1
|
Liao C, Yu C, Guo J, Guan M. Subinhibitory concentrations of glabridin from Glycyrrhiza glabra L. reduce Listeria monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Front Microbiol 2024; 15:1388388. [PMID: 39086651 PMCID: PMC11288822 DOI: 10.3389/fmicb.2024.1388388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Increases in the virulence and survival of some pathogens in the presence of subinhibitory concentrations of antibiotics have been reported. However, research on the effects of subinhibitory concentrations of antimicrobial substances derived from traditional Chinese medicine on pathogens is still insufficient. Glabridin is a well-known active isoflavone found in licorice roots that possesses a wide range of biological activities. Therefore, in this study, Listeria monocytogenes (L. monocytogenes) exposed to subinhibitory concentrations of glabridin was used as the research object. The minimum inhibitory concentration (MIC) was determined for L. monocytogenes. We investigated the impacts of subinhibitory concentrations of glabridin on the morphology, motility, biofilm formation, adherence, and survival of L. monocytogenes. The results indicated that the MIC of glabridin for L. monocytogenes was 31.25 μg/mL. At 1/8, 1/4, or 1/2 of the MIC, glabridin did not affect the growth, morphology, flagellar production, or biofilm formation of L. monocytogenes. However, subinhibitory concentrations of glabridin inhibited bacterial swimming and swarming motility and decreased the hemolytic activity of L. monocytogenes. Glabridin reduced the hemolytic activity of L. monocytogenes culture supernatants. The results also showed that subinhibitory concentrations of glabridin had no toxic effect on RAW264.7 cells but decreased the intracellular growth of L. monocytogenes in RAW264.7 cells. Furthermore, subinhibitory concentrations of glabridin triggered ROS production but did not induce MET formation in macrophages. In addition, glabridin did not enhance the capacity of L. monocytogenes to trigger METs or the extracellular killing of macrophages by METs. Thus, we conclude that subinhibitory concentrations of glabridin reduce L. monocytogenes motility and hemolytic activity but do not exhibit antimicrobial activity. Glabridin could be an interesting food additive as a bacteriostatic agent with anti-Listeria activity.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Jinxiang Guo
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Mengxiang Guan
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
2
|
Nair VG, Srinandan CS, Rajesh YBRD, Narbhavi D, Anupriya A, Prabhusaran N, Nagarajan S. Biogenic amine tryptamine in human vaginal probiotic isolates mediates matrix inhibition and thwarts uropathogenic E. coli biofilm. Sci Rep 2024; 14:15387. [PMID: 38965339 PMCID: PMC11224256 DOI: 10.1038/s41598-024-65780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.
Collapse
Affiliation(s)
- Veena G Nair
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - C S Srinandan
- Microbial Biofilm Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Y B R D Rajesh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613 401, India
| | - Dhiviya Narbhavi
- Department of Obstetrics and Gynaecology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - A Anupriya
- Department of Microbiology, TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - N Prabhusaran
- Research Faculty, Institutional Research Board TSRMMCH&RC, Tiruchirappalli, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Antimicrobial Resistance Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
3
|
Li S, Wang Y, Xu G, Xu Y, Fu C, Zhao Q, Xu L, Jia X, Zhang Y, Liu Y, Qiao J. The combination of allicin with domiphen is effective against microbial biofilm formation. Front Microbiol 2024; 15:1341316. [PMID: 38873153 PMCID: PMC11169630 DOI: 10.3389/fmicb.2024.1341316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Microorganisms in biofilms are particularly difficult to control because of their increased survival and antibiotic resistance. Allicin and domiphen were employed to inhibit the microbial growth and biofilm formation of Staphylococcus aureus, Escherichia coli, and Candida albicans strains. Methods Broth microdilution method and checkerboard assay were conducted to determine the efficacy of allicin combined with domiphen against S. aureus, E. coli, and C. albicans. Microbial biofilm formation was measured using the crystal violet staining method and fluorescence microscopy. And the total viable count of the biofilm cells on material surface after the treatment with antimicrobial reagents was calculated with the plate count technique. Results The two drugs showed synergistic effects against the pathogens with a fractional bactericidal concentration of less than 0.38. The combination of 64 μg/mL allicin with 1 μg/mL domiphen dispersed over 50% of the biofilm mass of S. aureus, E. coli, and C. albicans. In addition, the drug combination reduced the total viable counts of E. coli and C. albicans biofilm cells on stainless steel and polyethylene surfaces by more than 102 CFU/mL. Conclusion The combination of allicin and domiphen is an effective strategy for efficiently decreasing biofilms formation on various industrial materials surfaces.
Collapse
Affiliation(s)
- Shang Li
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yutong Wang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Geweirong Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Cuiyan Fu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Quanlin Zhao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Linjie Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinzhou Jia
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaju Qiao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Flores-Oropeza MA, Ochoa SA, Cruz-Córdova A, Chavez-Tepecano R, Martínez-Peñafiel E, Rembao-Bojórquez D, Zavala-Vega S, Hernández-Castro R, Flores-Encarnacion M, Arellano-Galindo J, Vélez D, Xicohtencatl-Cortes J. Comparative genomic analysis of uropathogenic Escherichia coli strains from women with recurrent urinary tract infection. Front Microbiol 2024; 14:1340427. [PMID: 38328583 PMCID: PMC10848155 DOI: 10.3389/fmicb.2023.1340427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Recurrent urinary tract infections (RUTIs) caused by uropathogenic Escherichia coli are costly public health problems impacting patients' quality of life. Aim In this work, a comparative genomics analysis of three clinical RUTI strains isolated from bladder biopsy specimens was performed. Materials and methods One hundred seventy-two whole genomes of urinary tract E. coli strains were selected from the NCBI database. The search for virulence factors, fitness genes, regions of interest, and genetic elements associated with resistance was manually carried out. The phenotypic characterization of antibiotic resistance, haemolysis, motility, and biofilm formation was performed. Moreover, adherence and invasion assays with human bladder HTB-5 cells, and transmission electron microscopy (TEM) were performed. Results The UTI-1_774U and UTI-3_455U/ST1193 strains were associated with the extraintestinal pathotypes, and the UTI-2_245U/ST295 strain was associated with the intestinal pathotype, according to a phylogenetic analysis of 172 E. coli urinary strains. The three RUTI strains were of clinical, epidemiological, and zoonotic relevance. Several resistance genes were found within the plasmids of these strains, and a multidrug resistance phenotype was revealed. Other virulence genes associated with CFT073 were not identified in the three RUTI strains (genes for type 1 and P fimbriae, haemolysin hlyA, and sat toxin). Quantitative adherence analysis showed that UTI-1_774U was significantly (p < 0.0001) more adherent to human bladder HTB-5 cells. Quantitative invasion analysis showed that UTI-2_245U was significantly more invasive than the control strains. No haemolysis or biofilm activity was detected in the three RUTI strains. The TEM micrographs showed the presence of short and thin fimbriae only in the UTI-2_245U strain. Conclusion The high variability and genetic diversity of the RUTI strains indicate that are a mosaic of virulence, resistance, and fitness genes that could promote recurrence in susceptible patients.
Collapse
Affiliation(s)
- Marco A. Flores-Oropeza
- Posgrado en Ciencias Biomédicas, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | | | - Eva Martínez-Peñafiel
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Rembao-Bojórquez
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Sergio Zavala-Vega
- Departamento de Patología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
- Laboratorio Clínico y Banco de Sangre, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City, Mexico
| | - Rigoberto Hernández-Castro
- Departmento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Mexico City, Mexico
| | - Marcos Flores-Encarnacion
- Laboratorio de Microbiología Molecular y Celular, Biomedicina, Facultad de Medicina, BUAP, Puebla, Mexico
| | - José Arellano-Galindo
- Laboratorio de Virología Clínica y Experimental, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Daniel Vélez
- Hospital Militar de Especialidades de la Mujer y Neonatología, Mexico City, Mexico
- Unidad Médica de Alta Especialidad, Hospital de Ginecología y Obstetricia No. 3 IMSS, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
6
|
Yang X, Bai S, Wu J, Fan Y, Zou Y, Xia Z, Ao J, Chen T, Zhang M, Yang R. Antifungal Activity and Potential Action Mechanism of Allicin against Trichosporon asahii. Microbiol Spectr 2023; 11:e0090723. [PMID: 37199655 PMCID: PMC10269704 DOI: 10.1128/spectrum.00907-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Trichosporon asahii is an emerging opportunistic pathogen that causes potentially fatal disseminated trichosporonosis. The global prevalence of coronavirus disease 2019 (COVID-19) poses an increasing fungal infection burden caused by T. asahii. Allicin is the main biologically active component with broad-spectrum antimicrobial activity in garlic. In this study, we performed an in-depth analysis of the antifungal characteristics of allicin against T. asahii based on physiological, cytological, and transcriptomic assessments. In vitro, allicin inhibited the growth of T. asahii planktonic cells and biofilm cells significantly. In vivo, allicin improved the mean survival time of mice with systemic trichosporonosis and reduced tissue fungal burden. Electron microscopy observations clearly demonstrated damage to T. asahii cell morphology and ultrastructure caused by allicin. Furthermore, allicin increased intracellular reactive oxygen species (ROS) accumulation, leading to oxidative stress damage in T. asahii cells. Transcriptome analysis showed that allicin treatment disturbed the biosynthesis of cell membrane and cell wall, glucose catabolism, and oxidative stress. The overexpression of multiple antioxidant enzymes and transporters may also place an additional burden on cells, causing them to collapse. Our findings shed new light on the potential of allicin as an alternative treatment strategy for trichosporonosis. IMPORTANCE Systemic infection caused by T. asahii has recently been recognized as an important cause of mortality in hospitalized COVID-19 patients. Invasive trichosporonosis remains a significant challenge for clinicians, due to the limited therapeutic options. The present work suggests that allicin holds great potential as a therapeutic candidate for T. asahii infection. Allicin demonstrated potent in vitro antifungal activity and potential in vivo protective effects. In addition, transcriptome sequencing provided valuable insights into the antifungal effects of allicin.
Collapse
Affiliation(s)
- Xin Yang
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Shuang Bai
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jiamin Wu
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yuekun Zou
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Junhong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rongya Yang
- Department of Dermatology, Yanbian University Hospital, Yanji, China
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Pinto L, Tapia-Rodríguez MR, Baruzzi F, Ayala-Zavala JF. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023; 12:2315. [PMID: 37372527 DOI: 10.3390/foods12122315] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing demand for natural, safe, and sustainable food preservation methods drove research towards the use of plant antimicrobials as an alternative to synthetic preservatives. This review article comprehensively discussed the potential applications of plant extracts, essential oils, and their compounds as antimicrobial agents in the food industry. The antimicrobial properties of several plant-derived substances against foodborne pathogens and spoilage microorganisms, along with their modes of action, factors affecting their efficacy, and potential negative sensory impacts, were presented. The review highlighted the synergistic or additive effects displayed by combinations of plant antimicrobials, as well as the successful integration of plant extracts with food technologies ensuring an improved hurdle effect, which can enhance food safety and shelf life. The review likewise emphasized the need for further research in fields such as mode of action, optimized formulations, sensory properties, safety assessment, regulatory aspects, eco-friendly production methods, and consumer education. By addressing these gaps, plant antimicrobials can pave the way for more effective, safe, and sustainable food preservation strategies in the future.
Collapse
Affiliation(s)
- Loris Pinto
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Melvin R Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón, Obregón 85000, Sonora, Mexico
| | - Federico Baruzzi
- Institute of Sciences of Food Production, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Jesús Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
8
|
Interaction of Neutrophils and Biofilm Formed by Uropathogenic Escherichia coli Strains with Different Pathogenic Potential. Bull Exp Biol Med 2022; 174:51-56. [PMID: 36437333 DOI: 10.1007/s10517-022-05647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/29/2022]
Abstract
The biofilm formation by uropathogenic E. coli (UPEC) allows bacteria to avoid the influence of the host immune system that determines the pathogenesis of persistent urinary tract infections. The purpose of this work was to evaluate the mutual influence of neutrophils and biofilms formed by UPEC with different set of virulence-associated genes (VAGs). E. coli R11 and R32 strains with a wide range of virulence factors were characterized by low biofilm biomass that did not change after interaction with neutrophils. The biomass index decreased after interaction with neutrophils for strains with a limited set of pathogenicity factors (R33, R36, R45, and R44) and a "thick" biofilm. Bacterial cells and biofilm supernatants of all UPEC strains reduced viability (DiOC6(3)+/PI-) and stimulated early apoptosis (DiOC6(3)-/PI-) of neutrophils. The number of viable neutrophils was higher, while the number of apoptotic and necrotic (DiOC6(3)-/PI+) cells was lower under the action of supernatants of strains R44, R36, R45 in comparison with bacterial cells. Thus, modulation of the innate cell functions depends on the realization of the pathogenic potential of UPEC bacteria in urinary tract biofilms that determines the development of recurrent urinary tract infections.
Collapse
|
9
|
Wang WJ, Liu CC, Li YT, Li MQ, Fu YT, Li XC, Jie-Kang, Qian WD. Antifungal and Antibiofilm In Vitro Activities of Ursolic Acid on Cryptococcus neoformans. Curr Microbiol 2022; 79:293. [PMID: 35972650 DOI: 10.1007/s00284-022-02992-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.
Collapse
Affiliation(s)
- Wen-Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Chan-Chan Liu
- Xi'an Medical College, Xi'an, 710309, People's Republic of China
| | - Yan-Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Miao-Qian Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yu-Ting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xin-Chen Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Jie-Kang
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an, 710048, People's Republic of China
| | - Wei-Dong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China. .,Department of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
10
|
Boya BR, Lee JH, Lee J. Antibiofilm and Antimicrobial Activities of Chloroindoles Against Uropathogenic Escherichia coli. Front Microbiol 2022; 13:872943. [PMID: 35783430 PMCID: PMC9244173 DOI: 10.3389/fmicb.2022.872943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a nosocomial pathogen associated with urinary tract infections and expresses several virulence factors that cause recurring infections and cystitis of the bladder, which can lead to pyelonephritis. UPEC uses different types of extracellular appendages like fimbriae and pili that aid colonization and adherence to bladder epithelium and can form persistent biofilm-like bacterial communities that aid its survival after the deployment of host immune responses. We investigated the antibiofilm, antimicrobial, and antivirulence properties of three indole derivatives namely, 4-chloroindole, 5-chloroindole, and 5-chloro 2-methyl indole. All the three chloroindoles had MICs of 75 μg/ml and inhibited biofilm formation by an average of 67% at 20 μg/ml. In addition, they inhibited swarming and swimming motilities, which are essential for dissemination from bacterial communities and colonization, reduced cell surface hydrophobicity, and inhibited indole production and curli formation. Gene expression analysis showed all three chloroindoles significantly downregulated the expressions of virulence genes associated with adhesion, stress regulation, and toxin production. A 3D-QSAR analysis revealed substitutions at the fourth and fifth positions of the indole moiety favored antimicrobial activity. Furthermore, these chloroindoles potently inhibited biofilm formation in other nosocomial pathogens and polymicrobial consortia.
Collapse
|
11
|
Polito F, Amato G, Caputo L, De Feo V, Fratianni F, Candido V, Nazzaro F. Chemical Composition and Agronomic Traits of Allium sativum and Allium ampeloprasum Leaves and Bulbs and Their Action against Listeria monocytogenes and Other Food Pathogens. Foods 2022; 11:foods11070995. [PMID: 35407082 PMCID: PMC8997483 DOI: 10.3390/foods11070995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
In this work, we aimed to study the chemical composition of the essential oils from bulbs and leaves of two cultivars of Allium sativum L. and two of A. ampeloprasum L. var. holmense. Moreover, we investigated their activity against four common bacterial strains responsible for food contamination (Listeria monocytogenes, Escherichia coli, Acinetobacter baumannii, and Staphylococcus aureus) by formation of biofilms. The susceptibility of bacterial biofilms was evaluated by crystal violet assay, whereas the metabolic changes occurring in the bacterial cells were ascertained through the MTT test. The essential oils were characterized by the presence of most characteristic components, although with different composition between the species and the cultivars. The essential oils inhibited the capacity of the pathogenic bacteria to form biofilms (up to 79.85 against L. monocytogenes) and/or acted on their cell metabolism (with inhibition of 68.57% and 68.89% against L. monocytogenes and S. aureus, respectively). The capacity of the essential oils to act against these foodborne bacteria could suggests further ideas for industrial applications and confirms the versatility of these essential oils as food preservatives.
Collapse
Affiliation(s)
- Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Giuseppe Amato
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (F.P.); (L.C.); (V.D.F.)
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Florinda Fratianni
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
| | - Vincenzo Candido
- Department of European and Mediterranean Culture, University of Basilicata, Via San Biagio, 75100 Matera, Italy;
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council, Via Roma 64, 83100 Avellino, Italy; (G.A.); (F.F.)
- Correspondence: ; Tel.: +39-0825-299-102
| |
Collapse
|
12
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
14
|
Matinpur A, Khorshidi A, Zadeh N, Khaledi A, Moosavi G, Shakerimoghaddam A. Investigation of class 1 integrons and biofilm formation in multi-drug resistance uropathogenic Escherichia coli isolated from patients with urinary tract infection in shohadaye qom hospital, Iran. INTERNATIONAL ARCHIVES OF HEALTH SCIENCES 2022. [DOI: 10.4103/iahs.iahs_163_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia coli and Staphylococcus aureus. Antibiotics (Basel) 2021; 10:antibiotics10121474. [PMID: 34943686 PMCID: PMC8698458 DOI: 10.3390/antibiotics10121474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm as a cellular conformation confers survival properties to microbial populations and favors microbial resistance. Here, we investigated the antimicrobial, antibiofilm, antimotility, antihemolytic activity, and the interaction with synthetic membranes of 15 essential oils (EOs) on E. coli ATCC 25922 and S. aureus ATCC 29213. Antimicrobial activity of EOs was determined through microdilution method; development of the biofilm was assessed using the crystal violet assay and SEM microscopy. Results indicate that Lippia origanoides thymol–carvacrol II chemotype (LTC II) and Thymus vulgaris (TV) exhibited a significant antibacterial activity, with MIC values of 0.45 and 0.75 mg/mL, respectively. The percentage of biofilm formation inhibition was greater than 70% at subinhibitory concentrations (MIC50) for LTC II EO. The results demonstrate that these two oils had significantly reduced the hemolytic effect of S. aureus by 54% and 32%, respectively, and the mobility capacity by swimming in E. coli with percentages of decrease of 55% and 47%, respectively. The results show that LTC II and TV EOs can interact with the hydrophobic core of lipid bilayers and alter the physicochemical properties of membranes. The findings suggest that LTC II and TV oils may potentially be used to aid in the treatment of S. aureus and E. coli infections.
Collapse
|
16
|
Feng W, Zhang L, Yuan Q, Wang Y, Yao P, Xia P, Sun F. Effect of sub-minimal inhibitory concentration ceftazidime on the pathogenicity of uropathogenic Escherichia coli. Microb Pathog 2021; 151:104748. [PMID: 33484810 DOI: 10.1016/j.micpath.2021.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is the most prevalent causative agent of urinary tract infections (UTIs). The pathogenicity of UPEC relies on the expression of virulence factors which could be regulated by intercellular signal molecules. Our previous study found that sub-minimal inhibitory concentration ceftazidime (sub-MIC CAZ) could inhibit the biofilm formation of E. coli by luxS/AI-2 or indole. Therefore, we speculated that sub-MIC CAZ might affect the pathogenic capacity of UPEC. In this study, the results showed that sub-MIC CAZ could significantly inhibit the adhesion ability, biofilm formation and swimming and swarming motilities of UPEC isolated from recurrent UTI patient. Meanwhile, obvious decreased hemolytic activity and cytotoxicity were observed in CAZ-pretreated UPEC. Furthermore, qRT-PCR results confirmed the downregulating ability of CAZ on the expression of adhesion genes, motility genes, toxin gene and signal molecule synthesis genes, which are important for virulence and biofilm formation of UPEC. Pre-treatment of UPEC with sub-MIC CAZ resulted in the reduced adhesion to human bladder epithelial cell 5637 and the decreased numbers of intracellular bacterial communities in cells. Consistent with the results in vitro, the pretreatment of CAZ resulted in the reduction of UPEC load in the bladder and the less severity of UPEC-induced inflammation compared with control group. The present study results indicated that sub-MIC CAZ could decrease the pathogenicity of UPEC and might be served as an effective antimicrobial agent to combat recurrent UTI caused by UPEC.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Zhang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Healthcare Security Administration, Chongqing, 401120, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Boren K, Crown A, Carlson R. Multidrug and Pan-Antibiotic Resistance—The Role of Antimicrobial and Synergistic Essential Oils: A Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bacterial resistance to antibiotics continues to be a grave threat to human health. Because antibiotics are no longer a lucrative market for pharmaceutical companies, the development of new antibiotics has slowed to a crawl. The World Health Organization reported that the 8 new bacterial agents approved since July 2017 had limited clinical benefits. While a cohort of biopharmaceutical companies recently announced plans to develop 2-4 new antibiotics by 2030, we needn’t wait a decade to find innovative antibiotic candidates. Essential oils (EOs) have long been known as antibacterial agents with wide-ranging arsenals. Many are able to penetrate the bacterial membrane and may also be effective against bacterial defenses such as biofilms, efflux pumps, and quorum sensing. EOs have been documented to fight drug-resistant bacteria alone and/or combined with antibiotics. This review will summarize research showing the significant role of EOs as nonconventional regimens against the worldwide spread of antibiotic-resistant pathogens. The authors conducted a 4-year search of the US National Library of Medicine (PubMed) for relevant EO studies against methicillin-resistant Staphylococcus aureus, multidrug-resistant (MDR) Escherichia coli, EO combinations/synergy with antibiotics, against MDR fungal infections, showing the ability to permeate bacterial membranes, and against the bacterial defenses listed above. EOs are readily available and are a needed addition to the arsenal against resistant pathogens.
Collapse
|
18
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
19
|
Qian W, Zhang J, Wang W, Liu M, Fu Y, Li X, Wang T, Li Y. Efficacy of Chelerythrine Against Mono- and Dual-Species Biofilms of Candida albicans and Staphylococcus aureus and Its Properties of Inducing Hypha-to-Yeast Transition of C. albicans. J Fungi (Basel) 2020; 6:jof6020045. [PMID: 32252437 PMCID: PMC7345410 DOI: 10.3390/jof6020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans and Staphylococcus aureus specifically often resulted in biofilm-associated diseases, ranging from superficial mucosal to life-threatening systemic infections. Recent studies reported that chelerythrine displayed antimicrobial activities against a few microorganisms, but its effects on mono- and dual-species biofilms of C. albicans and S. aureus have never been reported. The purpose of this study was to evaluate the efficacy of chelerythrine against mono- and dual-species biofilms, and explore its effect on the hyphal growth and the hypha-to-yeast transition of C. albicans. The results showed that minimum inhibitory concentrations (MICs) and minimum biofilm inhibitory concentration (MBIC90S) of chelerythrine against planktonic cells of mono-species were 4 and 2 μg/mL, while the MIC and MBIC90 were 6 and 3 μg/mL for dual-species. Meanwhile, the decrease in three matrix component levels and tolerance to antibiotics of biofilms formed by mono- and dual-species exposed to chelerythrine were confirmed by a confocal laser scanning microscope, in conjugation with five fluorescent dyes and a gatifloxacin diffusion assay. Moreover, C. albicans and S. aureus mono-species showed a 96.4, and 92.3% reduction, respectively, in 24-h preformed biofilm biomass in the presence of 128 µg/mL of chelerythrine. Similarly, preformed (24 h) dual-species biofilm biomass also displayed a significant reduction (90.7%) when treated with 192 μg/mL chelerythrine. Chelerythrine inhibited hyphae formation of C. albicans at 4 μg/mL, and C. albicans in hypha-form can be converted into yeast-form at 8 μg/mL of chelerythrine. Therefore, chelerythrine shows promise as a potential antimicrobial and antibiofilm agent for clinical effective treatments of mono- and mixed-species and/or biofilm-associated infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Wenjing Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (W.Q.); (J.Z.); (W.W.); (M.L.); (Y.F.); (X.L.)
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
- Correspondence: (T.W.); (Y.L.); Tel.: +86-29-86168583 (T.W.)
| |
Collapse
|
20
|
Silva HRA, de Souza GM, Fernandes JD, Constantino CJL, Winkelstroter LK. Unravelling the effects of the food components ascorbic acid and capsaicin as a novel anti-biofilm agent against Escherichia coli. Journal of Food Science and Technology 2020; 57:1013-1020. [PMID: 32123422 DOI: 10.1007/s13197-019-04134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/03/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the influence of capsaicin and ascorbic acid on the physiology of biofilm formation and dispersion. The influence of the E. coli ATCC 25922 biofilm and five E. coli isolates were observed in the presence of sodium hypochlorite 2.5 mM and subinhibitory concentrations of capsaicin (7 mM) and ascorbic acid (100 mM). The cells counts were performed through standard plaque count and the architecture visualized by confocal microscopy. The proteins, carbohydrates, and DNA present in the biofilm matrix were also quantified. There was a reduction in adhered cells in the presence of capsaicin (7 mM) and ascorbic acid (100 mM) in the biofilm formation kinetics, however, regarding the dispersion, only capsaicin altered the biofilm, data confirmed by confocal fluorescence microscopy (p < 0.05). It was noted that the matrix composition is dynamic and may be affected by changes in growth conditions such as the presence of antimicrobial substances.
Collapse
Affiliation(s)
- Hevelin Regiane Augusto Silva
- 1Health Sciences Faculty, University of Western Sao Paulo, 700, Jose Bongiovani St., Presidente Prudente, SP 19050-920 Brazil
| | - Gabrielle Messias de Souza
- 1Health Sciences Faculty, University of Western Sao Paulo, 700, Jose Bongiovani St., Presidente Prudente, SP 19050-920 Brazil
| | - José Diego Fernandes
- 2School of Technology and Applied Sciences (FCT), Sao Paulo State University (UNESP), 305, Roberto Simonsen St., Presidente Prudente, SP 19060-900 Brazil
| | - Carlos José Leopoldo Constantino
- 2School of Technology and Applied Sciences (FCT), Sao Paulo State University (UNESP), 305, Roberto Simonsen St., Presidente Prudente, SP 19060-900 Brazil
| | - Lizziane Kretli Winkelstroter
- 1Health Sciences Faculty, University of Western Sao Paulo, 700, Jose Bongiovani St., Presidente Prudente, SP 19050-920 Brazil
| |
Collapse
|
21
|
Zhang D, Gan RY, Zhang JR, Farha AK, Li HB, Zhu F, Wang XH, Corke H. Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Compr Rev Food Sci Food Saf 2020; 19:1018-1055. [PMID: 33331691 DOI: 10.1111/1541-4337.12549] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
In recent decades, reduced antimicrobial effectiveness, increased bacterial infection, and newly emerged microbial resistance have become global public issues, leading to an urgent need to find effective strategies to counteract these problems. Strategies targeting bacterial virulence factors rather than bacterial survival have attracted increasing interest, since the modulation of virulence factors may prevent the development of drug resistance in bacteria. Spices are promising natural sources of antivirulence compounds owing to their wide availability, diverse antivirulence phytochemical constituents, and generally favorable safety profiles. Essential oils are the predominant and most important antivirulence components of spices. This review addresses the recent efforts of using spice essential oils to inhibit main bacterial virulence traits, including the quorum sensing system, biofilm formation, motility, and toxin production, with an intensive discussion of related mechanisms. We hope that this review can provide a better understanding of the antivirulence properties of spice essential oils, which have the potential to be used as antibiotic alternatives by targeting bacterial virulence.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Xiao-Hong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Jang H, Eom Y. Repurposing auranofin to combat uropathogenic
Escherichia coli
biofilms. J Appl Microbiol 2019; 127:459-471. [DOI: 10.1111/jam.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- H.‐I. Jang
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| | - Y.‐B. Eom
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| |
Collapse
|
23
|
You Y, Chen J, Zhu F, Xu Q, Han L, Gao X, Zhang X, Luo HR, Miao J, Sun X, Ren H, Du Y, Guo L, Wang X, Wang Y, Chen S, Huang N, Li J. Glutaredoxin 1 up-regulates deglutathionylation of α4 integrin and thereby restricts neutrophil mobilization from bone marrow. J Biol Chem 2018; 294:2616-2627. [PMID: 30598505 DOI: 10.1074/jbc.ra118.006096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
α4 integrin plays a crucial role in retention and release of neutrophils from bone marrow. Although α4 integrin is known to be a potential target of reactive oxygen species (ROS)-induced cysteine glutathionylation, the physiological significance and underlying regulatory mechanism of this event remain elusive. Here, using in vitro and in vivo biochemical and cell biology approaches, we show that physiological ROS-induced glutathionylation of α4 integrin in neutrophils increases the binding of neutrophil-associated α4 integrin to vascular cell adhesion molecule 1 (VCAM-1) on human endothelial cells. This enhanced binding was reversed by extracellular glutaredoxin 1 (Grx1), a thiol disulfide oxidoreductase promoting protein deglutathionylation. Furthermore, in a murine inflammation model, Grx1 disruption dramatically elevated α4 glutathionylation and subsequently enhanced neutrophil egress from the bone marrow. Corroborating this observation, intravenous injection of recombinant Grx1 into mice inhibited α4 glutathionylation and thereby suppressed inflammation-induced neutrophil mobilization from the bone marrow. Taken together, our results establish ROS-elicited glutathionylation and its modulation by Grx1 as pivotal regulatory mechanisms controlling α4 integrin affinity and neutrophil mobilization from the bone marrow under physiological conditions.
Collapse
Affiliation(s)
| | - Junli Chen
- From the Departments of Pathophysiology and
| | - Feimei Zhu
- From the Departments of Pathophysiology and
| | - Qian Xu
- From the Departments of Pathophysiology and
| | - Lu Han
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiang Gao
- the State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Zhang
- the State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R Luo
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Lab Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, and.,the Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| | | | - Xiaodong Sun
- Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyu Ren
- From the Departments of Pathophysiology and
| | - Yu Du
- From the Departments of Pathophysiology and
| | - Lijuan Guo
- From the Departments of Pathophysiology and
| | | | - Yi Wang
- From the Departments of Pathophysiology and
| | | | - Ning Huang
- From the Departments of Pathophysiology and
| | - Jingyu Li
- From the Departments of Pathophysiology and
| |
Collapse
|
24
|
Narayanan A, Nair MS, Muyyarikkandy MS, Amalaradjou MA. Inhibition and Inactivation of Uropathogenic Escherichia coli Biofilms on Urinary Catheters by Sodium Selenite. Int J Mol Sci 2018; 19:ijms19061703. [PMID: 29880781 PMCID: PMC6032314 DOI: 10.3390/ijms19061703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/23/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Urinary tract infections (UTI) are the most common hospital-acquired infections in humans and are caused primarily by uropathogenic Escherichia coli (UPEC). Indwelling urinary catheters become encrusted with UPEC biofilms that are resistant to common antibiotics, resulting in chronic infections. Therefore, it is important to control UPEC biofilms on catheters to reduce the risk for UTIs. This study investigated the efficacy of selenium for inhibiting and inactivating UPEC biofilms on urinary catheters. Urinary catheters were inoculated with UPEC and treated with 0 and 35 mM selenium at 37 °C for 5 days for the biofilm inhibition assay. In addition, catheters with preformed UPEC biofilms were treated with 0, 45, 60, and 85 mM selenium and incubated at 37 °C. Biofilm-associated UPEC counts on catheters were enumerated on days 0, 1, 3, and 5 of incubation. Additionally, the effect of selenium on exopolysacchride (EPS) production and expression of UPEC biofilm-associated genes was evaluated. Selenium at 35 mM concentration was effective in preventing UPEC biofilm formation on catheters compared to controls (p < 0.05). Further, this inhibitory effect was associated with a reduction in EPS production and UPEC gene expression. Moreover, at higher concentrations, selenium was effective in inactivating preformed UPEC biofilms on catheters as early as day 3 of incubation. Results suggest that selenium could be potentially used in the control of UPEC biofilms on urinary catheters.
Collapse
Affiliation(s)
- Amoolya Narayanan
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - Meera S Nair
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
25
|
Fructose furoic acid ester: An effective quorum sensing inhibitor against uropathogenic Escherichia coli. Bioorg Chem 2018; 79:310-318. [PMID: 29800818 DOI: 10.1016/j.bioorg.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) are the most common cause of UTI, accounting for more than 90% infections in the normal and unobstructed urinary tracts. Multi-drug resistance (MDR) is an emerging threat to the mankind and hence, there is an urge to develop alternative therapies. Targeting quorum sensing (QS), a cell-cell communication process regulates various biofilm and virulence factors would be a most promising alternate which curbs the pathogenesis without killing the bacteria, unlike antibiotics. SdiA, a quorum regulator is well-known to control the behavioural changes of UPEC in establishing biofilm and virulence. Therefore, we have hypothesized that the SdiA-selective inhibitors derived from the plant, Melia dubia using the molecular docking would be a remarkable therapeutic candidate to down regulate the UPEC biofilm and virulence phenotypes. In this study, we have designed, synthesized and characterized the fructose-furoic acid ester by NMR and ESI-MS. In vitro studies revealed that the QSI-MD selectively inhibits UPEC adherence and confocal laser scanning microscopy (CLSM) analysis showed the effectiveness of QSI-MD to inhibit the UPEC biofilm. Genetic studies using qRT-PCR revealed the down-regulation of quorum sensing regulated genes (fimA, csgA, espA). Based on the findings, we could propose that the QSI-MD could possibly act through SdiA and show target-specific inhibition of biofilm and virulence. It is notable that more than 70 bacterial species execute their communication through the SdiA homologues (LuxIR system). Hence, the QSI-MD could be further developed as a broad-spectrum anti-infective drug.
Collapse
|
26
|
Salem WM, Shibat El-Hamed DMW, Sayed WF, Elamary RB. Alterations in virulence and antibiotic resistant genes of multidrug-resistant Salmonella serovars isolated from poultry: The bactericidal efficacy of Allium sativum. Microb Pathog 2017; 108:91-100. [PMID: 28479511 DOI: 10.1016/j.micpath.2017.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Affiliation(s)
- W M Salem
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt.
| | | | - W F Sayed
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| | - R B Elamary
- South Valley University, Faculty of Science, Botany Department, 83523, Qena, Egypt
| |
Collapse
|