS injury does not support sufficient neurogenesis due to lack of proper cues. To provide prolonged spatial cues to NSCs IFN-γ was immobilized to biomimetic hydrogel substrate to supply physical and biochemical signals to instruct the encapsulated NSCs to be neurogenic. However, the immobilization of factors, including IFN-γ, versus soluble delivery of the same factor, has been incompletely characterized especially with respect to activation of signaling and metabolism in cells over longer time points. In this study, protein and metabolite changes in NSCs induced by immobilized versus soluble IFN-γ at 7 days were evaluated. Soluble IFN-γ, refreshed daily over 7 days, elicited stronger responses in NSCs compared to immobilized IFN-γ, indicating that immobilization may not sustain signaling or has altered ligand/receptor interaction and integrity. However, both IFN-γ delivery types supported increased βIII tubulin expression in parallel with canonical and noncanonical receptor-signaling compared to no IFN-γ. Global metabolomics and pathway analysis revealed that soluble and immobilized IFN-γ altered metabolic pathway activities including energy, lipid, and amino acid synthesis, with soluble IFN-γ having the greatest metabolic impact overall. Finally, soluble and immobilized IFN-γ support mitochondrial voltage-dependent anion channel (VDAC) expression that correlates to differentiated NSCs. This work utilizes new methods to evaluate cell responses to protein delivery and provides insight into mode of action that can be harnessed to improve regenerative medicine-based strategies.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
46
|
Lord T, Nixon B. Metabolic Changes Accompanying Spermatogonial Stem Cell Differentiation. Dev Cell 2020; 52:399-411. [PMID: 32097651 DOI: 10.1016/j.devcel.2020.01.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Male fertility is driven by spermatogonial stem cells (SSCs) that self-renew while also giving rise to differentiating spermatogonia. Spermatogonial transitions are accompanied by a shift in gene expression, however, whether equivalent changes in metabolism occur remains unexplored. In this review, we mined recently published scRNA-seq databases from mouse and human testes to compare expression profiles of spermatogonial subsets, focusing on metabolism. Comparisons revealed a conserved upregulation of genes involved in mitochondrial function, biogenesis, and oxidative phosphorylation in differentiating spermatogonia, while gene expression in SSCs reflected a glycolytic cell. Here, we also discuss the relationship between metabolism and the external microenvironment within which spermatogonia reside.
Collapse
Affiliation(s)
- Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia.
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, the University of Newcastle, Callaghan, Newcastle, NSW 2300, Australia; Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, Newcastle, NSW 2305, Australia
| |
Collapse
|
47
|
Aghajani Nargesi A, Zhu XY, Hickson LJ, Conley SM, van Wijnen AJ, Lerman LO, Eirin A. Metabolic Syndrome Modulates Protein Import into the Mitochondria of Porcine Mesenchymal Stem Cells. Stem Cell Rev Rep 2020; 15:427-438. [PMID: 30338499 DOI: 10.1007/s12015-018-9855-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are currently being tested in several clinical trials. Mitochondria regulate many aspects of MSC function. Mitochondrial preproteins are rapidly translated and trafficked into the mitochondrion for assembly in their final destination, but whether coexisting cardiovascular risk factors modulate this process is unknown. We hypothesized that metabolic syndrome (MetS) modulates mitochondrial protein import in porcine MSCs. MSCs were isolated from porcine abdominal adipose tissue after 16 weeks of Lean or MetS diet (n = 5 each). RNA-sequencing was performed and differentially expressed mitochondrial mRNAs and microRNAs were identified and validated. Protein expression of transporters of mitochondrial proteins (presequences and precursors) and their respective substrates were measured. Mitochondrial homeostasis was assessed by Western blot and function by cytochrome-c oxidase-IV activity. Forty-five mitochondrial mRNAs were upregulated and 25 downregulated in MetS-MSCs compared to Lean-MSCs. mRNAs upregulated in MetS-MSCs encoded for precursor proteins, whereas those downregulated encoded for presequences. Micro-RNAs upregulated in MetS-MSCs primarily target mRNAs encoding for presequences. Transporters of precursor proteins and their substrates were also upregulated, associated with changes in mitochondrial homeostasis and dysfunction. MetS interferes with mitochondrial protein import, favoring upregulation of precursor proteins, which might be linked to post-transcriptional regulation of presequences. This in turn alters mitochondrial homeostasis and impairs energy production. Our observations highlight the importance of mitochondria in MSC function and provide a molecular framework for optimization of cell-based strategies as we move towards their clinical application.
Collapse
Affiliation(s)
- Arash Aghajani Nargesi
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Xiang-Yang Zhu
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - LaTonya J Hickson
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sabena M Conley
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Lilach O Lerman
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Alfonso Eirin
- Divisions of Nephrology and Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
48
|
Arabiyat AS, Becerra-Bayona S, Kamaldinov T, Munoz-Pinto DJ, Hahn MS. Hydrogel Properties May Influence Mesenchymal Stem Cell Lineage Progression Through Modulating GAPDH Activity. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Zhou Q, Kim SH, Pérez-Lorenzo R, Liu C, Huang M, Dotto GP, Zheng B, Wu X. Phenformin Promotes Keratinocyte Differentiation via the Calcineurin/NFAT Pathway. J Invest Dermatol 2020; 141:152-163. [PMID: 32619504 DOI: 10.1016/j.jid.2020.05.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/30/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Phenformin is a drug in the biguanide class that was previously used to treat type 2 diabetes. We have reported the antitumor activities of phenformin to enhance the efficacy of BRAF-MAPK kinase-extracellular signal-regulated kinase pathway inhibition and to inhibit myeloid-derived suppressor cells in various melanoma models. Here we demonstrate that phenformin suppresses tumor growth and promotes keratinocyte differentiation in the 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis mouse model. Moreover, phenformin enhances the suspension-induced differentiation of mouse and human keratinocytes. Mechanistically, phenformin induces the nuclear translocation of NFATc1 in keratinocytes in an AMPK-dependent manner. Pharmacologic or genetic inhibition of calcineurin and NFAT signaling reverses the effects of phenformin on keratinocyte differentiation. Taken together, our study reveals an antitumor activity of phenformin to promote keratinocyte differentiation that warrants future translational efforts to repurpose phenformin for the treatment of cutaneous squamous cell carcinomas.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Sun Hye Kim
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rolando Pérez-Lorenzo
- Department of Dermatology, Columbia University Medical Center, New York, New York, USA
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Man Huang
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Gian Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
50
|
Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020; 9:cells9061521. [PMID: 32580448 PMCID: PMC7348751 DOI: 10.3390/cells9061521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022] Open
Abstract
Human liver-derived stem cells (hLD-SCs) have been proposed as a possible resource for stem cell therapy in patients with irreversible liver diseases. However, it is not known whether liver resident hLD-SCs can differentiate toward a hepatic fate better than mesenchymal stem cells (MSCs) obtained from other origins. In this study, we compared the differentiation ability and regeneration potency of hLD-SCs with those of human umbilical cord matrix-derived stem cells (hUC-MSCs) by inducing hepatic differentiation. Undifferentiated hLD-SCs expressed relatively high levels of endoderm-related markers (GATA4 and FOXA1). During directed hepatic differentiation supported by two small molecules (Fasudil and 5-azacytidine), hLD-SCs presented more advanced mitochondrial respiration compared to hUC-MSCs. Moreover, hLD-SCs featured higher numbers of hepatic progenitor cell markers on day 14 of differentiation (CPM and CD133) and matured into hepatocyte-like cells by day 7 through 21 with increased hepatocyte markers (ALB, HNF4A, and AFP). During in vivo cell transplantation, hLD-SCs migrated into the liver of ischemia-reperfusion injury-induced mice within 2 h and relieved liver injury. In the thioacetamide (TAA)-induced liver injury mouse model, transplanted hLD-SCs trafficked into the liver and spontaneously matured into hepatocyte-like cells within 14 days. These results collectively suggest that hLD-SCs hold greater hepatogenic potential, and hepatic differentiation-induced hLD-SCs may be a promising source of stem cells for liver regeneration.
Collapse
|