1
|
Tzika AC, Ullate-Agote A, Helleboid PY, Kummrow M. PMEL is involved in snake colour pattern transition from blotches to stripes. Nat Commun 2024; 15:7655. [PMID: 39227572 PMCID: PMC11371805 DOI: 10.1038/s41467-024-51927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
3
|
Deng Y, Qu X, Yao Y, Li M, He C, Guo S. Investigating the impact of pigmentation variation of breast muscle on growth traits, melanin deposition, and gene expression in Xuefeng black-bone chickens. Poult Sci 2024; 103:103691. [PMID: 38598910 PMCID: PMC11017053 DOI: 10.1016/j.psj.2024.103691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The blackness traits, considered an important economic factor in the black-bone chicken industry, still exhibits a common phenomenon of significant difference in blackness of breast muscle. To improve this phenomenon, this study compared growth traits, blackness traits, and transcriptome of breast muscles between the High Blackness Group (H group) and Low Blackness Group (L group) in the Xuefeng black-bone chickens. The results are as follows: 1) There was no significant difference in growth traits between the H group and the L group (P > 0.05). 2) The skin/breast muscle L values in the H group were significantly lower than those in the L group, while the breast muscle melanin content exhibited the opposite trend (P < 0.05). 3) A significant negative correlation was observed between breast muscle melanin content and skin/breast muscle L value (P < 0.05), and skin L value exhibiting a significant positive correlation with breast muscle L value (P < 0.05). 4) The breast muscle transcriptome comparison between the H group and L group revealed 831 and 405 DEGs in female and male chickens, respectively. This included 37 shared DEGs significantly enriched in melanosome, pigment granule, and the melanogenesis pathway. Seven candidate genes (DCT, PMEL, MLANA, TYRP1, OCA2, EDNRB2, and CALML4) may play a crucial role in the melanin production of breast muscle in Xuefeng black-bone chicken. The findings could accelerate the breeding process for achieving desired levels of breast muscle blackness and contribute to the exploration of the mechanisms underlying melanin production in black-bone chickens.
Collapse
Affiliation(s)
- Yuying Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiangyong Qu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yaling Yao
- Animal Husbandry and Aquatic Products Bureau of Huaihua City, Huaihua 418200, Hunan, China
| | - Meichun Li
- Hunan Yunfeifeng Agriculture Co. Ltd., Huaihua 418200, Hunan, China
| | - Changqing He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Songchang Guo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China.
| |
Collapse
|
4
|
Duda-Madej A, Stecko J, Szymańska N, Miętkiewicz A, Szandruk-Bender M. Amyloid, Crohn's disease, and Alzheimer's disease - are they linked? Front Cell Infect Microbiol 2024; 14:1393809. [PMID: 38779559 PMCID: PMC11109451 DOI: 10.3389/fcimb.2024.1393809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease that most frequently affects part of the distal ileum, but it may affect any part of the gastrointestinal tract. CD may also be related to systemic inflammation and extraintestinal manifestations. Alzheimer's disease (AD) is the most common neurodegenerative disease, gradually worsening behavioral and cognitive functions. Despite the meaningful progress, both diseases are still incurable and have a not fully explained, heterogeneous pathomechanism that includes immunological, microbiological, genetic, and environmental factors. Recently, emerging evidence indicates that chronic inflammatory condition corresponds to an increased risk of neurodegenerative diseases, and intestinal inflammation, including CD, increases the risk of AD. Even though it is now known that CD increases the risk of AD, the exact pathways connecting these two seemingly unrelated diseases remain still unclear. One of the key postulates is the gut-brain axis. There is increasing evidence that the gut microbiota with its proteins, DNA, and metabolites influence several processes related to the etiology of AD, including β-amyloid abnormality, Tau phosphorylation, and neuroinflammation. Considering the role of microbiota in both CD and AD pathology, in this review, we want to shed light on bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation and provide an overview of the current literature on amyloids as a potential linker between AD and CD.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | | | - Marta Szandruk-Bender
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
5
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Nakamura H, Fukuda M. Establishment of a synchronized tyrosinase transport system revealed a role of Tyrp1 in efficient melanogenesis by promoting tyrosinase targeting to melanosomes. Sci Rep 2024; 14:2529. [PMID: 38291221 PMCID: PMC10827793 DOI: 10.1038/s41598-024-53072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Tyrosinase (Tyr) is a key enzyme in the process of melanin synthesis that occurs exclusively within specialized organelles called melanosomes in melanocytes. Tyr is synthesized and post-translationally modified independently of the formation of melanosome precursors and then transported to immature melanosomes by a series of membrane trafficking events that includes endoplasmic reticulum (ER)-to-Golgi transport, post-Golgi trafficking, and endosomal transport. Although several important regulators of Tyr transport have been identified, their precise role in each Tyr transport event is not fully understood, because Tyr is present in several melanocyte organelles under steady-state conditions, thereby precluding the possibility of determining where Tyr is being transported at any given moment. In this study, we established a novel synchronized Tyr transport system in Tyr-knockout B16-F1 cells by using Tyr tagged with an artificial oligomerization domain FM4 (named Tyr-EGFP-FM4). Tyr-EGFP-FM4 was initially trapped at the ER under oligomerized conditions, but at 30 min after chemical dissociation into monomers, it was transported to the Golgi and at 9 h reached immature melanosomes. Melanin was then detected at 12 h after the ER exit of Tyr-EGFP-FM4. By using this synchronized Tyr transport system, we were able to demonstrate that Tyr-related protein 1 (Tyrp1), another melanogenic enzyme, is a positive regulator of efficient Tyr targeting to immature melanosomes. Thus, the synchronized Tyr transport system should serve as a useful tool for analyzing the molecular mechanism of each Tyr transport event in melanocytes as well as in the search for new drugs or cosmetics that artificially regulate Tyr transport.
Collapse
Affiliation(s)
- Hikari Nakamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-Ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
7
|
Le NTK, Kang EJ, Park JH, Kang K. Catechol-Amyloid Interactions. Chembiochem 2023; 24:e202300628. [PMID: 37850717 DOI: 10.1002/cbic.202300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
This review introduces multifaceted mutual interactions between molecules containing a catechol moiety and aggregation-prone proteins. The complex relationships between these two molecular species have previously been elucidated primarily in a unidirectional manner, as demonstrated in cases involving the development of catechol-based inhibitors for amyloid aggregation and the elucidation of the role of functional amyloid fibers in melanin biosynthesis. This review aims to consolidate scattered clues pertaining to catechol-based amyloid inhibitors, functional amyloid scaffold of melanin biosynthesis, and chemically designed peptide fibers for providing chemical insights into the role of the local three-dimensional orientation of functional groups in manifesting such interactions. These orientations may play crucial, yet undiscovered, roles in various supramolecular structures.
Collapse
Affiliation(s)
- Nghia T K Le
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
8
|
Wittung-Stafshede P. Chemical catalysis by biological amyloids. Biochem Soc Trans 2023; 51:1967-1974. [PMID: 37743793 PMCID: PMC10657172 DOI: 10.1042/bst20230617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Toxic aggregation of proteins and peptides into amyloid fibers is the basis of several human diseases. In each disease, a particular peptide noncovalently assembles into long thin structures with an overall cross-β fold. Amyloids are not only related to disease: functional amyloids are found in many biological systems and artificial peptide amyloids are developed into novel nanomaterials. Amyloid fibers can act as template for the generation of more amyloids but are considered nonreactive in chemical catalysis. The perception of amyloids as chemically inert species was recently challenged by in vitro work on three human amyloid systems. With the use of model substrates, amyloid-β, α-synuclein and glucagon amyloids were found to catalyze biologically relevant chemical reactions. The detected catalytic activity was much less than that of 'real' enzymes, but like that of designed (synthetic) catalytic amyloids. I here describe the current knowledge around this new activity of natural amyloids and the putative connection to metabolic changes in amyloid diseases. These pioneering studies imply that catalytic activity is an unexplored gain-of-function activity of disease amyloids. In fact, all biological amyloids may harbor intrinsic catalytic activity, tuned by each amyloid's particular fold, that await discovery.
Collapse
|
9
|
Muccioli S, Brillo V, Varanita T, Rossin F, Zaltron E, Velle A, Alessio G, Angi B, Severin F, Tosi A, D'Eletto M, Occhigrossi L, Falasca L, Checchetto V, Ciaccio R, Fascì A, Chieregato L, Rebelo AP, Giacomello M, Rosato A, Szabò I, Romualdi C, Piacentini M, Leanza L. Transglutaminase Type 2-MITF axis regulates phenotype switching in skin cutaneous melanoma. Cell Death Dis 2023; 14:704. [PMID: 37898636 PMCID: PMC10613311 DOI: 10.1038/s41419-023-06223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Skin cutaneous melanoma (SKCM) is the deadliest form of skin cancer due to its high heterogeneity that drives tumor aggressiveness. Melanoma plasticity consists of two distinct phenotypic states that co-exist in the tumor niche, the proliferative and the invasive, respectively associated with a high and low expression of MITF, the master regulator of melanocyte lineage. However, despite efforts, melanoma research is still far from exhaustively dissecting this phenomenon. Here, we discovered a key function of Transglutaminase Type-2 (TG2) in regulating melanogenesis by modulating MITF transcription factor expression and its transcriptional activity. Importantly, we demonstrated that TG2 expression affects melanoma invasiveness, highlighting its positive value in SKCM. These results suggest that TG2 may have implications in the regulation of the phenotype switching by promoting melanoma differentiation and impairing its metastatic potential. Our findings offer potential perspectives to unravel melanoma vulnerabilities via tuning intra-tumor heterogeneity.
Collapse
Affiliation(s)
- Silvia Muccioli
- Department of Biology, University of Padua, Padua, Italy
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Federica Rossin
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Angelo Velle
- Department of Biology, University of Padua, Padua, Italy
| | | | - Beatrice Angi
- Department of Biology, University of Padua, Padua, Italy
| | | | - Anna Tosi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Manuela D'Eletto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Luca Occhigrossi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Laura Falasca
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | | | | | - Amelia Fascì
- Department of Biology, University of Padua, Padua, Italy
| | | | | | | | - Antonio Rosato
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padua, Padua, Italy
| | | | - Mauro Piacentini
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
10
|
Chandhok S, Pereira L, Momchilova EA, Marijan D, Zapf R, Lacroix E, Kaur A, Keymanesh S, Krieger C, Audas TE. Stress-mediated aggregation of disease-associated proteins in amyloid bodies. Sci Rep 2023; 13:14471. [PMID: 37660155 PMCID: PMC10475078 DOI: 10.1038/s41598-023-41712-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the β-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.
Collapse
Affiliation(s)
- Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Lionel Pereira
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Evgenia A Momchilova
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Richard Zapf
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Avneet Kaur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Shayan Keymanesh
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Charles Krieger
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, €, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
11
|
Zajkowski T, Lee MD, Sharma S, Vallota-Eastman A, Kuska M, Malczewska M, Rothschild LJ. Conserved functions of prion candidates suggest a primeval role of protein self-templating. Proteins 2023; 91:1298-1315. [PMID: 37519023 DOI: 10.1002/prot.26558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023]
Abstract
Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Universities Space Research Association at NASA Ames Research Center, Mountain View, California, USA
- Polish Astrobiology Society, Warsaw, Poland
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, USA
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- KBR, NASA Ames Research Center, Mountain View, California, USA
| | - Siddhant Sharma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Alec Vallota-Eastman
- Department of Earth Science, University of California, Santa Barbara, California, USA
| | - Mikołaj Kuska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Małgorzata Malczewska
- Polish Astrobiology Society, Warsaw, Poland
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Mountain View, California, USA
| |
Collapse
|
12
|
Rus AA, Militaru IV, Popa I, Munteanu CVA, Sima LE, Platt N, Platt FM, Petrescu ȘM. NPC1 plays a role in the trafficking of specific cargo to melanosomes. J Biol Chem 2023; 299:105024. [PMID: 37423302 PMCID: PMC10407747 DOI: 10.1016/j.jbc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.
Collapse
Affiliation(s)
- Alina Adriana Rus
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana V Militaru
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana Popa
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.
| |
Collapse
|
13
|
Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial Properties of Amyloidogenic Proteins and Peptides: New Data in the COVID Era. Biomedicines 2023; 11:1215. [PMID: 37189833 PMCID: PMC10136278 DOI: 10.3390/biomedicines11041215] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
For a long time, studies of amyloidogenic proteins and peptides (amyloidogenic PPs) have been focused basically on their harmful properties and association with diseases. A vast amount of research has investigated the structure of pathogenic amyloids forming fibrous deposits within or around cells and the mechanisms of their detrimental actions. Much less has been known about the physiologic functions and beneficial properties of amyloidogenic PPs. At the same time, amyloidogenic PPs have various useful properties. For example, they may render neurons resistant to viral infection and propagation and stimulate autophagy. We discuss here some of amyloidogenic PPs' detrimental and beneficial properties using as examples beta-amyloid (β-amyloid), implicated in the pathogenesis of Alzheimer's disease (AD), and α-synuclein-one of the hallmarks of Parkinson's disease (PD). Recently amyloidogenic PPs' antiviral and antimicrobial properties have attracted attention because of the COVID-19 pandemic and the growing threat of other viral and bacterial-induced diseases. Importantly, several COVID-19 viral proteins, e.g., spike, nucleocapsid, and envelope proteins, may become amyloidogenic after infection and combine their harmful action with the effect of endogenous APPs. A central area of current investigations is the study of the structural properties of amyloidogenic PPs, defining their beneficial and harmful properties, and identifying triggers that transform physiologically important amyloidogenic PPs into vicious substances. These directions are of paramount importance during the current SARS-CoV-2 global health crisis.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Fatemeh N. Emamzadeh
- Analytical Development Department, Iovance Biotherapeutics, Inc., Tampa, FL 33612, USA
| | - Mariya Titova
- The College of Liberal Arts & Sciences, Kansas University, Lawrence, KS 66045, USA
| | - Alexei A. Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
15
|
Abstract
Amyloid fibers of the protein α-synuclein, found in Lewy body deposits, are hallmarks of Parkinson's disease. We here show that α-synuclein amyloids catalyze biologically relevant chemical reactions in vitro. Amyloid fibers, but not monomers, of α-synuclein catalyzed hydrolysis of the model ester para-nitrophenyl acetate and dephosphorylation of the model phosphoester para-nitrophenyl-orthophosphate. When His50 was replaced with Ala in α-synuclein, dephosphorylation but not esterase activity of amyloids was diminished. Truncation of the protein's C-terminus had no effect on fiber catalytic efficiency. Catalytic activity of α-synuclein fibers may be a new gain-of-function that plays a role in Parkinson's disease.
Collapse
|
16
|
Guo MS, Wu Q, Dong TT, Tsim KWK. The UV-induced uptake of melanosome by skin keratinocyte is triggered by α7 nicotinic acetylcholine receptor-mediated phagocytosis. FEBS J 2023; 290:724-744. [PMID: 36048140 DOI: 10.1111/febs.16613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/10/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023]
Abstract
The melanosome is an organelle that produces melanin for skin pigmentation, which is synthesized by epidermal melanocytes, subsequently transported and internalized by epidermal keratinocytes. Exposure to ultraviolet (UV) from sunlight radiation is a major stimulator of melanosome uptake by keratinocytes. Acetylcholine (ACh) is known to be released by keratinocytes under UV exposure, which regulates melanin production in melanocytes by participating in which has been named as 'skin synapse'. Here, the role of cholinergic molecules, i.e. ACh and α7 nicotinic acetylcholine receptor (nAChR), in regulating melanosome uptake through phagocytosis by keratinocytes was illustrated. In cultured keratinocytes (HaCaT cells), the fluorescent beads at different sizes imitating melanosomes, or melanosomes, were phagocytosed under UV exposure. The UV-induced phagocytosis in keratinocytes was markedly increased by applied ACh, an acetylcholinesterase (AChE) inhibitor or an α7 nAChR agonist. By contrast, the antagonist of α7 nAChR was able to fully block the UV-induced phagocytosis, suggesting the role of α7 nAChR in this event. The intracellular Ca++ mobilization was triggered by UV exposure, accounting for the initiation of phagocytosis. The blockage of UV-mediated Ca++ mobilization, triggered by BAPTA-AM or α7 nAChR antagonist, resulted in a complete termination of phagocytosis. Besides, the phosphorylation of cofilin, as well as expression and activation of RhoA, accounting for phagocytosis was induced by UV exposure: the phosphorylation was blocked by BAPTA-AM or α7 nAChR antagonist. The result suggests that the cholinergic system, especially α7 nAChR, is playing a regulatory role in modulating melanosome uptake in keratinocytes being induced by UV exposure.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China.,Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
17
|
Nasrin M, Ahmed O, Han X, Nojebuzzaman M, Abo-Ahmed AI, Yazawa S, Osawa M. Generation of Pmel-dependent conditional and inducible Cre-driver mouse line for melanocytic-targeted gene manipulation. Pigment Cell Melanoma Res 2023; 36:53-70. [PMID: 36318272 DOI: 10.1111/pcmr.13074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
Conditional and inducible gene targeting using Cre/loxP-mediated recombination is a powerful reverse genetics approach used to study spatiotemporal gene functions in specified cell types. To enable temporal gene manipulation in the melanocyte lineage, we established a novel inducible Cre-driver mouse line by targeting an all-in-one tetracycline/doxycycline (Dox)-inducible Cre expression cassette into the Pmel locus (PmelP2A-TetON3G-TRE3G-iCre ), a gene locus preferentially expressed in pigment cells. By crossing these Cre-driver mice with a strong Cre-reporter mouse line, Gt(ROSA)26Sortm9(CAG-tdTomato)Hze , we show the effectiveness of the PmelP2A-TetON3G-TRE3G-iCre mouse line in facilitating Dox-inducible Cre/loxP recombination in a wide variety of pigment cell lineages including hair follicle melanocytes and their stem cells. Furthermore, to demonstrate proof of concept, we ablated Notch signaling postnatally in the PmelP2A-TetON3G-TRE3G-iCre mice. In agreement with the previously reported phenotype, induced ablation of Notch signaling in the melanocyte lineage resulted in premature hair graying, demonstrating the utility of the PmelP2A-TetON3G-TRE3G-iCre allele. Therefore, the PmelP2A-TetON3G-TRE3G-iCre mouse line is suitable for assessing gene functions in melanocytes using an in vivo inducible reverse genetics approach. Furthermore, we unexpectedly identified previously unrecognized PMEL-expressing cells in non-pigmentary organs in the mice, suggesting unanticipated functions of PMEL other than melanosome formation.
Collapse
Affiliation(s)
- Morsheda Nasrin
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Osama Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Xujun Han
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Md Nojebuzzaman
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ahmed I Abo-Ahmed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Shigenobu Yazawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masatake Osawa
- Department of Regeneration and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
18
|
Xie Y, Xu Z, Shi W, Mei X. Biological function and application of melanocytes induced and transformed by mouse bone marrow mesenchymal stem cells. Regen Ther 2022; 21:148-156. [PMID: 35844295 PMCID: PMC9260302 DOI: 10.1016/j.reth.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Background A large number of autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. The purpose of this experiment is to explore the application of melanocytes induced by mesenchymal stem cells to clinical treatment. Therefore, we have induced mouse bone marrow mesenchymal stem cells (BMMSCs) into melanocytes (miMels) in the previous experiment. This experiment continues the previous experiment to further study the biological functions of miMels and their application in tissue engineering. Methods We examined whether miMels can produce active tyrosinase, melanin, and response to α-MSH. The ability of miMels to produce melanin to keratinocytes was tested by co-culture. By applying miMels to tissue-engineered skin, the survival and function of miMels on the surface of nude mice were verified. Results MiMels can produce active tyrosinase and melanin, and can pass melanin to the co-cultured keratinocytes. Under the stimulation of α-MSH, the active tyrosinase and melanin content of miMels increased. We tried to apply it to the establishment of tissue-engineered skin and obtained tissue-engineered skin containing miMels. Then we tried to transplant tissue-engineered skin on the back skin of nude mice and succeeded. The transplanted miMels survived in local tissues, synthesized active tyrosinase and melanin, and expressed the marker protein of melanocytes. Conclusion In short, miMels can be used as a cell source for tissue engineering skin. MiMels not only have a typical melanocyte morphology but also have the same biological functions as normal melanocytes. What's more important is its successful application in mouse tissue-engineered experiments.
Collapse
|
19
|
Yang L, Wei F, Zhan X, Fan H, Zhao P, Huang G, Chang J, Lei Y, Hu Y. Evolutionary conservation genomics reveals recent speciation and local adaptation in threatened takins. Mol Biol Evol 2022; 39:6590449. [PMID: 35599233 PMCID: PMC9174980 DOI: 10.1093/molbev/msac111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Incorrect species delimitation will lead to inappropriate conservation decisions, especially for threatened species. The takin (Budorcas taxicolor) is a large artiodactyl endemic to the Himalayan–Hengduan–Qinling Mountains and is well known for its threatened status and peculiar appearance. However, the speciation, intraspecies taxonomy, evolutionary history, and adaptive evolution of this species still remain unclear, which greatly hampers its scientific conservation. Here, we de novo assembled a high-quality chromosome-level genome of takin and resequenced the genomes of 75 wild takins. Phylogenomics revealed that takin was positioned at the root of Caprinae. Population genomics based on the autosome, X chromosome, and Y chromosome SNPs and mitochondrial genomes consistently revealed the existence of two phylogenetic species and recent speciation in takins: the Himalayan takin (B. taxicolor) and the Chinese takin (B. tibetana), with the support of morphological evidence. Two genetically divergent subspecies were identified in both takin species, rejecting three previously proposed taxonomical viewpoints. Furthermore, their distribution boundaries were determined, suggesting that large rivers play important roles in shaping the genetic partition. Compared with the other subspecies, the Qinling subspecies presented the lowest genomic diversity, higher linkage disequilibrium, inbreeding, and genetic load, thus is in urgent need of genetic management and protection. Moreover, coat color gene (PMEL) variation may be responsible for the adaptive coat color difference between the two species following Gloger’s rule. Our findings provide novel insights into the recent speciation, local adaptation, scientific conservation of takins, and biogeography of the Himalaya–Hengduan biodiversity hotspot.
Collapse
Affiliation(s)
- Lin Yang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Xiangjiang Zhan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Zhao
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an, Shaanxi, China
| | - Guangping Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yinghu Lei
- Shaanxi (Louguantai) Rescue and Breeding Center for Rare Wildlife, Xi’an, Shaanxi, China
| | - Yibo Hu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
20
|
Wang C, Xu J, Kocher TD, Li M, Wang D. CRISPR knockouts of pmela and pmelb engineered a golden tilapia by regulating relative pigment cell abundance. J Hered 2022; 113:398-413. [PMID: 35385582 DOI: 10.1093/jhered/esac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Premelanosome protein (pmel) is a key gene for melanogenesis. Mutations in this gene are responsible for white plumage in chicken, but its role in pigmentation of fish remains to be demonstrated. In this study we found that most fishes have two pmel genes arising from the teleost-specific whole genome duplication. Both pmela and pmelb were expressed at high levels in the eyes and skin of Nile tilapia. We mutated both genes in tilapia using CRISPR/Cas9. Homozygous mutation of pmela resulted in yellowish body color with weak vertical bars and a hypo-pigmented retinal pigment epithelium (RPE) due to significantly reduced number and size of melanophores. In contrast, we observed an increased number and size of xanthophores in mutants compared to wild-type fish. Homozygous mutation of pmelb resulted in a similar, but milder phenotype than pmela-/- mutants. Double mutation of pmela and pmelb resulted in loss of additional melanophores compared to the pmela-/- mutants, and also an increase in the number and size of xanthophores, producing a golden body color. The RPE pigmentation of pmela-/-;pmelb-/- was similar to pmela-/- mutants, with much less pigmentation than pmelb-/- mutants and wild-type fish. Taken together, our results indicate that, while both pmel genes are important for the formation of body color in tilapia, pmela plays a more important role than pmelb. To our knowledge, this is the first report on mutation of pmelb or both pmela;pmelb in fish. Studies on these mutants suggest new strategies for breeding golden tilapia, and also provide a new model for studies of pmel function in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jia Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, USA
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
21
|
Hassan MN, Nabi F, Khan AN, Hussain M, Siddiqui WA, Uversky VN, Khan RH. The amyloid state of proteins: A boon or bane? Int J Biol Macromol 2022; 200:593-617. [PMID: 35074333 DOI: 10.1016/j.ijbiomac.2022.01.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
Proteins and their aggregation is significant field of research due to their association with various conformational maladies including well-known neurodegenerative diseases like Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases. Amyloids despite being given negative role for decades are also believed to play a functional role in bacteria to humans. In this review, we discuss both facets of amyloid. We have shed light on AD, which is one of the most common age-related neurodegenerative disease caused by accumulation of Aβ fibrils as extracellular senile plagues. We also discuss PD caused by the aggregation and deposition of α-synuclein in form of Lewy bodies and neurites. Other amyloid-associated diseases such as HD and amyotrophic lateral sclerosis (ALS) are also discussed. We have also reviewed functional amyloids that have various biological roles in both prokaryotes and eukaryotes that includes formation of biofilm and cell attachment in bacteria to hormone storage in humans, We discuss in detail the role of Curli fibrils' in biofilm formation, chaplins in cell attachment to peptide hormones, and Pre-Melansomal Protein (PMEL) roles. The disease-related and functional amyloids are compared with regard to their structural integrity, variation in regulation, and speed of forming aggregates and elucidate how amyloids have turned from foe to friend.
Collapse
Affiliation(s)
- Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asra Nasir Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Murtaza Hussain
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Waseem A Siddiqui
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Vladimir N Uversky
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, 10 Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy 11 of Sciences", Pushchino, Moscow Region 142290, Russia; Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College 13 of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
22
|
Yang M, Johnsson P, Bräutigam L, Yang XR, Thrane K, Gao J, Tobin NP, Zhou Y, Yu R, Nagy N, Engström PG, Tuominen R, Eriksson H, Lundeberg J, Tucker MA, Goldstein AM, Egyhazi-Brage S, Zhao J, Cao Y, Höiom V. Novel loss-of-function variant in DENND5A impedes melanosomal cargo transport and predisposes to familial cutaneous melanoma. Genet Med 2022; 24:157-169. [PMID: 34906508 PMCID: PMC10617683 DOI: 10.1016/j.gim.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE More than half of the familial cutaneous melanomas have unknown genetic predisposition. This study aims at characterizing a novel melanoma susceptibility gene. METHODS We performed exome and targeted sequencing in melanoma-prone families without any known melanoma susceptibility genes. We analyzed the expression of candidate gene DENND5A in melanoma samples in relation to pigmentation and UV signature. Functional studies were carried out using microscopic approaches and zebrafish model. RESULTS We identified a novel DENND5A truncating variant that segregated with melanoma in a Swedish family and 2 additional rare DENND5A variants, 1 of which segregated with the disease in an American family. We found that DENND5A is significantly enriched in pigmented melanoma tissue. Our functional studies show that loss of DENND5A function leads to decrease in melanin content in vitro and pigmentation defects in vivo. Mechanistically, harboring the truncating variant or being suppressed leads to DENND5A losing its interaction with SNX1 and its ability to transport the SNX1-associated vesicles from melanosomes. Consequently, untethered SNX1-premelanosome protein and redundant tyrosinase are redirected to lysosomal degradation by default, causing decrease in melanin content. CONCLUSION Our findings provide evidence of a physiological role of DENND5A in the skin context and link its variants to melanoma susceptibility.
Collapse
Affiliation(s)
- Muyi Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Per Johnsson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Ludwig Institute for Cancer Research, Stockholm, Sweden
| | - Lars Bräutigam
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD
| | - Kim Thrane
- Department of Gene Technology, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jiwei Gao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas P Tobin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yitian Zhou
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rong Yu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Nagy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pär G Engström
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Eriksson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Margaret A Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD
| | | | - Jian Zhao
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
23
|
Ghassemi M, Roohaninasab M, Kamani SA, Sadeghzadeh-Bazargan A, Goodarzi A. Comparison of the efficacy and safety of intralesional injection of tranexamic acid and the topical application of Kligman combination drug in the treatment of macular amyloidosis. Dermatol Ther 2021; 35:e15213. [PMID: 34797597 DOI: 10.1111/dth.15213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/19/2023]
Abstract
Macular amyloidosis (MA) is a common form of cutaneous amyloidosis that manifests as dark spots consisting of brown pigments with a rippled pattern on the skin, and the treatment of this condition is highly challenging. The aim of this study was to compare the efficacy and safety of intralesional injection of tranexamic acid (TXA) and topical application of Kligman combination drug in the treatment of macular amyloidosis. In this double-blind clinical trial, a total of 43 patients, who were diagnosed with MA, were treated with two different methods of intralesional injection of tranexamic acid and topical application of Kligman combination drug. Both therapeutic methods were effective in improving MA and significantly reduced hyperpigmentation of the treated areas, but tranexamic acid was significantly more effective than the Kligman combination drug. Significantly, greater improvements were observed in the group of patients treated with tranexamic acid. In the tranexamic acid treatment group, ΔE was reduced from 11.39 in the first session to 8.53 in the third session, and in the Kligman treatment group, it was reduced from 8.79 in the first session to 6.32 in the third session (p < 0.05). In addition, the pruritus score in patients treated with topical tranexamic acid injection was lower compared to the patients treated with the topical application of the Kligman combination drug. The results of this study demonstrated the significant positive effects of both treatment methods, but in terms of reducing melanin content, intralesional injection of tranexamic acid was a more effective method. Both treatments considered safe for MA. In tranexamic acid group, patients logically experienced a tolerable pain during injection but they significantly had significantly lower local pruritic discomfort during study. So, based on the positive findings of this study we suggest to use tranexamic acid in combination with other effective therapeutic methods for treatment of MA especially use of its topically applied form in combination with non-aggressive needling that results in better drug delivery without the experience of injection pain. Selection of the best administration route of tranexamic acid for hyperpigmented lesions depends on the each patient characteristic and their previous theraputic results that may vary case by case.
Collapse
Affiliation(s)
- Mohammadreza Ghassemi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Seyed Abolfazl Kamani
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Afsaneh Sadeghzadeh-Bazargan
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Azadeh Goodarzi
- Department of Dermatology, Rasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
24
|
Cerenius L, Söderhäll K. Immune properties of invertebrate phenoloxidases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104098. [PMID: 33857469 DOI: 10.1016/j.dci.2021.104098] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Melanin production from different types of phenoloxidases (POs) confers immunity from a variety of pathogens ranging from viruses and microorganisms to parasites. The arthropod proPO expresses a variety of activities including cytokine, opsonin and microbiocidal activities independent of and even without melanin production. Proteolytic processing of proPO and its activating enzyme gives rise to several peptide fragments with a variety of separate activities in a process reminiscent of vertebrate complement system activation although proPO bears no sequence similarity to vertebrate complement factors. Pathogens influence proPO activation and thereby what types of immune effects that will be produced. An increasing number of specialised pathogens - from parasites to viruses - have been identified who can synthesise compounds specifically aimed at the proPO-system. In invertebrates outside the arthropods phylogenetically unrelated POs are participating in melanization reactions obviously aimed at intruders and/or aberrant tissues.
Collapse
Affiliation(s)
- Lage Cerenius
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Kenneth Söderhäll
- Department of Organismal Biology,Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden
| |
Collapse
|
25
|
Xie B, Song X. The impaired unfolded protein-premelanosome protein and transient receptor potential channels-autophagy axes in apoptotic melanocytes in vitiligo. Pigment Cell Melanoma Res 2021; 35:6-17. [PMID: 34333860 DOI: 10.1111/pcmr.13006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Vitiligo is an autoimmune skin disease, characterized by depigmentation and epidermal melanocytes loss. The specific mechanisms underlying vitiligo have not been fully understood. As a result, treating vitiligo is a dermatological challenge. Recently, much attention has been paid to the dysfunction and interaction of organelles under environmental stress. The impaired organelles could generate misfolded proteins, particularly accumulated toxic premelanosome protein (PMEL) amyloid oligomers, activating the autoimmune system and cause melanocyte damage. Unfolded protein response (UPR) dysfunction accelerates toxic PMEL accumulation. Herein, we presented a narrative review on UPR's role in vitiligo, the misfolded PMEL-induced attack of the autoimmune system under autophagy dysfunction caused by abnormal activation of transient receptor potential (TRP) channels and the background of UPR system defects in melanocytes. All of these mechanisms were integrated to form UPR/PMEL-TRP channels/autophagy axis, providing a new understanding of vitiligo pathogenesis.
Collapse
Affiliation(s)
- Bo Xie
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Departement of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Zajkowski T, Lee MD, Mondal SS, Carbajal A, Dec R, Brennock PD, Piast RW, Snyder JE, Bense NB, Dzwolak W, Jarosz DF, Rothschild LJ. The Hunt for Ancient Prions: Archaeal Prion-Like Domains Form Amyloid-Based Epigenetic Elements. Mol Biol Evol 2021; 38:2088-2103. [PMID: 33480998 DOI: 10.1093/molbev/msab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here, we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, eight formed amyloids, and six acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions-thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor.
Collapse
Affiliation(s)
- Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,University Space Research Association, Mountain View, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Shamba S Mondal
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Amanda Carbajal
- University Space Research Association, Mountain View, CA, USA.,University of California Santa Cruz, Santa Cruz, CA, USA
| | - Robert Dec
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | - Radoslaw W Piast
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | | | | | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lynn J Rothschild
- Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
27
|
Zhang S, Chen K, Liu H, Jing C, Zhang X, Qu C, Yu S. PMEL as a Prognostic Biomarker and Negatively Associated With Immune Infiltration in Skin Cutaneous Melanoma (SKCM). J Immunother 2021; 44:214-223. [PMID: 34028390 PMCID: PMC8225232 DOI: 10.1097/cji.0000000000000374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Premelanosome protein (PMEL) is crucial for the formation of melanosomal fibrils through the transition from stage I to stage II melanosomes. It was used as a target antigen in some adoptive T-cell therapy of melanoma. The correlation of PMEL to prognosis and immune cell infiltration level are unknown in melanoma. The PMEL expression was evaluated via Tumor Immune Estimation Resource, Oncomine and Gene Expression Profiling Interactive Analysis (GEPIA). We also evaluate the influence of PMEL on overall survival via GEPIA, PrognoScan, and immunohistochemistry in human tissue microarray. The correlation between PMEL expression level and immune cell or gene markers of immune infiltration level was explored on Tumor Immune Estimation Resource and GEPIA. PMEL expression was significantly higher in skin cutaneous melanoma (SKCM) and SKCM-metastasis in comparison with the other cancers. In SKCM, PMEL expression in high levels was associated with poor overall survival. In both SKCM and SKCM-metastasis patients, PMEL expression is negatively correlated with the infiltration cells of CD8+ T cells, macrophages, and neutrophils. Programmed cell-death protein 1 just showed response rates ranging from 20% to 40% in patients with melanoma, so it is critical to discover a new therapeutic target. PMEL is negatively associated with immune cell infiltration and can be as a negative prognosis marker or new immunotherapy target in SKCM and SKCM-metastasis.
Collapse
Affiliation(s)
| | - Kun Chen
- State Key Laboratory of Molecular Oncology and Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | - Chunfeng Qu
- State Key Laboratory of Molecular Oncology and Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | |
Collapse
|
28
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
29
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
30
|
Decoding the Evolution of Melanin in Vertebrates. Trends Ecol Evol 2021; 36:430-443. [DOI: 10.1016/j.tree.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
|
31
|
Farris F, Matafora V, Bachi A. The emerging role of β-secretases in cancer. J Exp Clin Cancer Res 2021; 40:147. [PMID: 33926496 PMCID: PMC8082908 DOI: 10.1186/s13046-021-01953-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACE1 and BACE2 belong to a class of proteases called β-secretases involved in ectodomain shedding of different transmembrane substrates. These enzymes have been extensively studied in Alzheimer's disease as they are responsible for the processing of APP in neurotoxic Aβ peptides. These proteases, especially BACE2, are overexpressed in tumors and correlate with poor prognosis. Recently, different research groups tried to address the role of BACE1 and 2 in cancer development and progression. In this review, we summarize the latest findings on β-secretases in cancer, highlighting the mechanisms that build the rationale to propose inhibitors of these proteins as a new line of treatment for different tumor types.
Collapse
Affiliation(s)
| | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
32
|
Molecular and Biochemical Basis of Minocycline-Induced Hyperpigmentation-The Study on Normal Human Melanocytes Exposed to UVA and UVB Radiation. Int J Mol Sci 2021; 22:ijms22073755. [PMID: 33916535 PMCID: PMC8038496 DOI: 10.3390/ijms22073755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023] Open
Abstract
Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.
Collapse
|
33
|
Fennema Galparsoro D, Zhou X, Jaaloul A, Piccirilli F, Vetri V, Foderà V. Conformational Transitions upon Maturation Rule Surface and pH-Responsiveness of α-Lactalbumin Microparticulates. ACS APPLIED BIO MATERIALS 2021; 4:1876-1887. [PMID: 35014457 DOI: 10.1021/acsabm.0c01541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
De novo designed protein supramolecular structures are nowadays attracting much interest as highly performing biomaterials. While a clear advantage is provided by the intrinsic biocompatibility and biodegradability of protein and peptide building blocks, developing sustainable and green bottom up approaches for finely tuning the material properties still remains a challenge. Here, we present an experimental study on the formation of protein microparticles in the form of particulates from the protein α-lactalbumin using bulk mixing in water solution and high temperature. Once formed, the structure and stability of these spherical protein condensates change upon further thermal incubation while the size of aggregates does not significantly increase. Combining advanced microscopy and spectroscopy methods, we prove that this process, named maturation, is characterized by a gradual increase of amyloid-like structure in protein particulates, an enhancement in surface roughness and in molecular compactness, providing a higher stability and resistance of the structure in acidic environments. When dissolved at pH 2, early stage particulates disassemble into a homogeneous population of small oligomers, while the late stage particulates remain unaffected. Particulates at the intermediate stage of maturation partially disassemble into a heterogeneous population of fragments. Importantly, differently matured microparticles show different features when loading a model lipophilic molecule. Our findings suggest conformational transitions localized at the interface as a key step in the maturation of amyloid protein condensates, promoting this phenomenon as an intrinsic knob to tailor the properties of protein microparticles formed via bulk mixing in aqueous solution. This provides a simple and sustainable platform for the design and realization of protein microparticles for tailored applications.
Collapse
Affiliation(s)
- Dirk Fennema Galparsoro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle scienze Edificio 18, 90128 Palermo, Italy
| | - Xin Zhou
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anas Jaaloul
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Federica Piccirilli
- CNR-IOM, Istituto Officina dei Materiali, Area Science Park - Basovizza, Strada Statale 14 km 163,5, 34149 Trieste, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle scienze Edificio 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Adelmann CH, Traunbauer AK, Chen B, Condon KJ, Chan SH, Kunchok T, Lewis CA, Sabatini DM. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. Nature 2020; 588:699-704. [PMID: 33208952 PMCID: PMC7770032 DOI: 10.1038/s41586-020-2937-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Dozens of genes contribute to the wide variation in human pigmentation. Many of these genes encode proteins that localize to the melanosome-the organelle, related to the lysosome, that synthesizes pigment-but have unclear functions1,2. Here we describe MelanoIP, a method for rapidly isolating melanosomes and profiling their labile metabolite contents. We use this method to study MFSD12, a transmembrane protein of unknown molecular function that, when suppressed, causes darker pigmentation in mice and humans3,4. We find that MFSD12 is required to maintain normal levels of cystine-the oxidized dimer of cysteine-in melanosomes, and to produce cysteinyldopas, the precursors of pheomelanin synthesis made in melanosomes via cysteine oxidation5,6. Tracing and biochemical analyses show that MFSD12 is necessary for the import of cysteine into melanosomes and, in non-pigmented cells, lysosomes. Indeed, loss of MFSD12 reduced the accumulation of cystine in lysosomes of fibroblasts from patients with cystinosis, a lysosomal-storage disease caused by inactivation of the lysosomal cystine exporter cystinosin7-9. Thus, MFSD12 is an essential component of the cysteine importer for melanosomes and lysosomes.
Collapse
Affiliation(s)
- Charles H Adelmann
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna K Traunbauer
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brandon Chen
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kendall J Condon
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
36
|
Hofmeister Ions Modulate the Autocatalytic Amyloidogenesis of an Intrinsically Disordered Functional Amyloid Domain via Unusual Biphasic Kinetics. J Mol Biol 2020; 432:6173-6186. [PMID: 33068637 DOI: 10.1016/j.jmb.2020.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Hofmeister ions are thought to play fundamentally important roles in protein solubility, folding, stability, and function. Salt ions profoundly influence the course of protein misfolding, aggregation, and amyloid formation associated with devastating human diseases. However, the molecular origin of the salt-effect in protein aggregation remains elusive. Here, we report an unusual biphasic amyloidogenesis of a pH-responsive, intrinsically disordered, oligopeptide repeat domain of a melanosomal protein, Pmel17, that regulates the amyloid-assisted melanin synthesis in mammals via functional amyloid formation. We demonstrate that a symphony of molecular events involving charge-peptide interactions and hydration, in conjunction with secondary phenomena, critically governs the course of this biphasic amyloid assembly. We show that at mildly acidic pH, typical of melanosomes, highly amyloidogenic oligomeric units assemble into metastable, dendritic, fractal networks following the forward Hofmeister series. However, the subsequent condensation of fractal networks via conformational maturation into amyloid fibrils follows an inverse Hofmeister series due to fragmentation events coupled with secondary nucleation processes. Our results indicate that ions exert a strong influence on the aggregation kinetics as well as on the nanoscale morphology and also modulate the autocatalytic amplification processes during amyloid assembly via an intriguing dual Hofmeister effect. This unique interplay of molecular drivers will be of prime importance in delineating the aggregation pathways of a multitude of intrinsically disordered proteins involved in physiology and disease.
Collapse
|
37
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
38
|
Matafora V, Farris F, Restuccia U, Tamburri S, Martano G, Bernardelli C, Sofia A, Pisati F, Casagrande F, Lazzari L, Marsoni S, Bonoldi E, Bachi A. Amyloid aggregates accumulate in melanoma metastasis modulating YAP activity. EMBO Rep 2020; 21:e50446. [PMID: 32749065 PMCID: PMC7507035 DOI: 10.15252/embr.202050446] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Melanoma progression is generally associated with increased transcriptional activity mediated by the Yes-associated protein (YAP). Mechanical signals from the extracellular matrix are sensed by YAP, which then activates the expression of proliferative genes, promoting melanoma progression and drug resistance. Which extracellular signals induce mechanotransduction, and how this is mediated, is not completely understood. Here, using secretome analyses, we reveal the extracellular accumulation of amyloidogenic proteins, i.e. premelanosome protein (PMEL), in metastatic melanoma, together with proteins that assist amyloid maturation into fibrils. We also confirm the accumulation of amyloid-like aggregates, similar to those detected in Alzheimer disease, in metastatic cell lines, as well as in human melanoma biopsies. Mechanistically, beta-secretase 2 (BACE2) regulates the maturation of these aggregates, which in turn induce YAP activity. We also demonstrate that recombinant PMEL fibrils are sufficient to induce mechanotransduction, triggering YAP signaling. Finally, we demonstrate that BACE inhibition affects cell proliferation and increases drug sensitivity, highlighting the importance of amyloids for melanoma survival, and the use of beta-secretase inhibitors as potential therapeutic approach for metastatic melanoma.
Collapse
Affiliation(s)
| | | | - Umberto Restuccia
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
ADIENNE Pharma & BiotechCaponagoItaly
| | - Simone Tamburri
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
Department of Experimental OncologyIEO‐European Institute of Oncology IRCCSMilanItaly
| | | | - Clara Bernardelli
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Present address:
Fondazione Politecnico di MilanoMilanItaly
| | - Andrea Sofia
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- University of InsubriaVareseItaly
| | - Federica Pisati
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
- Cogentech SRL Benefit CorporationMilanItaly
| | | | - Luca Lazzari
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
| | | | - Emanuela Bonoldi
- Department of Laboratory MedicineDivision of PathologyGrande Ospedale Metropolitano NiguardaMilanItaly
| | - Angela Bachi
- IFOM‐ FIRC Institute of Molecular OncologyMilanItaly
| |
Collapse
|
39
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
40
|
Bécot A, Volgers C, van Niel G. Transmissible Endosomal Intoxication: A Balance between Exosomes and Lysosomes at the Basis of Intercellular Amyloid Propagation. Biomedicines 2020; 8:biomedicines8080272. [PMID: 32759666 PMCID: PMC7459801 DOI: 10.3390/biomedicines8080272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
In Alzheimer′s disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including β-amyloid (Aβ) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.
Collapse
|
41
|
Sun L, Guo C, Yan L, Li H, Sun J, Huo X, Xie X, Hu J. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol Med Rep 2020; 22:733-738. [PMID: 32626944 PMCID: PMC7339447 DOI: 10.3892/mmr.2020.11139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/16/2020] [Indexed: 11/06/2022] Open
Abstract
Melanogenesis is the synthesis of the skin pigment melanin, which serves a critical role in the study of pigmentary skin diseases. Syntenin has been identified as a melanosome protein, but its role in melanogenesis is not completely understood. The present study aimed to investigate the effects and mechanisms underlying syntenin on melanogenesis in immortalized human melanocytes. Depletion of syntenin expression increased both tyrosinase (Tyr) activity and melanin content. Syntenin silencing also increased the protein expression levels of Tyr, pre‑melanosomal protein and microphthalmia‑associated transcription factor. In addition, the results indicated that syntenin regulated melanogenesis by upregulating the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK). Taken together, these findings suggested that the regulation of melanogenesis by syntenin may be mediated by the activation of p38 MAPK and that syntenin might provide new insights into the pathogenesis of pigmented diseases.
Collapse
Affiliation(s)
- Lijun Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chunyan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Liting Yan
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Huijin Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an, Shaanxi 710021, P.R. China
| | - Jingying Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xueping Huo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
42
|
Functional amyloids of eukaryotes: criteria, classification, and biological significance. Curr Genet 2020; 66:849-866. [DOI: 10.1007/s00294-020-01079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022]
|
43
|
Solé-Boldo L, Raddatz G, Schütz S, Mallm JP, Rippe K, Lonsdorf AS, Rodríguez-Paredes M, Lyko F. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol 2020; 3:188. [PMID: 32327715 PMCID: PMC7181753 DOI: 10.1038/s42003-020-0922-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Fibroblasts are an essential cell population for human skin architecture and function. While fibroblast heterogeneity is well established, this phenomenon has not been analyzed systematically yet. We have used single-cell RNA sequencing to analyze the transcriptomes of more than 5,000 fibroblasts from a sun-protected area in healthy human donors. Our results define four main subpopulations that can be spatially localized and show differential secretory, mesenchymal and pro-inflammatory functional annotations. Importantly, we found that this fibroblast 'priming' becomes reduced with age. We also show that aging causes a substantial reduction in the predicted interactions between dermal fibroblasts and other skin cells, including undifferentiated keratinocytes at the dermal-epidermal junction. Our work thus provides evidence for a functional specialization of human dermal fibroblasts and identifies the partial loss of cellular identity as an important age-related change in the human dermis. These findings have important implications for understanding human skin aging and its associated phenotypes.
Collapse
Affiliation(s)
- Llorenç Solé-Boldo
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Sabrina Schütz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center and Bioquant, 69120, Heidelberg, Germany
| | - Anke S Lonsdorf
- Department of Dermatology, University Hospital, Ruprecht-Karls University of Heidelberg, 69120, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Amyloidogenic Peptides in Human Neuro-Degenerative Diseases and in Microorganisms: A Sorrow Shared Is a Sorrow Halved? Molecules 2020; 25:molecules25040925. [PMID: 32093040 PMCID: PMC7070710 DOI: 10.3390/molecules25040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
The term "amyloid" refers to proteinaceous deposits of peptides that might be generated from larger precursor proteins e.g., by proteolysis. Common to these peptides is a stable cross-β dominated secondary structure which allows self-assembly, leading to insoluble oligomers and lastly to fibrils. These highly ordered protein aggregates have been, for a long time, mainly associated with human neurodegenerative diseases such as Alzheimer's disease (Amyloid-β peptides). However, they also exert physiological functions such as in release of deposited hormones in human beings. In the light of the rediscovery of our microbial commensals as important companions in health and disease, the fact that microbes also possess amyloidogenic peptides is intriguing. Transmission of amyloids by iatrogenic means or by consumption of contaminated meat from diseased animals is a well-known fact. What if also our microbial commensals might drive human amyloidosis or suffer from our aggregated amyloids? Moreover, as the microbial amyloids are evolutionarily older, we might learn from these organisms how to cope with the sword of Damocles forged of endogenous, potentially toxic peptides. This review summarizes knowledge about the interplay between human amyloids involved in neurodegenerative diseases and microbial amyloids.
Collapse
|
45
|
Kan M, Koziol-White C, Shumyatcher M, Johnson M, Jester W, Panettieri RA, Himes BE. Airway Smooth Muscle-Specific Transcriptomic Signatures of Glucocorticoid Exposure. Am J Respir Cell Mol Biol 2020; 61:110-120. [PMID: 30694689 PMCID: PMC6604213 DOI: 10.1165/rcmb.2018-0385oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucocorticoids, commonly used asthma controller medications, decrease symptoms in most patients, but some remain symptomatic despite high-dose treatment. The physiological basis underlying the glucocorticoid response, especially in asthma patients with severe, refractory disease, is not fully understood. We sought to identify differences between the transcriptomic response of airway smooth muscle (ASM) cells derived from donors with fatal asthma and donors without asthma to glucocorticoid exposure and to compare ASM-specific changes with those observed in other cell types. In cells derived from nine donors with fatal asthma and eight donors without asthma, RNA sequencing was used to measure ASM transcriptome changes after exposure to budesonide (100 nM 24 h) or control vehicle (DMSO). Differential expression results were obtained for this dataset, as well as 13 publicly available glucocorticoid-response transcriptomic datasets corresponding to seven cell types. Specific genes were differentially expressed in response to glucocorticoid exposure (7,835 and 6,957 in ASM cells derived from donors with fatal asthma and donors without asthma, respectively; adjusted P value < 0.05). Transcriptomic changes in response to glucocorticoid exposure were similar in ASM derived from donors with fatal asthma and donors without asthma, with enriched ontological pathways that included cytokine- and chemokine-related categories. A comparison of glucocorticoid-induced changes in the nonasthma ASM transcriptome with those observed in six other cell types showed that ASM has a distinct glucocorticoid-response signature that is also present in ASM cells from donors with fatal asthma.
Collapse
Affiliation(s)
- Mengyuan Kan
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Cynthia Koziol-White
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Maya Shumyatcher
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Martin Johnson
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - William Jester
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Blanca E Himes
- 1 Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| |
Collapse
|
46
|
Jiang H, Jayadev S, Lardelli M, Newman M. A Review of the Familial Alzheimer's Disease Locus PRESENILIN 2 and Its Relationship to PRESENILIN 1. J Alzheimers Dis 2019; 66:1323-1339. [PMID: 30412492 DOI: 10.3233/jad-180656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) genes are loci for mutations causing familial Alzheimer's disease (fAD). However, the function of these genes and how they contribute to fAD pathogenesis has not been fully determined. This review provides a summary of the overlapping and independent functions of the PRESENILINS with a focus on the lesser studied PSEN2. As a core component of the γ-secretase complex, the PSEN2 protein is involved in many γ-secretase-related physiological activities, including innate immunity, Notch signaling, autophagy, and mitochondrial function. These physiological activities have all been associated with AD progression, indicating that PSEN2 plays a particular role in AD pathogenesis.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
47
|
Béziers P, Ducrest AL, San-Jose LM, Simon C, Roulin A. Expression of glucocorticoid and mineralocorticoid receptor genes co-varies with a stress-related colour signal in barn owls. Gen Comp Endocrinol 2019; 283:113224. [PMID: 31323230 DOI: 10.1016/j.ygcen.2019.113224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
Glucocorticoid hormones are important intermediates between an organism and its environment. They enable an organism to adjust its behavioural and physiological processes in response to environmental changes by binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) expressed in many tissues, including the integument. The regulation of glucocorticoids co-varies with melanin-based colouration in numerous species, an association that might result from pleiotropic effects of genes in the melanocortin system and evolve within a signalling context. Most studies have focused on the circulating levels of glucocorticoids disregarding the receptors that mediate their action, and that might partly account for the covariation between the regulation of stress and melanin-based colouration. We investigated the association of the expression levels of GR and MR genes with melanin-based colouration in the growing feathers of nestling barn owls (Tyto alba). We also explored the association between GR and MR expression levels and the expression of genes related to the melanocortin system and melanogenesis to better understand the origin of the link between the expression of receptors to which corticosterone binds and melanin-based colouration. Nestling barn owls displaying larger eumelanic black feather spots expressed GR and MR at lower levels than smaller-spotted individuals. However, we found that the expression of the GR and MR genes was positively rather than negatively correlated with the expression of genes involved in the deposition of melanin pigments at the time we sampled the nestlings. This provides mixed evidence of the association between melanin-based traits and MR and GR gene expression. The finding that the expression of GR and MR was positively associated with the expression of the PCSK2 gene (encoding one of the protein convertase responsible for the production of hormone peptide ACTH and α-MSH) suggests that the melanocortin system may be implicated in the establishment of the covariation between melanin-based colour and the expression of receptors to which glucocorticoids bind. However, further studies investigating the expression of melanin-based traits with stress-related endpoints at different time points of feather development will be necessary to understand better the proximate mechanism linking melanin-based traits with stress.
Collapse
Affiliation(s)
- Paul Béziers
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
Sheng J, Olrichs NK, Geerts WJ, Kaloyanova DV, Helms JB. Metal ions and redox balance regulate distinct amyloid-like aggregation pathways of GAPR-1. Sci Rep 2019; 9:15048. [PMID: 31636315 PMCID: PMC6803662 DOI: 10.1038/s41598-019-51232-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-Related 1 proteins) are characterized by the presence of a structurally conserved CAP domain. The common structure-function relationship of this domain is still poorly understood. In this study, we unravel specific molecular mechanisms modulating the quaternary structure of the mammalian CAP protein GAPR-1 (Golgi-Associated plant Pathogenesis-Related protein 1). Copper ions are shown to induce a distinct amyloid-like aggregation pathway of GAPR-1 in the presence of heparin. This involves an immediate shift from native multimers to monomers which are prone to form amyloid-like fibrils. The Cu2+-induced aggregation pathway is independent of a conserved metal-binding site and involves the formation of disulfide bonds during the nucleation process. The elongation process occurs independently of the presence of Cu2+ ions, and amyloid-like aggregation can proceed under oxidative conditions. In contrast, the Zn2+-dependent aggregation pathway was found to be independent of cysteines and was reversible upon removal of Zn2+ ions. Together, our results provide insight into the regulation of the quaternary structure of GAPR-1 by metal ions and redox homeostasis with potential implications for regulatory mechanisms of other CAP proteins.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nick K Olrichs
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willie J Geerts
- Biomolecular Imaging, Bijvoet Center, Utrecht University, Utrecht, The Netherlands
| | - Dora V Kaloyanova
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, Cordero RJB, Cole RN, McCaffery JM, Stark RE, Casadevall A. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem 2019; 294:10471-10489. [PMID: 31118223 PMCID: PMC6615676 DOI: 10.1074/jbc.ra119.008684] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Indexed: 11/06/2022] Open
Abstract
Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.
Collapse
Affiliation(s)
- Emma Camacho
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Raghav Vij
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Christine Chrissian
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
| | - Rafael Prados-Rosales
- the Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
- the Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, 28049 Madrid, Spain
| | - David Gil
- the CIC bioGUNE, 48160 Derio, Vizcaya, Spain
| | - Robert N O'Meally
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Radames J B Cordero
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Robert N Cole
- the Johns Hopkins Mass Spectrometry and Proteomic Facility, The Johns Hopkins University, Baltimore, Maryland 21205, and
| | - J Michael McCaffery
- the Integrated Imaging Center, Department of Biology, Engineering in Oncology Center, and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Ruth E Stark
- the Department of Chemistry and Biochemistry, City College of New York and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, the City University of New York
- Ph.D. Programs in Biochemistry and
- Chemistry, New York, New York 10016
| | - Arturo Casadevall
- From the Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205,
| |
Collapse
|
50
|
Bissig C, Croisé P, Heiligenstein X, Hurbain I, Lenk GM, Kaufman E, Sannerud R, Annaert W, Meisler MH, Weisman LS, Raposo G, van Niel G. The PIKfyve complex regulates the early melanosome homeostasis required for physiological amyloid formation. J Cell Sci 2019; 132:jcs.229500. [PMID: 30709920 DOI: 10.1242/jcs.229500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Christin Bissig
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Pauline Croisé
- IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Emily Kaufman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Ragna Sannerud
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Wim Annaert
- VIB Center for Brain & Disease Research, 3000 Leuven, Belgium.,KU Leuven, Department of Neurosciences, 3000 Leuven, Belgium
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Lois S Weisman
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| | - Guillaume van Niel
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France .,IPNP, Institute of Psychiatry and Neuroscience of Paris, Hopital Saint-Anne, Université Paris Descartes, INSERM U894, 75014 Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, 75005 Paris, France
| |
Collapse
|