1
|
Rao RM, El Dhaybi I, Cadet F, Etchebest C, Diharce J. The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195. Biochimie 2024; 224:29-40. [PMID: 38494108 DOI: 10.1016/j.biochi.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.
Collapse
Affiliation(s)
- Rajas M Rao
- Data Analytics, Bioinformatics and Structural Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Ibaa El Dhaybi
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Frédéric Cadet
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715, Saint Denis Messag, France; PEACCEL, Artificial Intelligence Department, Paris, 75013 France
| | - Catherine Etchebest
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
2
|
Giladi M, Montgomery AP, Kassiou M, Danon JJ. Structure-based drug design for TSPO: Challenges and opportunities. Biochimie 2024; 224:41-50. [PMID: 38782353 DOI: 10.1016/j.biochi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.
Collapse
Affiliation(s)
- Mia Giladi
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Tremolanti C, Angeloni E, Da Pozzo E, Germelli L, Giacomelli C, Scalzi E, Taliani S, Da Settimo F, Mensah-Nyagan AG, Martini C, Costa B. Human oligodendrocyte-like cell differentiation is promoted by TSPO-mediated endogenous steroidogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167174. [PMID: 38631406 DOI: 10.1016/j.bbadis.2024.167174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mature oligodendrocytes (OLs) arise from oligodendrocyte precursor cells that, in case of demyelination, are recruited at the lesion site to remyelinate the axons and therefore restore the transmission of nerve impulses. It has been widely documented that exogenously administered steroid molecules are potent inducers of myelination. However, little is known about how neurosteroids produced de novo by OLs can impact this process. Here, we employed a human OL precursor cell line to investigate the role of de novo neurosteroidogenesis in the regulation of OLs differentiation, paying particular attention to the 18 kDa Translocator Protein (TSPO) which controls the rate-limiting step of the neurosteroidogenic process. Our results showed that, over the time of OL maturation, the availability of cholesterol, which is the neurosteroidogenesis initial substrate, and key members of the neurosteroidogenic machinery, including TSPO, were upregulated. In addition, OLs differentiation was impaired following neurosteroidogenesis inhibition and TSPO silencing. On the contrary, TSPO pharmacological stimulation promoted neurosteroidogenic function and positively impacted differentiation. Collectively, our results suggest that de novo neurosteroidogenesis is actively involved in the autocrine and paracrine regulation of human OL differentiation. Moreover, since TSPO was able to promote OL differentiation through a positive modulation of the neurosteroid biosynthetic process, it could be exploited as a promising target to tackle demyelinating diseases.
Collapse
Affiliation(s)
- Chiara Tremolanti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Elisa Angeloni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Eduardo Scalzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Ayikoé-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, 67 000 Strasbourg, France.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing of the University of Pisa (CISUP), Via Santa Maria 53, 56126 Pisa. Italy.
| |
Collapse
|
4
|
Barresi E, Baglini E, Poggetti V, Castagnoli J, Giorgini D, Salerno S, Taliani S, Da Settimo F. Indole-Based Compounds in the Development of Anti-Neurodegenerative Agents. Molecules 2024; 29:2127. [PMID: 38731618 PMCID: PMC11085553 DOI: 10.3390/molecules29092127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Emma Baglini
- Institute of Clinical Physiology, National Research Council of Italy, CNR Research Area, 56124 Pisa, Italy;
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (E.B.); (V.P.); (J.C.); (F.D.S.)
| |
Collapse
|
5
|
Pradhan AK, Neumüller T, Klug C, Fuchs S, Schlegel M, Ballmann M, Tartler KJ, Pianos A, Garcia MS, Liere P, Schumacher M, Kreuzer M, Rupprecht R, Rammes G. Chronic administration of XBD173 ameliorates cognitive deficits and neuropathology via 18 kDa translocator protein (TSPO) in a mouse model of Alzheimer's disease. Transl Psychiatry 2023; 13:332. [PMID: 37891168 PMCID: PMC10611770 DOI: 10.1038/s41398-023-02630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid peptide (Aβ). It affects cognition and leads to memory impairment. The mitochondrial translocator protein (TSPO) plays an essential role in maintaining mitochondrial homeostasis and has been implicated in several neuronal disorders or neuronal injuries. Ligands targeting the mitochondrial translocator protein (18 kDa), promote neurosteroidogenesis and may be neuroprotective. To study whether the TSPO ligand XBD173 may exert early neuroprotective effects in AD pathology we investigated the impact of XBD173 on amyloid toxicity and neuroplasticity in mouse models of AD. We show that XBD173 (emapunil), via neurosteroid-mediated signaling and delta subunit-containing GABAA receptors, prevents the neurotoxic effect of Aβ on long-term potentiation (CA1-LTP) in the hippocampus and prevents the loss of spines. Chronic but not acute administration of XBD173 ameliorates spatial learning deficits in transgenic AD mice with arctic mutation (ArcAβ). The heterozygous TSPO-knockout crossed with the transgenic arctic mutation model of AD mice (het TSPOKO X ArcAβ) treated with XBD173 does not show this improvement in spatial learning suggesting TSPO is needed for procognitive effects of XBD173. The neuroprotective profile of XBD173 in AD pathology is further supported by a reduction in plaques and soluble Aβ levels in the cortex, increased synthesis of neurosteroids, rescued spine density, reduction of complement protein C1q deposits, and reduced astrocytic phagocytosis of functional synapses both in the hippocampus and cortex. Our findings suggest that XBD173 may exert therapeutic effects via TSPO in a mouse model of AD.
Collapse
Affiliation(s)
- Arpit Kumar Pradhan
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Tatjana Neumüller
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Claudia Klug
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Severin Fuchs
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Martin Schlegel
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Markus Ballmann
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Katharina Johanna Tartler
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Maria Sanchez Garcia
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 80 rue du Général Leclerc, Le Kremlin-Bicêtre, 94276, France
| | - Matthias Kreuzer
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Gerhard Rammes
- Klinik für Anaesthesiologie und Intensivmedizin der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| |
Collapse
|
6
|
Barresi E, Robello M, Baglini E, Poggetti V, Viviano M, Salerno S, Da Settimo F, Taliani S. Indol-3-ylglyoxylamide as Privileged Scaffold in Medicinal Chemistry. Pharmaceuticals (Basel) 2023; 16:997. [PMID: 37513909 PMCID: PMC10386336 DOI: 10.3390/ph16070997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, indolylglyoxylamide-based derivatives have received much attention due to their application in drug design and discovery, leading to the development of a wide array of compounds that have shown a variety of pharmacological activities. Combining the indole nucleus, already validated as a "privileged structure," with the glyoxylamide function allowed for an excellent template to be obtained that is suitable to a great number of structural modifications aimed at permitting interaction with specific molecular targets and producing desirable therapeutic effects. The present review provides insight into how medicinal chemists have elegantly exploited the indolylglyoxylamide moiety to obtain potentially useful drugs, with a particular focus on compounds exhibiting activity in in vivo models or reaching clinical trials. All in all, this information provides exciting new perspectives on existing data that can be useful in further design of indolylglyoxylamide-based molecules with interesting pharmacological profiles. The aim of this report is to present an update of collection data dealing with the employment of this moiety in the rational design of compounds that are able to interact with a specific target, referring to the last 20 years.
Collapse
Affiliation(s)
- Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marco Robello
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
7
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
8
|
Angeloni E, Germelli L, Marchetti L, Da Pozzo E, Tremolanti C, Wetzel CH, Baglini E, Taliani S, Da Settimo F, Martini C, Costa B. The human microglial surveillant phenotype is preserved by de novo neurosteroidogenesis through the control of cholesterol homeostasis: Crucial role of 18 kDa Translocator Protein. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166751. [PMID: 37169037 DOI: 10.1016/j.bbadis.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Neurodegenerative disease-associated microglia commonly exhibit harmful cholesterol accumulation that impairs their ability to resolve the neuroinflammatory response, contributing to disease onset and progression. Neurosteroids, whose levels have been often found significantly altered in brain diseases, are the most potent endogenous anti-inflammatory molecules exerting beneficial effects on activities of brain cells, including microglia. For the first time, the impact of neurosteroidogenesis on cholesterol homeostasis for the immune surveillance phenotype maintenance was investigated in a human microglia in vitro model. To enhance and inhibit neurosteroidogenesis, pharmacological stimulation and knock-down of 18 kDa Translocator Protein (TSPO), which is involved in the neurosteroidogenesis rate-limiting step, were used as experimental approaches, respectively. The obtained results point to an essential autocrine control of neurosteroidogenesis in orchestrating cholesterol trafficking in human microglia. TSPO pharmacological stimulation ensured cholesterol turnover by strengthening cholesterol efflux systems and preserving healthy immune surveillant phenotype. Conversely, TSPO knock-down induced an impairment of the controlled interplay among cholesterol synthesis, efflux, and metabolism mechanisms, leading to an excessive cholesterol accumulation and acquisition of a chronically activated dysfunctional phenotype. In this model, the exogenous neurosteroid administration restored proper the cholesterol clearance. The TSPO ability in promoting native neurosteroidogenesis opens the way to restore cholesterol homeostasis, and thus to maintain microglia proper functionality for the treatment of neuroinflammation-related brain diseases.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany.
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| |
Collapse
|
9
|
Corsi F, Baglini E, Barresi E, Salerno S, Cerri C, Martini C, Da Settimo Passetti F, Taliani S, Gargini C, Piano I. Targeting TSPO Reduces Inflammation and Apoptosis in an In Vitro Photoreceptor-Like Model of Retinal Degeneration. ACS Chem Neurosci 2022; 13:3188-3197. [PMID: 36300862 PMCID: PMC9673150 DOI: 10.1021/acschemneuro.2c00582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is predominantly located in the mitochondrial outer membrane, playing an important role in steroidogenesis, inflammation, survival, and cell proliferation. Its expression in the CNS, and mainly in glial cells, is upregulated in neuropathologies and brain injury. In this study, the potential of targeting TSPO for the therapeutic treatment of inflammatory-based retinal neurodegeneration was evaluated by means of an in vitro model of lipopolysaccharide (LPS)-induced degeneration in 661 W cells, a photoreceptor-like cell line. After the assessment of the expression of TSPO in 661W cells, which, to the best of our knowledge, was never investigated so far, the anti-inflammatory and cytoprotective effects of a number of known TSPO ligands, belonging to the class of N,N-dialkyl-2-arylindol-3-ylglyoxylamides (PIGAs), were evaluated, using the classic TSPO ligand PK11195 as the reference standard. All tested PIGAs showed the ability to modulate the inflammatory and apoptotic processes in 661 W photoreceptor-like cells and to reduce LPS-driven cellular cytotoxicity. The protective effect of PIGAs was, in all cases, reduced by cotreatment with the pregnenolone synthesis inhibitor SU-10603, suggesting the involvement of neurosteroids in the protective mechanism. As inflammatory processes play a crucial role in the retinal neurodegenerative disease progression toward photoreceptors' death and complete blindness, targeting TSPO might represent a successful strategy to slow down this degenerative process that may lead to the inexorable loss of vision.
Collapse
|
10
|
Translocator Protein Ligand PIGA1138 Reduces Disease Symptoms and Severity in Experimental Autoimmune Encephalomyelitis Model of Primary Progressive Multiple Sclerosis. Mol Neurobiol 2022; 59:1744-1765. [PMID: 35018577 DOI: 10.1007/s12035-022-02737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system (CNS) caused by CNS infiltration of peripheral immune cells, immune-mediated attack of the myelin sheath, neuroinflammation, and/or axonal/neuronal dysfunctions. Some drugs are available to cope with relapsing-remitting MS (RRMS) but there is no therapy for the primary progressive MS (PPMS). Because growing evidence supports a regulatory role of the translocator protein (TSPO) in neuroinflammatory, demyelinating, and neurodegenerative processes, we investigated the therapeutic potential of phenylindolyilglyoxylamydes (PIGAs) TSPO ligands in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) mice mimicking the human PPMS. MOG-EAE C57Bl/6-mice were treated by TSPO ligands PIGA839, PIGA1138, or the vehicle. Several methods were combined to evaluate PIGAs-TSPO ligand effects on MOG-EAE symptoms, CNS infiltration by immune cells, demyelination, and axonal damages. PIGA1138 (15 mg/kg) drastically reduced MOG-EAE mice clinical scores, ameliorated motor dysfunctions assessed with the Catwalk device, and counteracted MOG-EAE-induced demyelination by preserving Myelin basic protein (MBP) expression in the CNS. Furthermore, PIGA1138-treatment prevented EAE-evoked decreased neurofilament-200 expression in spinal and cerebellar axons. Moreover, PIGA1138 inhibited peripheral immune-CD45 + cell infiltration in the CNS, suggesting that it may control inflammatory mechanisms involved in PPMS. Concordantly, PIGA1138 enhanced anti-inflammatory interleukin-10 serum level in MOG-EAE mice. PIGA1138-treatment, which increased neurosteroid allopregnanolone production, ameliorated all pathological biomarkers, while PIGA839, unable to activate neurosteroidogenesis in vivo, exerted only moderate/partial effects in MOG-EAE mice. Altogether, our results suggest that PIGA1138-based treatment may represent an interesting possibility to be explored for the innovation of effective therapies against PPMS.
Collapse
|
11
|
Barresi E, Ravichandran R, Germelli L, Angeli A, Baglini E, Salerno S, Marini AM, Costa B, Da Pozzo E, Martini C, Da Settimo F, Supuran C, Cosconati S, Taliani S. Carbonic anhydrase activation profile of indole-based derivatives. J Enzyme Inhib Med Chem 2021; 36:1783-1797. [PMID: 34340630 PMCID: PMC8344252 DOI: 10.1080/14756366.2021.1959573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbonic Anhydrase Activators (CAAs) could represent a novel approach for the treatment of Alzheimer’s disease, ageing, and other conditions that require remedial achievement of spatial learning and memory therapy. Within a research project aimed at developing novel CAAs selective for certain isoforms, three series of indole-based derivatives were investigated. Enzyme activation assay on human CA I, II, VA, and VII isoforms revealed several effective micromolar activators, with promising selectivity profiles towards the brain-associated cytosolic isoform hCA VII. Molecular modelling studies suggested a theoretical model of the complex between hCA VII and the new activators and provide a possible explanation for their modulating as well as selectivity properties. Preliminary biological evaluations demonstrated that one of the most potent CAA 7 is not cytotoxic and is able to increase the release of the brain-derived neurotrophic factor (BDNF) from human microglial cells, highlighting its possible application in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
| | | | | | - Andrea Angeli
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Sesto Fiorentino, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | - Barbara Costa
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Claudiu Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Sesto Fiorentino, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, Caserta, Italy
| | | |
Collapse
|
12
|
De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein. Int J Mol Sci 2021; 22:ijms22063115. [PMID: 33803741 PMCID: PMC8003294 DOI: 10.3390/ijms22063115] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroactive steroids are potent modulators of microglial functions and are capable of counteracting their excessive reactivity. This action has mainly been ascribed to neuroactive steroids released from other sources, as microglia have been defined unable to produce neurosteroids de novo. Unexpectedly, immortalized murine microglia recently exhibited this de novo biosynthesis; herein, de novo neurosteroidogenesis was characterized in immortalized human microglia. The results demonstrated that C20 and HMC3 microglial cells constitutively express members of the neurosteroidogenesis multiprotein machinery-in particular, the transduceosome members StAR and TSPO, and the enzyme CYP11A1. Moreover, both cell lines produce pregnenolone and transcriptionally express the enzymes involved in neurosteroidogenesis. The high TSPO expression levels observed in microglia prompted us to assess its role in de novo neurosteroidogenesis. TSPO siRNA and TSPO synthetic ligand treatments were used to reduce and prompt TSPO function, respectively. The TSPO expression downregulation compromised the de novo neurosteroidogenesis and led to an increase in StAR expression, probably as a compensatory mechanism. The pharmacological TSPO stimulation the de novo neurosteroidogenesis improved in turn the neurosteroid-mediated release of Brain-Derived Neurotrophic Factor. In conclusion, these results demonstrated that de novo neurosteroidogenesis occurs in human microglia, unravelling a new mechanism potentially useful for future therapeutic purposes.
Collapse
|
13
|
An update into the medicinal chemistry of translocator protein (TSPO) ligands. Eur J Med Chem 2020; 209:112924. [PMID: 33081988 DOI: 10.1016/j.ejmech.2020.112924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023]
Abstract
The Translocator Protein 18 kDa (TSPO) has been discovered in 1977 as an alternative binding site for the benzodiazepine diazepam. It is an evolutionary well-conserved and tryptophan-rich 169-amino acids protein with five alpha helical transmembrane domains stretching the outer mitochondrial membrane, with the carboxyl-terminus in the cytosol and a short amino-terminus in the intermembrane space of mitochondrion. At this level, together with the voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT), it forms the mitochondrial permeability transition pore (MPTP). TSPO expression is ubiquitary, with higher levels in steroid producing tissues; in the central nervous system, it is mainly expressed in glial cells and in neurons. TSPO is implicated in a variety of fundamental cellular processes including steroidogenesis, heme biosynthesis, mitochondrial respiration, mitochondrial membrane potential, cell proliferation and differentiation, cell life/death balance, oxidative stress. Altered TSPO expression has been found in some pathological conditions. In particular, high TSPO expression levels have been documented in cancer, neuroinflammation, and brain injury. Conversely, low TSPO expression levels have been evidenced in anxiety disorders. Therefore, TSPO is not only an interesting drug target for therapeutic purpose (anticonvulsant, anxiolytic, etc.), but also a valid diagnostic marker of related-diseases detectable by fluorescent or radiolabeled ligands. The aim of this report is to present an update of previous reviews dealing with the medicinal chemistry of TSPO and to highlight the most outstanding advances in the development of TSPO ligands as potential therapeutic or diagnostic tools, especially referring to the last five years.
Collapse
|
14
|
Musicki B, Karakus S, La Favor JD, Chen H, Silva FH, Sturny M, Zirkin BR, Burnett AL. TSPO ligand FGIN-1-27 controls priapism in sickle cell mice via endogenous testosterone production. J Cell Physiol 2020; 236:3073-3082. [PMID: 32974910 DOI: 10.1002/jcp.30075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022]
Abstract
Priapism, a prolonged penile erection in the absence of sexual arousal, is common among patients with sickle cell disease (SCD). Hypogonadism is also common in patients with SCD. While the administration of exogenous testosterone reverses hypogonadism, it is contraceptive. We hypothesized that the stimulation of endogenous testosterone production decreases priapism by normalizing molecular signaling involved in penile erection without decreasing intratesticular testosterone production, which would affect fertility. Treatment of SCD mice with FGIN-1-27, a ligand for translocator protein (TSPO) that mobilizes cholesterol to the inner mitochondrial membrane, resulted in eugonadal levels of serum testosterone without decreasing intratesticular testosterone production. Normalized testosterone levels, in turn, decreased priapism. At the molecular level, TSPO restored phosphodiesterase 5 activity and decreased NADPH oxidase-mediated oxidative stress in the penis, which are major molecular signaling molecules involved in penile erection and are dysregulated in SCD. These results indicate that pharmacologic activation of TSPO could be a novel, targetable pathway for treating hypogonadal men, particularly patients with SCD, without adverse effects on fertility.
Collapse
Affiliation(s)
- Biljana Musicki
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serkan Karakus
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin D La Favor
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, Florida, USA
| | - Haolin Chen
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fabio H Silva
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mikael Sturny
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arthur L Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Taliani S, Da Settimo F, Martini C, Laneri S, Novellino E, Greco G. Exploiting the Indole Scaffold to Design Compounds Binding to Different Pharmacological Targets. Molecules 2020; 25:molecules25102331. [PMID: 32429433 PMCID: PMC7287756 DOI: 10.3390/molecules25102331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Several indole derivatives have been disclosed by our research groups that have been collaborating for nearly 25 years. The results of our investigations led to a variety of molecules binding selectively to different pharmacological targets, specifically the type A γ-aminobutyric acid (GABAA) chloride channel, the translocator protein (TSPO), the murine double minute 2 (MDM2) protein, the A2B adenosine receptor (A2B AR) and the Kelch-like ECH-associated protein 1 (Keap1). Herein, we describe how these works were conceived and carried out thanks to the versatility of indole nucleus to be exploited in the design and synthesis of drug-like molecules.
Collapse
Affiliation(s)
- Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (F.D.S.); (C.M.)
- Correspondence: (S.T.); (G.G.); Tel.: +39-050-2219547 (S.T.); +39-081-678645 (G.G.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (F.D.S.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (F.D.S.); (C.M.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy; (S.L.); (E.N.)
| | - Ettore Novellino
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy; (S.L.); (E.N.)
| | - Giovanni Greco
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy; (S.L.); (E.N.)
- Correspondence: (S.T.); (G.G.); Tel.: +39-050-2219547 (S.T.); +39-081-678645 (G.G.)
| |
Collapse
|
16
|
18-kDa translocator protein association complexes in the brain: From structure to function. Biochem Pharmacol 2020; 177:114015. [PMID: 32387458 DOI: 10.1016/j.bcp.2020.114015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
The outer mitochondrial membrane 18-kDa translocator protein (TSPO) is highly conserved in organisms of different species and ubiquitously expressed throughout tissues, including the nervous system. In the healthy adult brain, TSPO expression levels are low and promptly modulated under different pathological conditions, such as cancer, inflammatory states, and neurological and psychiatric disorders. Not surprisingly, several endogenous and synthetic molecules capable of binding TSPO have been proposed as drugs or diagnostic tools for brain diseases. The most studied biochemical function of TSPO is cholesterol translocation into mitochondria, which in turn affects the synthesis of steroids in the periphery and neurosteroids in the brain. In the last 30 years, roles for TSPO have also been suggested in other cellular processes, such as heme synthesis, apoptosis, autophagy, calcium signalling and reactive oxygen species production. Herein, we provide an overview of TSPO associations with different proteins, focusing particular attention on their related functions. Furthermore, recent TSPO-targeted therapeutic interventions are explored and discussed as prospect for innovative treatments in mental and brain diseases.
Collapse
|
17
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
18
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
19
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
20
|
Grimm A, Lejri I, Hallé F, Schmitt M, Götz J, Bihel F, Eckert A. Mitochondria modulatory effects of new TSPO ligands in a cellular model of tauopathies. J Neuroendocrinol 2020; 32:e12796. [PMID: 31536662 PMCID: PMC7003898 DOI: 10.1111/jne.12796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 01/12/2023]
Abstract
Translocator protein 18 kDa (TSPO) is a mitochondrial protein located in the outer membrane and involved in cholesterol translocation, a prerequisite for steroid biosynthesis. TSPO modulation also appears to play a role in other mitochondrial functions, including mitochondrial respiration and cell survival. In the central nervous system, its expression is up-regulated in neuropathology such as Alzheimer's disease (AD). Previously, we demonstrated that two new TSPO ligands, named 2a and 2b, stimulated pregnenolone synthesis and ATP production in a cellular model of AD overproducing β-amyloid peptide. The present study aimed to evaluate the impact of the new TSPO ligands on mitochondrial dysfunction in a cellular model of AD-related tauopathy (human neuroblastoma cells SH-SY5Y stably overexpressing the P301L-mutant Tau) presenting mitochondrial impairments, including a decreased ATP synthesis and mitochondrial membrane potential, as well as a decrease in pregnenolone synthesis compared to control cells. The effects of our new ligands were compared with those of TSPO ligands described in the literature (XBD173, SSR-180,575 and Ro5-4864). The TSPO ligands 2a and 2b exerted beneficial mitochondrial modulatory effects by increasing ATP levels and mitochondrial membrane potential, paralleled by an increase of pregnenolone levels in mutant Tau cells, as well as in control cells. The compounds 2a and 2b showed effects on mitochondrial activity similar to those obtained with the TSPO ligands of reference. These findings indicate that the new TSPO ligands modulate the mitochondrial bioenergetic phenotype as well as the de novo synthesis of neurosteroids in a cellular model of AD-related tauopathy, suggesting that these compounds could be potential new therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Amandine Grimm
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| | - Imane Lejri
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| | - François Hallé
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Martine Schmitt
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR)Queensland Brain Institute (QBI)The University of QueenslandSt LuciaQLDAustralia
| | - Frederic Bihel
- Laboratoire d’Innovation ThérapeutiqueFaculté de PharmacieUMR7200CNRSUniversité de StrasbourgIllkirchFrance
| | - Anne Eckert
- Transfaculty Research Platform, Molecular & Cognitive NeuroscienceNeurobiology Laboratory for Brain Aging and Mental HealthUniversity of BaselBaselSwitzerland
- Psychiatric University ClinicsBaselSwitzerland
| |
Collapse
|
21
|
Da Pozzo E, Tremolanti C, Costa B, Giacomelli C, Milenkovic VM, Bader S, Wetzel CH, Rupprecht R, Taliani S, Da Settimo F, Martini C. Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. Int J Mol Sci 2019; 20:ijms20184467. [PMID: 31510070 PMCID: PMC6770267 DOI: 10.3390/ijms20184467] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
- Correspondence:
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| |
Collapse
|
22
|
Bruno A, Barresi E, Simola N, Da Pozzo E, Costa B, Novellino E, Da Settimo F, Martini C, Taliani S, Cosconati S. Unbinding of Translocator Protein 18 kDa (TSPO) Ligands: From in Vitro Residence Time to in Vivo Efficacy via in Silico Simulations. ACS Chem Neurosci 2019; 10:3805-3814. [PMID: 31268683 DOI: 10.1021/acschemneuro.9b00300] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Translocator protein 18 kDa (TSPO) is a validated pharmacological target for the development of new treatments for neurological disorders. N,N-Dialkyl-2-phenylindol-3-ylglyoxylamides (PIGAs) are effective TSPO modulators and potentially useful therapeutics for the treatment of anxiety, central nervous system pathologies featuring astrocyte loss, and inflammatory-based neuropathologies. For this class of compounds, no correlation exists between the TSPO binding affinity and the corresponding functional efficacy. Rather, their biological effectiveness correlates with the kinetics of the unbinding events and more specifically with the residence time (RT). So far, the structural reasons for the different recorded RT of congeneric PIGAs remain elusive. Here, to understand the different kinetics of PIGAs, their unbinding paths were studied by employing enhanced-sampling molecular dynamics simulations. Results of these studies revealed how subtle structural differences between PIGAs have a substantial effect on the unbinding energetics. In particular, during the egress from the TSPO binding site, slow-dissociating PIGAs find tight interactions with the protein LP1 region thereby determining a long RT. Further support to these findings was achieved by in vivo studies, which demonstrated how the anxiolytic effect observed for the inspected PIGAs correlated with their RT to TSPO.
Collapse
Affiliation(s)
- Agostino Bruno
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Monserrato University Campus, 09042 Monserrato, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Ettore Novellino
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Federico Da Settimo
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
23
|
Bader S, Wolf L, Milenkovic VM, Gruber M, Nothdurfter C, Rupprecht R, Wetzel CH. Differential effects of TSPO ligands on mitochondrial function in mouse microglia cells. Psychoneuroendocrinology 2019; 106:65-76. [PMID: 30954920 DOI: 10.1016/j.psyneuen.2019.03.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
The translocator protein 18 kDa (TSPO), initially characterized as peripheral benzodiazepine receptor, is a conserved outer mitochondrial membrane protein, implicated in cholesterol transport thereby affecting steroid hormone biosynthesis, as well as in general mitochondrial function related to bioenergetics, oxidative stress, and Ca2+ homeostasis. TSPO is highly expressed in steroidogenic tissues such as adrenal glands, but shows low expression in the central nervous system. During various disease states such as inflammation, neurodegeneration or cancer, the expression of mitochondrial TSPO in affected tissues is upregulated. The expression of TSPO can be traced for diagnostic purpose by high affinity radio-ligands. Moreover, the function of TSPO is modulated by synthetic as well as endogenous ligands with agonistic or antagonistic properties. Thus, TSPO ligands serve functions as both important biomarkers and putative therapeutic agents. In the present study, we aimed to characterize the effects of TSPO ligands on mouse BV-2 microglia cells, which express significant levels of TSPO, and analyzed the effect of XBD173, PK11195, and Ro5-4864, as well as the inflammatory reagent Lipopolysaccharides (LPS) on neurosteroid synthesis and on basic mitochondrial functions such as oxidative phosphorylation, mitochondrial membrane potential and Ca2+ homeostasis. Specific TSPO-dependent effects were separated from off-target effects by comparing lentiviral TSPO knockdown with shRNA scramble-controls and wild-type BV-2 cells. Our data demonstrate ligand-specific effects on different cellular functions in a TSPO-dependent or independent manner, providing evidence for both specific TSPO-mediated, as well as off-target effects.
Collapse
Affiliation(s)
- Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Luisa Wolf
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University of Regensburg, 93953 Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93953 Regensburg, Germany.
| |
Collapse
|
24
|
Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod 2019; 99:101-111. [PMID: 29566165 DOI: 10.1093/biolre/ioy059] [Citation(s) in RCA: 358] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/11/2018] [Indexed: 12/23/2022] Open
Abstract
Herein we summarize important discoveries made over many years about Leydig cell function and regulation. Fetal Leydig cells produce the high levels of androgen (testosterone or androstenedione, depending upon the species) required for differentiation of male genitalia and brain masculinization. Androgen production declines with loss of these cells, reaching a nadir at postpartum. Testosterone then gradually increases to high levels with adult Leydig cell development from stem cells. In the adult, luteinizing hormone (LH) binding to Leydig cell LH receptors stimulates cAMP production, increasing the rate of cholesterol translocation into the mitochondria. Cholesterol is metabolized to pregnenolone by the CYP11A1 enzyme at the inner mitochondrial membrane, and pregnenolone to testosterone by mitochondria and smooth endoplasmic reticulum enzymes. Cholesterol translocation to the inner mitochondrial membrane is mediated by a protein complex formed at mitochondrial contact sites that consists of the cholesterol binding translocator protein, voltage dependent anion channel, and other mitochondrial and cytosolic proteins. Steroidogenic acute regulatory protein acts at this complex to enhance cholesterol movement across the membranes and thus increase testosterone formation. The 14-3-3γ and ε adaptor proteins serve as negative regulators of steroidogenesis, controlling the maximal amount of steroid formed. Decline in testosterone production occurs in many aging and young men, resulting in metabolic and quality-of-life changes. Testosterone replacement therapy is widely used to elevate serum testosterone levels in hypogonadal men. With knowledge gained of the mechanisms involved in testosterone formation, it is also conceivable to use pharmacological means to increase serum testosterone by Leydig cell stimulation.
Collapse
Affiliation(s)
- Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
25
|
Tosh D, Ciancetta A, Mannes P, Warnick E, Janowsky A, Eshleman AJ, Gizewski E, Brust TF, Bohn LM, Auchampach JA, Gao ZG, Jacobson KA. Repurposing of a Nucleoside Scaffold from Adenosine Receptor Agonists to Opioid Receptor Antagonists. ACS OMEGA 2018; 3:12658-12678. [PMID: 30411015 PMCID: PMC6210068 DOI: 10.1021/acsomega.8b01237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
While screening off-target effects of rigid (N)-methanocarba-adenosine 5'-methylamides as A3 adenosine receptor (AR) agonists, we discovered μM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl 24 and propyl 30), which retained TSPO interaction (μM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 28 and 29, K i ≈ 40 nM), revealed μ-OR and DOR binding, and reduced AR affinity. Molecular docking and dynamics simulations located a putative KOR binding mode consistent with the observed affinities, placing C7 in a hydrophobic region. 3-Deaza modification permitted TSPO but not OR binding, and 1-deaza was permissive to both; ribose-restored analogues were inactive at both. Thus, we have repurposed a known AR nucleoside scaffold for OR antagonism, with a detailed hypothesis for KOR recognition.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Antonella Ciancetta
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Philip Mannes
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Eugene Warnick
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Aaron Janowsky
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Amy J. Eshleman
- VA
Portland Health Care System, Research Service (R&D-22), and Departments
of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, 3710 S.W. U.S. Veterans Hospital Blvd., Portland, Oregon 97239, United States
| | - Elizabeth Gizewski
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Tarsis F. Brust
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - Laura M. Bohn
- Departments
of Molecular Medicine and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United
States
| | - John A. Auchampach
- Department
of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhan-Guo Gao
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, National
Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Powrie YSL, Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: therapeutic potential? J Neuroinflammation 2018; 15:289. [PMID: 30326923 PMCID: PMC6192186 DOI: 10.1186/s12974-018-1324-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/24/2018] [Indexed: 02/06/2023] Open
Abstract
It is a well-known fact that DHEA declines on ageing and that it is linked to ageing-related neurodegeneration, which is characterised by gradual cognitive decline. Although DHEA is also associated with inflammation in the periphery, the link between DHEA and neuroinflammation in this context is less clear. This review drew from different bodies of literature to provide a more comprehensive picture of peripheral vs central endocrine shifts with advanced age—specifically in terms of DHEA. From this, we have formulated the hypothesis that DHEA decline is also linked to neuroinflammation and that increased localised availability of DHEA may have both therapeutic and preventative benefit to limit neurodegeneration. We provide a comprehensive discussion of literature on the potential for extragonadal DHEA synthesis by neuroglial cells and reflect on the feasibility of therapeutic manipulation of localised, central DHEA synthesis.
Collapse
Affiliation(s)
- Y S L Powrie
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - C Smith
- Department of Physiological Sciences, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
27
|
An Updated View of Translocator Protein (TSPO). Int J Mol Sci 2017; 18:ijms18122640. [PMID: 29211020 PMCID: PMC5751243 DOI: 10.3390/ijms18122640] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Decades of study on the role of mitochondria in living cells have evidenced the importance of the 18 kDa mitochondrial translocator protein (TSPO), first discovered in the 1977 as an alternative binding site for the benzodiazepine diazepam in the kidneys. This protein participates in a variety of cellular functions, including cholesterol transport, steroid hormone synthesis, mitochondrial respiration, permeability transition pore opening, apoptosis, and cell proliferation. Thus, TSPO has become an extremely attractive subcellular target for the early detection of disease states that involve the overexpression of this protein and the selective mitochondrial drug delivery. This special issue was programmed with the aim of summarizing the latest findings about the role of TSPO in eukaryotic cells and as a potential subcellular target of diagnostics or therapeutics. A total of 9 papers have been accepted for publication in this issue, in particular, 2 reviews and 7 primary data manuscripts, overall describing the main advances in this field.
Collapse
|
28
|
Barichello T, Simões LR, Collodel A, Giridharan VV, Dal-Pizzol F, Macedo D, Quevedo J. The translocator protein (18 kDa) and its role in neuropsychiatric disorders. Neurosci Biobehav Rev 2017; 83:183-199. [DOI: 10.1016/j.neubiorev.2017.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 10/10/2017] [Indexed: 02/08/2023]
|
29
|
Kim T, Son WS, Morshed MN, Londhe AM, Jung SY, Park JH, Park WK, Lim SM, Park KD, Cho SJ, Jeong KS, Lee J, Pae AN. Discovery of thienopyrrolotriazine derivatives to protect mitochondrial function against Aβ-induced neurotoxicity. Eur J Med Chem 2017; 141:240-256. [PMID: 29031071 DOI: 10.1016/j.ejmech.2017.09.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/13/2023]
Abstract
Recovery of mitochondrial dysfunction has gained increasing attention as an alternative therapeutic strategy for Alzheimer's disease (AD). Recent studies suggested that the 18 kDa mitochondrial translocator protein (TSPO) has the potential to serve as a drug target for the treatment of AD. In this study, we generated a structure-based pharmacophore model and virtually screened a commercial library, identifying SVH07 as a virtual hit, which contained a tricyclic core structure, thieno[2',3':4,5]pyrrolo[1,2-d][1,2,4]triazine group. A series of SVH07 analogues were synthesized and their effects on the mitochondrial membrane potential and ATP production were determined by using neuronal cells under Aβ-induced toxicity. Among these analogues, compound 26 significantly recovered mitochondrial membrane depolarization and ATP production. In vitro binding assays indicated that SVH07 and 26 showed high affinities to TSPO with the IC50 values in a nanomolar range. We believe that compound 26 is a promising lead compound for the development of TSPO-targeted mitochondrial functional modulators with therapeutic potential in AD.
Collapse
Affiliation(s)
- TaeHun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Woo Seung Son
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Mohammad Neaz Morshed
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Center for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Ashwini M Londhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Seo Yun Jung
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Woo-Kyu Park
- Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Gajeong-ro 141, Yuseong-gu, Daejon 34114, Republic of Korea
| | - Sang Min Lim
- Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea; Center for Neuro-Medicine, Korea Institute of Science and Technology (KIST), Hwarangno 14- gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea.
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biological Chemistry, Korea University of Science and Technology, Gajeong-ro 217, Yuseong-gu, Daejon 34113, Republic of Korea.
| |
Collapse
|
30
|
Costa B, Taliani S, Da Pozzo E, Barresi E, Robello M, Cavallini C, Cosconati S, Da Settimo F, Novellino E, Martini C. Residence Time, a New parameter to Predict Neurosteroidogenic Efficacy of Translocator Protein (TSPO) Ligands: the Case Study of N,N-Dialkyl-2-arylindol-3-ylglyoxylamides. ChemMedChem 2017; 12:1275-1278. [PMID: 28467680 DOI: 10.1002/cmdc.201700220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 01/18/2023]
Abstract
Targeting the biosynthetic pathway of neuroactive steroids with specific 18 kDa translocator protein (TSPO) ligands may be a viable therapeutic approach for a variety of neurodegenerative and neuropsychiatric diseases. However, the lack of correlation between binding affinity and in vitro steroidogenic efficacy has limited the identification of lead compounds by traditional affinity-based drug discovery strategies. Our recent research indicates that the key factor for robust steroidogenic TSPO ligand efficacy is not the binding affinity per se, but rather the time the compound spends in the target, namely its residence time (RT). The assessment of this kinetic parameter during the in vitro characterization of compounds appears mandatory in order to obtain structure-efficacy relationships suitable for the future development of novel molecules with promising pharmacological properties.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Marco Robello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Chiara Cavallini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Sandro Cosconati
- DiSTABiF, University of Campania Luigi Vanvitelli, 81100, Caserta, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
31
|
The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9536148. [PMID: 28386313 PMCID: PMC5366223 DOI: 10.1155/2017/9536148] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/06/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells.
Collapse
|