1
|
Li B, Zhang J, Tian P, Gao X, Song X, Pan X, Wu Y. Cytological, Physiological, and Transcriptomic Analyses of the Leaf Color Mutant Yellow Leaf 20 ( yl20) in Eggplant ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:855. [PMID: 38592960 PMCID: PMC10974653 DOI: 10.3390/plants13060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.
Collapse
Affiliation(s)
- Bing Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Jingjing Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Peng Tian
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiurui Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xue Song
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiuqing Pan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Yanrong Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| |
Collapse
|
2
|
Sun YW, Wang XY, Liu L, Zhang Q, Xi YJ, Wang PW. Cloning and functional study of GmRPI2, which is the critical gene of photosynthesis in soybean. BREEDING SCIENCE 2023; 73:290-299. [PMID: 37840982 PMCID: PMC10570876 DOI: 10.1270/jsbbs.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/18/2023] [Indexed: 10/17/2023]
Abstract
Light provides energy for photosynthesis and is also an important environmental signal that regulates plant growth and development. Ribose-5-phosphate isomerase plays a crucial role in photosynthesis. However, ribose-5-phosphate isomerase has yet to be studied in soybean photosynthesis. To understand the biological function of GmRPI2, in this study, GmRPI2 was cloned, plant overexpression vectors and gene editing vectors were successfully constructed, and transformed into recipient soybean JN74 using the Agrobacterium-mediated method. Using qRT-PCR, we analyzed that GmRPI2 gene expression was highest in leaves, second highest in roots, and lowest in stems. Promoter analysis revealed the presence of multiple cis-acting elements related to light response in the promoter region of GmRPI2. Compared with the control soybean plants, the net photosynthetic rate and transpiration rate of the overexpression lines were higher than those of the control and gene editing lines, while the intercellular CO2 concentration was significantly lower than that of the control and gene editing lines; the total chlorophyll, chlorophyll a, chlorophyll b contents and soluble sugar contents of the overexpression plants were significantly higher than those of the recipient and editing plants, indicating that the GmRPI2 gene can increase The GmRPI2 gene can increase the photosynthetic capacity of soybean plants, providing a theoretical basis and genetic resources for improving soybean yield by regulating photosynthetic efficiency.
Collapse
Affiliation(s)
- Yu Wei Sun
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Xin Yu Wang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Lu Liu
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Qi Zhang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Yong Jing Xi
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Pi Wu Wang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| |
Collapse
|
3
|
Guo J, Wu Y, Wang T, Xin Y, Wang G, Zhou Q, Xu LA. GbFLSa overexpression negatively regulates proanthocyanin biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1093656. [PMID: 36875575 PMCID: PMC9975577 DOI: 10.3389/fpls.2023.1093656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Flavonoids are important secondary metabolites with extensive pharmacological functions. Ginkgo biloba L. (ginkgo) has attracted extensive attention because of its high flavonoid medicinal value. However, little is understood about ginkgo flavonol biosynthesis. Herein, we cloned the full-length gingko GbFLSa gene (1314 bp), which encodes a 363 amino acid protein that has a typical 2-oxoglutarate (2OG)-Fe(II) oxygenase region. Recombinant GbFLSa protein with a molecular mass of 41 kDa was expressed in Escherichia coli BL21(DE3). The protein was localized to the cytoplasm. Moreover, proanthocyanins, including catechin, epicatechin, epigallocatechin and gallocatechin, were significantly less abundant in transgenic poplar than in nontransgenic (CK) plants. In addition, dihydroflavonol 4-reductase, anthocyanidin synthase and leucoanthocyanidin reductase expression levels were significantly lower than those of their CK counterparts. GbFLSa thus encodes a functional protein that might negatively regulate proanthocyanin biosynthesis. This study helps elucidate the role of GbFLSa in plant metabolism and the potential molecular mechanism of flavonoid biosynthesis.
Collapse
Affiliation(s)
- Jing Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - Yue Xin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qi Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forest Breeding Institute, Zhejiang Academy of Forestry, Hangzhou, China
| | - Li-An Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Bin Y, Zhang Q, Su Y, Wang C, Jiang Q, Song Z, Zhou C. Transcriptome analysis of Citrus limon infected with Citrus yellow vein clearing virus. BMC Genomics 2023; 24:65. [PMID: 36750773 PMCID: PMC9903606 DOI: 10.1186/s12864-023-09151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Citrus yellow vein clearing virus (CYVCV) is the causative agent of citrus yellow vein clearing disease, and poses a serious threat to the lemon industry in Asia. The common symptoms of CYVCV-infected lemon plants are leaf crinkling, leaf chlorotic mottling, and yellow vein clearing. However, the molecular mechanisms underlying CYVCV-citrus interaction that responsible for symptom occurrence is still unclarified. In this study, RNA-seq was performed to analyze the gene expression patterns of 'Eureka' lemon (Citrus limon Burm. f.) plants in response to CYVCV infection. RESULTS There were 3691 differentially expressed genes (DEGs) identified by comparison between mock and CYVCV-infected lemon plants through RNA-seq. Bioinformatics analyses revealed that these DEGs were components of different pathways involved in phenylpropanoid biosynthesis, brassinosteroid biosynthesis, flavonoid biosynthesis and photosynthesis. Among these, the DEGs related to phytohormone metabolism and photosynthesis pathways were further enriched and analyzed. This study showed that different phytohormone-related genes had different responses toward CYVCV infection, however almost all of the photosynthesis-related DEGs were down-regulated in the CYVCV-infected lemon plants. The obtained RNA-seq data were validated by RT-qPCR using 12 randomly chosen genes, and the results of mRNA expression analysis were consistent with those of RNA-seq. CONCLUSIONS The phytohormone biosynthesis, signaling and photosynthesis-related genes of lemon plants were probably involved in systemic infection and symptom occurrence of CYVCV. Notably, CYVCV infection had regulatory effects on the biosynthesis and signaling of phytohormone, which likely improve systemic infection of CYVCV. Additionally, CYVCV infection could cause structural changes in chloroplast and inhibition of photosynthesis pathway, which probably contribute to the appearance of leaf chlorotic mottling and yellow vein clearing in CYVCV-infected lemon plants. This study illustrates the dynamic nature of the citrus-CYVCV interaction at the transcriptome level and provides new insights into the molecular mechanism underlying the pathogenesis of CYVCV in lemon plants.
Collapse
Affiliation(s)
- Yu Bin
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qi Zhang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Yue Su
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Chunqing Wang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Qiqi Jiang
- grid.263906.80000 0001 0362 4044Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712 China
| | - Zhen Song
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing, 400712, China.
| |
Collapse
|
5
|
Zhang L, Zhang J, Mao Y, Yin Y, Shen X. Physiological analysis and transcriptome sequencing of a delayed-green leaf mutant 'Duojiao' of ornamental crabapple ( Malus sp.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1833-1848. [PMID: 36484024 PMCID: PMC9723064 DOI: 10.1007/s12298-022-01248-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Malus spectabilis 'Duojiao' is a spontaneous delayed-green leaf color mutant of M. spectabilis 'Riversii' and has chloroplasts with irregularly arranged vesicles and indistinct stromal lamellae. The yellow leaves of mutant have less chlorophyll (Chl), carotenoids, and flavonoids. Measurement of photosynthetic gas exchange indicated that the mutant has lower photosynthetic activity than 'Riversii' plants. Transcriptome sequencing with the Illumina platform was used to characterize differences in gene expression between the leaves of plants with yellow and green colors and elucidate the molecular mechanisms responsible for variation in leaf color in ornamental crabapple. In the comparison group of mutant yellow leaves and the maternal green leaves, 1848 differentially significant expressed genes (DEGs) were annotated by transcriptomic analysis. Many DEGs and transcription factors were identified related to chloroplast development, Chl synthesis and degradation, photosynthesis, carotenoid biosynthesis, flavonoid biosynthesis and other pathways related to plant leaf color formation. Among these, the Chl biosynthesis-related coproporphyrinogen gene, oxidative decarboxylase gene, and Chl a oxygenase gene were down-regulated, indicating that Chl biosynthesis was blocked. GLK1, which regulates chloroplast development, was down-regulated in yellow leaves. Parallel experiments showed that the content of the Chl synthesis precursors, protoporphyrinogen IX, chlorophyllide a, and chlorophyllide b and the activity of chlorophyllogen III oxidase and chlorophyllide a oxygenase in the yellow leaves of 'Duojiao' were lower than those in the green leaves of 'Riversii'. Thus, leaf color formation is greatly affected by Chl metabolism and chloroplast development. The reliability of the RNA-sequencing data was confirmed by quantitative real-time PCR analysis with 12 selected DEGs. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01248-7.
Collapse
Affiliation(s)
- Lulu Zhang
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Junkang Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, Beijing, 100083 China
| | - Yunfei Mao
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yijun Yin
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Xiang Shen
- State Key Laboratory for Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| |
Collapse
|
6
|
Gan Y, Kou Y, Yan F, Wang X, Wang H, Song X, Zhang M, Zhao X, Jia R, Ge H, Yang S. Comparative Transcriptome Profiling Analysis Reveals the Adaptive Molecular Mechanism of Yellow-Green Leaf in Rosa beggeriana 'Aurea'. FRONTIERS IN PLANT SCIENCE 2022; 13:845662. [PMID: 35401615 PMCID: PMC8987444 DOI: 10.3389/fpls.2022.845662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 05/08/2023]
Abstract
Rosa beggeriana 'Aurea' is a yellow-green leaf (yl) mutant and originated from Rosa beggeriana Schrenk by 60Co-γ irradiation, which is an important ornamental woody species. However, the molecular mechanism of the yl mutant remains unknown. Herein, comparative transcriptome profiling was performed between the yl type and normal green color type (WT) by RNA sequencing. A total of 3,372 significantly differentially expressed genes (DEGs) were identified, consisting of 1,585 upregulated genes and 1,787 downregulated genes. Genes that took part in metabolic of biological process (1,090), membrane of cellular component (728), catalytic (1,114), and binding of molecular function (840) were significantly different in transcription level. DEGs involved in chlorophyll biosynthesis, carotenoids biosynthesis, cutin, suberine, wax biosynthesis, photosynthesis, chloroplast development, photosynthesis-antenna proteins, photosystem I (PSI) and photosystem II (PSII) components, CO2 fixation, ribosomal structure, and biogenesis related genes were downregulated. Meanwhile, linoleic acid metabolism, siroheme biosynthesis, and carbon source of pigments biosynthesis through methylerythritol 4-phosphate (MEP) pathways were upregulated. Moreover, a total of 147 putative transcription factors were signification different expression, involving NAC, WRKY, bHLH, MYB and AP2/ERF, C2H2, GRAS, and bZIP family gene. Our results showed that the disturbed pigments biosynthesis result in yl color by altering the ratio of chlorophylls and carotenoids in yl mutants. The yl mutants may evoke other metabolic pathways to compensate for the photodamage caused by the insufficient structure and function of chloroplasts, such as enhanced MEP pathways and linoleic acid metabolism against oxidative stress. This research can provide a reference for the application of leaf color mutants in the future.
Collapse
Affiliation(s)
- Ying Gan
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaping Kou
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Yan
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Wang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, China
| | - Hongqian Wang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangshang Song
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Ge
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuhua Yang
- National Center of China for Flowers Improvement, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Wang F, Chen N, Shen S. iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism of Golden-Yellow Leaf Mutant in Hybrid Paper Mulberry. Int J Mol Sci 2021; 23:127. [PMID: 35008552 PMCID: PMC8745438 DOI: 10.3390/ijms23010127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Plant growth and development relies on the conversion of light energy into chemical energy, which takes place in the leaves. Chlorophyll mutant variations are important for studying certain physiological processes, including chlorophyll metabolism, chloroplast biogenesis, and photosynthesis. To uncover the mechanisms of the golden-yellow phenotype of the hybrid paper mulberry plant, this study used physiological, cytological, and iTRAQ-based proteomic analyses to compare the green and golden-yellow leaves of hybrid paper mulberry. Physiological results showed that the mutants of hybrid paper mulberry showed golden-yellow leaves, reduced chlorophyll, and carotenoid content, and increased flavonoid content compared with wild-type plants. Cytological observations revealed defective chloroplasts in the mesophyll cells of the mutants. Results demonstrated that 4766 proteins were identified from the hybrid paper mulberry leaves, of which 168 proteins displayed differential accumulations between the green and mutant leaves. The differentially accumulated proteins were primarily involved in chlorophyll synthesis, carotenoid metabolism, and photosynthesis. In addition, differentially accumulated proteins are associated with ribosome pathways and could enable plants to adapt to environmental conditions by regulating the proteome to reduce the impact of chlorophyll reduction on growth and survival. Altogether, this study provides a better understanding of the formation mechanism of the golden-yellow leaf phenotype by combining proteomic approaches.
Collapse
Affiliation(s)
- Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naizhi Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China;
| |
Collapse
|
8
|
Xie N, Zhang C, Zhou P, Gao X, Wang M, Tian S, Lu C, Wang K, Shen C. Transcriptomic analyses reveal variegation-induced metabolic changes leading to high L-theanine levels in albino sectors of variegated tea (Camellia sinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:29-39. [PMID: 34749269 DOI: 10.1016/j.plaphy.2021.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Camellia sinensis cv. 'Yanling Huayecha' (YHC) is an albino-green chimaeric tea mutant with stable genetic traits. Here, we analysed the cell ultrastructure, photosynthetic pigments, amino acids, and transcriptomes of the albino, mosaic, and green zones of YHC. Well-organized thylakoids were found in chloroplasts in mesophyll cells of the green zone but not the albino zone. The albino zone of the leaves contained almost no photosynthetic pigment. However, the levels of total amino acids and theanine were higher in the albino zone than in the mosaic and green zones. A transcriptomic analysis showed that carbon metabolism, nitrogen metabolism and amino acid biosynthesis showed differences among the different zones. Metabolite and transcriptomic analyses revealed that (1) downregulation of CsPPOX1 and damage to thylakoids in the albino zone may block chlorophyll synthesis; (2) downregulation of CsLHCB6, CsFdC2 and CsSCY1 influences chloroplast biogenesis and thylakoid membrane formation, which may contribute to the appearance of variegated tea leaves; and (3) tea plant variegation disrupts the balance between carbon and nitrogen metabolism and promotes the accumulation of amino acids, and upregulation of CsTSⅠ and CsAlaDC may enhance L-theanine synthesis. In summary, our study provides a theoretical basis and valuable insights for elucidating the molecular mechanisms and promoting the economic utilization of variegation in tea.
Collapse
Affiliation(s)
- Nianci Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Pinqian Zhou
- Tea Research Institute of Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Xizhi Gao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minghan Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shuanghong Tian
- Xiangxi Academy of Agricultural Sciences, Jishou, Hunan, 416000, China
| | - Cui Lu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Kunbo Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
9
|
Fu M, Zhou Z, Yang X, Liu Z, Zheng J, Huang X, Wang L, Ye J, Zhang W, Liao Y, Xu F. Comparative transcriptome and microbial community sequencing provide insight into yellow-leaf phenotype of Camellia japonica. BMC PLANT BIOLOGY 2021; 21:416. [PMID: 34507525 PMCID: PMC8431858 DOI: 10.1186/s12870-021-03198-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Leaf color variation is a common trait in plants and widely distributed in many plants. In this study, a leaf color mutation in Camellia japonica (cultivar named as Maguxianzi, M) was used as material, and the mechanism of leaf color variation was revealed by physiological, cytological, transcriptome and microbiome analyses. RESULTS The yellowing C. japonica (M) exhibits lower pigment content than its parent (cultivar named as Huafurong, H), especially chlorophyll (Chl) and carotenoid, and leaves of M have weaker photosynthesis. Subsequently, the results of transmission electron microscopy(TEM) exhibited that M chloroplast was accompanied by broken thylakoid membrane, degraded thylakoid grana, and filled with many vesicles. Furthermore, comparative transcriptome sequencing identified 3,298 differentially expressed genes (DEGs). KEGG annotation analysis results showed that 69 significantly enriched DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and plant-pathogen interaction. On this basis, we sequenced the microbial diversity of the H and M leaves. The sequencing results suggested that the abundance of Didymella in the M leaves was significantly higher than that in the H leaves, which meant that M leaves might be infected by Didymella. CONCLUSIONS Therefore, we speculated that Didymella infected M leaves while reduced Chl and carotenoid content by damaging chloroplast structures, and altered the intensity of photosynthesis, thereby causing the leaf yellowing phenomenon of C. japonica (M). This research will provide new insights into the leaf color variation mechanism and lay a theoretical foundation for plant breeding and molecular markers.
Collapse
Affiliation(s)
- Mingyue Fu
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Zhongcheng Zhou
- Department of Forestry Ecology, Hubei Ecology Polytechnic College, 430070 Wuhan, China
| | - Xu Yang
- Department of Forestry Ecology, Hubei Ecology Polytechnic College, 430070 Wuhan, China
| | - Zhongbing Liu
- School of Horticulture and Landscape, Wuhan University of Bioengineering, 430415 Wuhan, China
| | - Jiarui Zheng
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Ling Wang
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, 434025 Jingzhou, Hubei China
| |
Collapse
|
10
|
Araújo GDS, Lopes LDS, Paula-Marinho SDO, Mesquita RO, Nagano CS, Vasconcelos FR, de Carvalho HH, Moura ADAAN, Marques EC, Gomes-Filho E. H 2O 2 priming induces proteomic responses to defense against salt stress in maize. PLANT MOLECULAR BIOLOGY 2021; 106:33-48. [PMID: 33594577 DOI: 10.1007/s11103-021-01127-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE H2O2 priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress. ABSTACRT Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by H2O2 priming for salt stress tolerance, particularly on proteome modulation. Improving maize cultivation in areas subjected to salinity is imperative for the local economy and food security. Thereby, this study aimed to investigate physiological changes linked with post-translational protein events induced by foliar H2O2 priming of Zea mays plants under salt stress. As expected, salt treatment promoted a considerable accumulation of Na+ ions, a 12-fold increase. It drastically affected growth parameters and relative water content, as well as promoted adverse alteration in the proteome profile, when compared to the absence of salt conditions. Conversely, H2O2 priming was beneficial via specific proteome reprogramming, which promoted better response to salinity by 16% reduction in Na+ content and shoots growth improvement, increasing 61% in dry mass. The identified proteins were associated with photosynthesis and redox homeostasis, critical metabolic pathways for helping plants survive in saline stress by the protection of chloroplasts organization and carbon fixation, as well as state redox. This research provides new proteomic data to improve understanding and forward identifying biotechnological strategies to promote salt stress tolerance.
Collapse
Affiliation(s)
- Gyedre Dos Santos Araújo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lineker de Sousa Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Celso Shiniti Nagano
- Department of Fishing Engineering, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Fábio Roger Vasconcelos
- Federal Institute of Education, Science and Technology of Ceará (IFCE), Boa Viagem, CE, Brazil
| | | | | | - Elton Camelo Marques
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
11
|
Wu Y, Guo J, Wang T, Cao F, Wang G. Metabolomic and transcriptomic analyses of mutant yellow leaves provide insights into pigment synthesis and metabolism in Ginkgo biloba. BMC Genomics 2020; 21:858. [PMID: 33267778 PMCID: PMC7709416 DOI: 10.1186/s12864-020-07259-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ginkgo (Ginkgo biloba L.) is an excellent landscape species. Its yellow-green leaf mutants are ideal materials for research on pigment synthesis, but the regulatory mechanism of leaf coloration in these ginkgo mutants remains unclear. RESULTS We compared the metabolomes and transcriptomes of green and mutant yellow leaves of ginkgo over the same period in this study. The results showed that the chlorophyll content of normal green leaves was significantly higher than that of mutant yellow leaves of ginkgo. We obtained 931.52M clean reads from different color leaves of ginkgo. A total of 283 substances in the metabolic profiles were finally detected, including 50 significantly differentially expressed metabolites (DEMs). We identified these DEMs and 1361 differentially expressed genes (DEGs), with 37, 4, 3 and 13 DEGs involved in the photosynthesis, chlorophyll, carotenoid, and flavonoid biosynthesis pathways, respectively. Moreover, integrative analysis of the metabolomes and transcriptomes revealed that the flavonoid pathway contained the upregulated DEM (-)-epicatechin. Fourteen DEGs from the photosynthesis pathway were positively or negatively correlated with the DEMs. CONCLUSIONS Our findings suggest a complex metabolic network in mutant yellow leaves. This study will provide a basis for studies of leaf color variation and regulation.
Collapse
Affiliation(s)
- Yaqiong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada.,Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No.1, Nanjing, 210014, China
| | - Jing Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.,Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
12
|
Tan XY, Misran A, Daim LDJ, Lau BYC. Optimization of protein extraction for proteomic analyses of fresh and frozen "Musang King" durian pulps. Food Chem 2020; 343:128471. [PMID: 33143964 DOI: 10.1016/j.foodchem.2020.128471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Four different methods were evaluated to extract proteins from "Musang King" durian pulps and subsequently proteins with different abundance between fresh and long term frozen storage were identified using two-dimensional polyacrylamide gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometer analyses. The acetone-phenol method was found to produce good protein yields and gave the highest gel resolution and reproducibility. Differential protein analyses of the durian pulp revealed that 15 proteins were down-regulated and three other proteins were up-regulated after a year of frozen storage. Isoflavone reductase-like protein, S-adenosyl methionine synthase, and cysteine synthase isoform were up-regulated during frozen storage. The down-regulation of proteins in frozen durian pulps indicated that frozen storage has affected proteins in many ways, especially in their functions related to carbohydrate and energy metabolisms, cellular components, and transport processes. This study will enable future detailed investigations of proteins associated with quality attributes of durians to be studied.
Collapse
Affiliation(s)
- Xue Yi Tan
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Azizah Misran
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Leona Daniela Jeffery Daim
- Agronomic Selection, Sime Darby Plantation Technology Centre Sdn. Bhd., UPM-MTDC Technology Centre III, Universiti Putra Malaysia, Lebuh Silikon, 43400 UPM Serdang, Selangor, Malaysia
| | - Benjamin Yii Chung Lau
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
13
|
Wu Y, Guo J, Wang T, Cao F, Wang G. Transcriptional profiling of long noncoding RNAs associated with leaf-color mutation in Ginkgo biloba L. BMC PLANT BIOLOGY 2019; 19:527. [PMID: 31783794 PMCID: PMC6884798 DOI: 10.1186/s12870-019-2141-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/15/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) play an important role in diverse biological processes and have been widely studied in recent years. However, the roles of lncRNAs in leaf pigment formation in ginkgo (Ginkgo biloba L.) remain poorly understood. RESULTS In this study, lncRNA libraries for mutant yellow-leaf and normal green-leaf ginkgo trees were constructed via high-throughput sequencing. A total of 2044 lncRNAs were obtained with an average length of 702 nt and typically harbored 2 exons. We identified 238 differentially expressed lncRNAs (DELs), 32 DELs and 49 differentially expressed mRNAs (DEGs) that constituted coexpression networks. We also found that 48 cis-acting DELs regulated 72 target genes, and 31 trans-acting DELs regulated 31 different target genes, which provides a new perspective for the regulation of the leaf-color mutation. Due to the crucial regulatory roles of lncRNAs in a wide range of biological processes, we conducted in-depth studies on the DELs and their targets and found that the chloroplast thylakoid membrane subcategory and the photosynthesis pathways (ko00195) were most enriched, suggesting their potential roles in leaf coloration mechanisms. In addition, our correlation analysis indicates that eight DELs and 68 transcription factors (TFs) might be involved in interaction networks. CONCLUSIONS This study has enriched the knowledge concerning lncRNAs and provides new insights into the function of lncRNAs in leaf-color mutations, which will benefit future selective breeding of ginkgo.
Collapse
Affiliation(s)
- Yaqiong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 China
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Jing Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 China
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Fuliang Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 China
| | - Guibin Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037 China
| |
Collapse
|
14
|
Rey MD, Castillejo MÁ, Sánchez-Lucas R, Guerrero-Sanchez VM, López-Hidalgo C, Romero-Rodríguez C, Valero-Galván J, Sghaier-Hammami B, Simova-Stoilova L, Echevarría-Zomeño S, Jorge I, Gómez-Gálvez I, Papa ME, Carvalho K, Rodríguez de Francisco LE, Maldonado-Alconada AM, Valledor L, Jorrín-Novo JV. Proteomics, Holm Oak ( Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other? Int J Mol Sci 2019; 20:ijms20030692. [PMID: 30736277 PMCID: PMC6386906 DOI: 10.3390/ijms20030692] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomics has had a big impact on plant biology, considered as a valuable tool for several forest species, such as Quercus, Pines, Poplars, and Eucalyptus. This review assesses the potential and limitations of the proteomics approaches and is focused on Quercus ilex as a model species and other forest tree species. Proteomics has been used with Q. ilex since 2003 with the main aim of examining natural variability, developmental processes, and responses to biotic and abiotic stresses as in other species of the genus Quercus or Pinus. As with the progress in techniques in proteomics in other plant species, the research in Q. ilex moved from 2-DE based strategy to the latest gel-free shotgun workflows. Experimental design, protein extraction, mass spectrometric analysis, confidence levels of qualitative and quantitative proteomics data, and their interpretation are a true challenge with relation to forest tree species due to their extreme orphan and recalcitrant (non-orthodox) nature. Implementing a systems biology approach, it is time to validate proteomics data using complementary techniques and integrate it with the -omics and classical approaches. The full potential of the protein field in plant research is quite far from being entirely exploited. However, despite the methodological limitations present in proteomics, there is no doubt that this discipline has contributed to deeper knowledge of plant biology and, currently, is increasingly employed for translational purposes.
Collapse
Affiliation(s)
- María-Dolores Rey
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Ángeles Castillejo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Rosa Sánchez-Lucas
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Victor M Guerrero-Sanchez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina López-Hidalgo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Cristina Romero-Rodríguez
- Departamento de Fitoquímica, Dirección de Investigación de la Facultad de Ciencias Químicas de la Universidad Nacional de Asunción, Asunción 1001-1925, Paraguay.
| | - José Valero-Galván
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, Ciudad Juarez 32310, Mexico.
| | - Besma Sghaier-Hammami
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113 Sofia, Bulgaria.
| | - Sira Echevarría-Zomeño
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Inmaculada Jorge
- Department of Vascular Biology and Inflammation (BVI), Spanish National Centre for Cardiovascular Research, Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - Isabel Gómez-Gálvez
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - María Eugenia Papa
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Kamilla Carvalho
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | | | - Ana María Maldonado-Alconada
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| | - Luis Valledor
- Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Santiago Gascón Building, 2nd Floor (Office 2.9), 33006 Oviedo, Spain.
| | - Jesús V Jorrín-Novo
- Department of Biochemistry and Molecular Biology, Agrifood Campus of International Excellence, University of Cordoba, Carretera Nacional IV, km 396, 14014 Córdoba, Spain.
| |
Collapse
|
15
|
Zhu X, Liao J, Xia X, Xiong F, Li Y, Shen J, Wen B, Ma Y, Wang Y, Fang W. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature. BMC PLANT BIOLOGY 2019; 19:43. [PMID: 30700249 PMCID: PMC6354415 DOI: 10.1186/s12870-019-1646-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Internal γ-Aminobutyric Acid (GABA) interacting with stress response substances may be involved in the regulation of differentially abundant proteins (DAPs) associated with optimum temperature and cold stress in tea plants (Camellia sinensis (L.) O. Kuntze). RESULTS Tea plants supplied with or without 5.0 mM GABA were subjected to optimum or cold temperatures in this study. The increased GABA level induced by exogenous GABA altered levels of stress response substances - such as glutamate, polyamines and anthocyanins - in association with improved cold tolerance. Isobaric tags for relative and absolute quantification (iTRAQ) - based DAPs were found for protein metabolism and nucleotide metabolism, energy, amino acid transport and metabolism other biological processes, inorganic ion transport and metabolism, lipid metabolism, carbohydrate transport and metabolism, biosynthesis of secondary metabolites, antioxidant and stress defense. CONCLUSIONS The iTRAQ analysis could explain the GABA-induced physiological effects associated with cold tolerance in tea plants. Analysis of functional protein-protein networks further showed that alteration of endogenous GABA and stress response substances induced interactions among photosynthesis, amino acid biosynthesis, and carbon and nitrogen metabolism, and the corresponding differences could contribute to improved cold tolerance of tea plants.
Collapse
Affiliation(s)
- Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Xingli Xia
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yue Li
- Wuxi NextCODE Genomics, 288 Fute Zhong Road, Shanghai, 200131 People’s Republic of China
| | - Jiazhi Shen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Bo Wen
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu Province 210095 People’s Republic of China
| |
Collapse
|
16
|
Wang QM, Cui J, Dai H, Zhou Y, Li N, Zhang Z. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene 2018; 677:280-288. [PMID: 30077010 DOI: 10.1016/j.gene.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
Clivia miniata var. variegata (Cmvv) typically possesses yellow- and green-striped leaves. The striped plant not only has a high ornamental value but also be suitable for photosynthesis and chloroplast development research. Our previous study had revealed that yellow stripes (YSs) of Cmvv leaves contain chlorophyll-less ineffective chloroplasts. However, mechanism of Cmvv variegation is yet to be investigated. In the study, transcriptomes of both the YSs and green stripes (GSs) from single Cmvv leaves were compared using high-throughput sequencing. A total of 688 differential expression genes (DEGs) were identified based on biological replications. The qRT-PCR results indicated that transcriptome profiles accurately reflected global transcriptome differences between YSs and GSs. Subcellular localization analysis suggested that 56 DEG proteins were targeted to chloroplasts, and might be involved in anterograde signaling and leaf patterning. Moreover, the DEGs were mostly enriched in photosynthesis and plant-pathogen interaction KEGG pathways. Meanwhile, there should be coordination interaction between the two pathways. Seven of the eight DEGs involved in photosynthesis KEGG pathway were chloroplast-encoded genes and distributed among different cistrons of chloroplast DNA (cpDNA) large single copy regions (LSC) which are more prone to mutation. It was proposed that the YSs were caused by mutation(s) in cpDNA LSC. Thus, when the primary zygote of Cmvv was chimeric in LSC, leaf might be yellow- and green-striped. The study would give new insights into plant variegation and offers candidate genes to guide future research attempting to breed variegated plants.
Collapse
Affiliation(s)
- Qin-Mei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianguo Cui
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Na Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
17
|
Tang D, Wei F, Kashif MH, Khan A, Li Z, Shi Q, Jia R, Xie H, Zhang L, Li B, Chen P, Zhou R. Analysis of chloroplast differences in leaves of rice isonuclear alloplasmic lines. PROTOPLASMA 2018; 255:863-871. [PMID: 29247278 DOI: 10.1007/s00709-017-1189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/23/2017] [Indexed: 05/23/2023]
Abstract
The chloroplast being an important organelle of plant cells could possibly be associated with plant cytoplasmic male sterility (CMS). To better understand the correlation between (CMS) and chloroplast, we presented a comprehensive analysis based on the changes of photosynthetic parameters, chloroplasts ultrastructure, soluble sugar and starch content, the relative expression of sugar and starch metabolism genes, and chloroplast genome in rice isonuclear alloplasmic CMS lines at the flowering stage. Leaf gas exchange parameters did not affect by CMS lines (M2BS and M2A), although intercellular CO2 concentration (C i) was influenced in both M2BS and M2A. Ultrastructural observation results indicated that many starch granules were observed in the chloroplast of CMS lines, especially bigger size in M2BS, while few ones in M2B. Only the chloroplasts of M2A contained some additional number of lipoids compared with those of the other two lines (M2B and M2BS). Soluble sugar and starch contents in CMS lines (M2BS and M2A) were significantly higher than those in maintainer line (M2B) (p < 0.01). The relative expression of sugar and starch metabolism genes indicated the imbalance of starch and sugar synthesis and decomposition may lead to accumulation of starch granules and demonstrated the presence of cytoplasmic effects. Moreover, chloroplast genome sequencing results showed similarity in both CMS lines, which revealed different single nucleotide polymorphisms (SNPs) and insertion/deletion (InDels) models compared with their maintainer line. Those models were located in psbD, rpoC2, rpl33, psbB, ndhA, ndhH, and intergenic regions. These findings, aligned with the possible association of CMS characteristics with cpDNA and genetically close relationship among both CMS lines, may contribute for future research.
Collapse
Affiliation(s)
- Danfeng Tang
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Fan Wei
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Muhammad Haneef Kashif
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Aziz Khan
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Zengqiang Li
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Qiqi Shi
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Ruixing Jia
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Hongying Xie
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Li Zhang
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Bin Li
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Peng Chen
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China
| | - Ruiyang Zhou
- College of Life Science and Technology, Guangxi University, Nanning, China.
- Guangxi Colleges and Universities Key Laboratory of Plant Genetics and Breeding, Nanning, China.
| |
Collapse
|
18
|
Li WX, Yang SB, Lu Z, He ZC, Ye YL, Zhao BB, Wang L, Jin B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. HORTICULTURE RESEARCH 2018; 5:12. [PMID: 29507736 PMCID: PMC5830439 DOI: 10.1038/s41438-018-0015-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 05/06/2023]
Abstract
Ginkgo biloba is grown worldwide as an ornamental plant for its golden leaf color. However, the regulatory mechanism of leaf coloration in G. biloba remains unclear. Here, we compared G. biloba gold-colored mutant leaves and normal green leaves in cytological, physiological and transcriptomic terms. We found that chloroplasts of the mutant were fewer and smaller, and exhibited ruptured thylakoid membranes, indistinct stromal lamellae and irregularly arranged vesicles. Physiological experiments also showed that the mutant had a lower chlorophyll, lower flavonoid and higher carotenoid contents (especially lutein). We further used transcriptomic sequencing to identify 116 differentially expressed genes (DEGs) and 46 transcription factors (TFs) involved in chloroplast development, chlorophyll metabolism, pigment biosynthesis and photosynthesis. Among these, the chlorophyll biosynthesis-related PPO showed down-regulation, while chlorophyll degradation-related NYC/NOL had up-regulated expression in mutant leaves. Z-ISO, ZDS, and LCYE, which are involved in carotenoid biosynthesis were up-regulated. Quantitative real-time PCR (RT-qPCR) further confirmed the altered expression levels of these genes at three stages. The alteration of PPO and NYC/NOL gene expression might affect chlorophyll biosynthesis and promote degradation of chlorophyll b to chlorophyll a, while the up-regulated genes Z-ISO, ZDS and LCYE enhanced carotenoid accumulation. Consequently, changes in the ratio of carotenoids to chlorophylls were the main factors driving the golden leaf coloration in the mutant G. biloba.
Collapse
Affiliation(s)
- Wei-xing Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shun-bo Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Zhi-chong He
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Yun-ling Ye
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Bei-bei Zhao
- College of Resource and Environment, Xizang Agriculture and Animal Husbandry College, Tibet, 860000 China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
19
|
Komatsu S, Hossain Z. Preface-Plant Proteomic Research. Int J Mol Sci 2017; 18:ijms18010088. [PMID: 28054969 PMCID: PMC5297722 DOI: 10.3390/ijms18010088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/18/2022] Open
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-18, Tsukuba 305-8518, Japan.
| | - Zahed Hossain
- Department of Botany, University of Kalyani, West Bengal 741235, India.
| |
Collapse
|