1
|
Zhao J, Fang Y, Qu J, He J, Yi J, Chen R, Yang Q, Zhang K, Wu W, Sun D, Fang B. Utilizing zebrafish models to elucidate mechanisms and develop therapies for skeletal muscle atrophy. Life Sci 2025:123357. [PMID: 39756508 DOI: 10.1016/j.lfs.2024.123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos. Their physiological and anatomical similarities to mammals, including a substantial proportion of skeletal muscle and observable swimming behavior reflecting body dysfunction, make zebrafish an ideal model for studying skeletal muscle-related diseases. This review outlines the development of zebrafish skeletal muscle and highlights key pathways regulating muscle proteins, emphasizing their anatomical and genetic consistency with humans. Various zebrafish models of skeletal muscle atrophy created through physical, chemical, and gene-editing methods are systematically summarized. Current challenges and proposed improvement strategies are also discussed to enhance the reliability and applicability of zebrafish models, providing a comprehensive reference for advancing research on skeletal muscle atrophy.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Junying Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Bin Fang
- Department of Orthopedic Surgery, Yiwu Central Hospital, the Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu 322000, China.
| |
Collapse
|
2
|
Kim SS, Lee S, Eghan K, Yoo D, Chun HS, Kim WK. Adverse effects of diethyl phthalate and butyl benzyl phthalate on circadian rhythms and sleep patterns in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117350. [PMID: 39571256 DOI: 10.1016/j.ecoenv.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The zebrafish, a diurnal vertebrate, is commonly used in circadian rhythm studies due to its genetic and neurological similarities to humans. Circadian rhythms, which regulate sleep, neurotransmitter, behavior, and physiological responses to environmental changes, can be disrupted by various environmental factors. Phthalic acid esters (PAEs) are pervasive endocrine disruptors that individuals are frequently exposed to in daily life. However, the impact of PAEs on circadian rhythms during early development remains poorly understood. This study aimed to investigate the effects of exposure to diethyl phthalate (DEP) and butyl benzyl phthalate (BBzP) on the behavior and circadian rhythms of developing zebrafish larvae using a series of layered assays. Zebrafish larvae were exposed to the two PAEs from less than 2 hour post-fertilization (hpf) until 96 hpf. The results demonstrated a concentration-dependent reduction in tail coiling (TC), touch-evoked response (TER), and locomotor activity, alongside an increase in sleep time and alterations in sleep bouts and sleep latency during both 24-hour and Light1/Dark/Light2 (7/10/7-hour) periods. Additionally, exposure to BBzP led to increased acetylcholinesterase (AChE) and dopamine (DA) levels, and a decrease in 5-hydroxytryptamine (5-HT) levels. Gene expression analysis revealed that DEP and BBzP exposure increased the expression of circadian rhythm and light-response-related genes. In conclusion, exposure to these PAEs disrupts the circadian rhythm of zebrafish larvae, providing novel insights into the developmental impact of these common environmental contaminants. Further research is needed to understand the broader implications of these findings for human health and environmental safety.
Collapse
Affiliation(s)
- Soon Seok Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Sangwoo Lee
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Kojo Eghan
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Donggon Yoo
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Hang-Suk Chun
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea.
| | - Woo-Keun Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon, 34114, Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
3
|
Maktabi B, Collins A, Safee R, Bouyer J, Wisner AS, Williams FE, Schiefer IT. Zebrafish as a Model for Multiple Sclerosis. Biomedicines 2024; 12:2354. [PMID: 39457666 PMCID: PMC11504653 DOI: 10.3390/biomedicines12102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Zebrafish have become a key model organism in neuroscience research because of their unique advantages. Their genetic, anatomical, and physiological similarities to humans, coupled with their rapid development and transparent embryos, make them an excellent tool for investigating various aspects of neurobiology. They have specifically emerged as a valuable and versatile model organism in biomedical research, including the study of neurological disorders such as multiple sclerosis. Multiple sclerosis is a chronic autoimmune disease known to cause damage to the myelin sheath that protects the nerves in the brain and spinal cord. Objective: This review emphasizes the importance of continued research in both in vitro and in vivo models to advance our understanding of MS and develop effective treatments, ultimately improving the quality of life for those affected by this debilitating disease. Conclusions: Recent studies show the significance of zebrafish as a model organism for investigating demyelination and remyelination processes, providing new insights into MS pathology and potential therapies.
Collapse
Affiliation(s)
- Briana Maktabi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Abigail Collins
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Raihaanah Safee
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
| | - Jada Bouyer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Alexander S. Wisner
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Isaac T. Schiefer
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Niaz K, McAtee D, Adhikari P, Rollefson P, Ateia M, Abdelmoneim A. Assessing the effects of fluorine-free and PFAS-containing firefighting foams on development and behavioral responses using a zebrafish-based platform. CHEMOSPHERE 2024; 365:143361. [PMID: 39303789 DOI: 10.1016/j.chemosphere.2024.143361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Significant progress has been made in developing fluorine-free firefighting foams (F3) as alternatives to perfluoroalkyl substances (PFAS)-containing aqueous film-forming foams (AFFF) to help eliminate the health and environmental concerns linked to PFAS exposure. However, developing viable F3 options hinges on a thorough assessment of potential risks alongside the technical performance evaluations. This study showcases the capability of a zebrafish-based platform to discern the developmental and behavioral toxicities associated with exposure to one AFFF and two F3 formulations. To facilitate direct exposure to the chemicals, embryos were enzymatically dechorionated and then exposed to the diluted formulations (6-120 hours post fertilization (hpf)) at concentrations folding from 0.1% of the manufacturer-recommended working concentrations. The exposure regimen also included daily automated media changes (50%) and mortality assessments (24 and 120 hpf). At 120 hpf, a comprehensive assessment encompassing overall development, prevalence of morphological defects, and behavioral responses to acute stressors (visual, acoustic, and peripheral irritant) was conducted. Exposure to both F3s significantly increased larval mortalities to percentages exceeding 90%, whereas AFFF exposures did not cause any significant effect. Overall development, marked by total larval length, was significantly impacted following exposures to all foams. Behavioral responses to acute stressors were also significantly altered following exposures to both F3s, whereas the AFFF did not alter behavior at the concentrations tested. Our findings demonstrate toxicities associated with tested F3 formulations that encompass several endpoints and highlight the utility of the proposed platform in evaluating the developmental toxicities of current and future foam formulations.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA; Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Demetrius McAtee
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Pranup Adhikari
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Patrik Rollefson
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH, 45220, USA.
| | - Ahmed Abdelmoneim
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
5
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
6
|
Yue X, Fu Y, Li Z, Zou Y, Dai Y. Network pharmacology and untargeted metabolomic-based investigation of anti-osteoporotic effects of viscozyme-assisted polysaccharide from Portulaca oleracea L. J Pharm Biomed Anal 2024; 243:116104. [PMID: 38513501 DOI: 10.1016/j.jpba.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Osteoporosis is a metabolic bone disease closely associated with oxidative stress. We had previously confirmed that the Viscozyme-assisted polysaccharide from Portulaca oleracea L (VPOP1) protects against antioxidant stress and evaluated the structure of VPOP1. In this study, we aimed to explore the anti-osteoporotic effects of VPOP1 on H2O2-induced osteoblast apoptosis. In addition, untargeted zebrafish metabolomics based on UPLC-Q-Orbitrap-HRMS was used to investigate the potential anti-osteoporotic mechanisms of VPOP1. The levels of Bcl-2 decreased significantly and those of caspase-3, Bax, and cytochrome C increased after treatment with H2O2. VPOP1 inhibited apoptosis in H2O2-induced MC3T3 cells. Metabolomic analyses showed that 28 potential biomarkers were gradually restored to normal levels after treatment with VPOP1 compared with that in the model group. Among them, leukotrienes D4 and A4, L-dopa, and L-tyrosine are important biomarkers and therapeutic targets. Pathway analysis revealed that arachidonic acid, tyrosine, phenylalanine, and sphingolipid metabolism were the major intervening pathways. Collectively, these results help us understand the protective activity of large molecular weight compounds, such as VPOP1, against osteoporosis.
Collapse
Affiliation(s)
- Xitao Yue
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yunhua Fu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zhuoran Li
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuanjun Zou
- School of Medical Information, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yulin Dai
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
7
|
Sousa B, Domingues I, Nunes B. Biological responses in Danio rerio by the disinfectant SDBS in SARS-CoV-2 pandemic. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104431. [PMID: 38554987 DOI: 10.1016/j.etap.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The use of disinfectants, such as Sodium Dodecylbenzene Sulfonic acid salt (SDBS), has grown since the SARS-CoV-2 pandemic, with environmentally unknown consequences. The present study analyzed SDBS effects in the fish species Danio rerio, using a combination of biomarkers. Our data reported that larvae had their total locomotor activity increased when exposed to 1 mg/L of SDBS, but this parameter was decreased in fish exposed to 5 mg/L. A significant increment of erratic movements was reported in fish exposed to 1 and 5 mg/L of SDBS. These concentrations inhibited CYP1A1/CYP1A2, and of GSTs inhibition, suggesting SDBS is not preferentially biotransformed by these routes. Results concerning the antioxidant defense biomarkers (CAT and GPx) showed no straightforward pattern, suggesting SDBS exposure may have resulted in changes in redox balance. Finally, acetylcholinesterase activity increased. In summary, increased use of SDBS in a near future may result in deleterious effects in environmentally exposed fish.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
8
|
Gericke J, Harvey BH, Pretorius L, Ollewagen T, Benecke RM, Smith C. Sceletium tortuosum-derived mesembrine significantly contributes to the anxiolytic effect of Zembrin®, but its anti-depressant effect may require synergy of multiple plant constituents. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117113. [PMID: 37660956 DOI: 10.1016/j.jep.2023.117113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sceletium tortuosum (L.) N.E.Br. (ST) is an alkaloid-rich succulent plant with various mechanisms of action that infer psychotropic effects. These actions correlate with clinical evidence suggesting efficacy in the treatment of depression and anxiety, in line with its use by indigenous populations. Its low side effect profile suggests potential of ST to improve the overall wellbeing and compliance of millions of patients that experience severe side effects and/or do not respond to current prescription medication. However, to elucidate specific physiological effects of ST extracts, it is necessary to first understand which of its constituents are the major contributors to beneficial effects demonstrated for ST in this context. AIM OF THE STUDY To determine an anxiolytic- and antidepressant-like effective concentration of a ST extract by means of a dose response in zebrafish (ZF) larvae, and to assess relative contributions of equivalent concentrations of isolated alkaloids contained in the effective concentration(s). MATERIALS AND METHODS A dose response study employing a light-dark transition test (LDTT) was done in ZF larvae (<5 days post fertilization) to track locomotor activity in terms of anxiety-like (hyperlocomotion) and depression-like (hypolocomotion) behaviour. Larvae were treated for 1 h directly before the LDTT with escalating concentrations of a ST extract commercially known as Zembrin® (Zem) ranging from 0.25 to 500 μg/mL and compared to an untreated control group (n = 12 per treatment concentration). LDTT was repeated after 24 h to evaluate long-term exposure toxicity. The concentration that best attenuated hyperlocomotion during the dark phase following light-dark transition was identified as the anxiolytic-like concentration. This concentration, plus one higher and one lower concentration, were used for subsequent tests. The percentage content of each alkaloid (mesembrine, mesembrenone, mesembrenol, and mesembranol) in these concentrations were calculated and applied to additional larvae to identify the most effective anxiolytic-like alkaloid in the LDTT. To identify antidepressant-like therapeutic concentration and equivalent alkaloid concentration, the same treatment concentrations were tested in larvae (n = 12 per treatment concentration) pre-exposed to reserpine for 24 h. Depending on normality of data distribution, Brown-Forsythe and Welch, or Kruskal-Wallis ANOVA were used, with Dunnett or Dunn's multiple comparisons tests. RESULTS Only the extreme concentration of Zem (500 μg/mL) elicited toxicity after treatment for 24 h. Zem 12.5 μg/mL was the most effective anxiolytic-like concentration as it significantly decreased locomotor activity (P = 0.05) in the LDTT. Low (5 μg/mL), optimal (12.5 μg/mL) and high (25 μg/mL) Zem concentrations, as well as treatment solutions of single alkaloids (mesembrine, mesembrenone, mesembranol and mesembrenol), prepared to contain equivalent concentrations of each major alkaloid contained within these three concentrations of Zem, were tested further. Only mesembrine concentrations equal to that contained within the optimal and high dose of Zem (12.5 and 25 μg/mL) showed significant anxiolytic-like effects (P < 0.05). Only the highest Zem concentration (25 μg/mL) reversed the effects of reserpine - indicating antidepressant-like properties (P < 0.05) - while isolated alkaloids failed to induce such effects when administered in isolation. CONCLUSIONS Current data provide evidence of both anxiolytic- and antidepressant-like effect of whole extract of Zem, with relatively higher concentrations required to achieve antidepressant-like effect. Of all alkaloids assessed, only mesembrine contributed significantly to the anxiolytic-like effects of Zem. No alkaloid alone could be pinpointed as a contributor to the antidepressant-like activity observed for higher concentration Zem. This may be due to synergistic effects of the alkaloids or may be due to other components not tested here. Current data warrants further investigation into mechanisms of action, as well as potential synergy, of ST alkaloids in suitable mammalian in vivo models.
Collapse
Affiliation(s)
- Johané Gericke
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa; South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia.
| | - Lesha Pretorius
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Rohan M Benecke
- Division Clinical Pharmacology, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Carine Smith
- Experimental Medicine Research Group, Dept of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
9
|
Singh J, Pan YE, Patten SA. NMJ Analyser: a novel method to quantify neuromuscular junction morphology in zebrafish. Bioinformatics 2023; 39:btad720. [PMID: 38058204 PMCID: PMC10713120 DOI: 10.1093/bioinformatics/btad720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
MOTIVATION Neuromuscular junction (NMJ) structural integrity is crucial for transducing motor neuron signals that initiate skeletal muscle contraction. Zebrafish has emerged as a simple and efficient model to study NMJ structural morphology and function in the context of developmental neurobiology and neuromuscular diseases. However, methods to quantify NMJ morphology from voluminous data of NMJ confocal images accurately, rapidly, and reproducibly are lacking. RESULTS We developed an ImageJ macro called "NMJ Analyser" to automatically and unbiasedly analyse NMJ morphology in zebrafish. From the Z-stack of a zebrafish hemisomite, both presynaptic and postsynaptic fluorescently labeled termini at NMJs are extracted from background signal, with larger clusters of termini being segmented into individual termini using an unbiased algorithm. The program then determines whether each presynaptic terminus is co-localized with a postsynaptic terminus and vice versa, or whether it is orphaned, and tabulates the number of orphan and co-localized pre- and postsynaptic termini. The usefulness of this ImageJ macro plugin will be helpful to quantify NMJ parameters in zebrafish, particularly during development and in disease models of neuromuscular diseases. It can enable high-throughput NMJ phenotypic screens in the drug discovery process for neuromuscular diseases. It could also be further applied to the investigation of NMJ of other developmental systems. AVAILABILITY AND IMPLEMENTATION NMJ Analyser is available for download at https://github.com/PattenLab/NMJ-Analyser.git.
Collapse
Affiliation(s)
- Jaskaran Singh
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Yingzhou Edward Pan
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada
- Département de Neurosciences, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
10
|
Feng C, Bai H, Chang X, Wu Z, Dong W, Ma Q, Yang J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. CHEMOSPHERE 2023; 340:139940. [PMID: 37634582 DOI: 10.1016/j.chemosphere.2023.139940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin that causes oxidative damage in various organs. At present, the research studies on AFB1 are primarily focused on its effects on the terrestrial environment and animals. However, its toxicity mechanism in aquatic environments and aquatic animals has not been largely explored. Thus, in this study, zebrafish was used as a model to study the toxicity mechanism of AFB1 on the liver of developing larvae. The results showed that AFB1 exposure inhibited liver development and promoted fat accumulation in the liver. Transcriptome sequencing analysis showed that AFB1 affected liver redox metabolism and oxidoreductase activity. KEGG analysis showed that AFB1 inhibited the expression of gsto1, gpx4a, mgst3a, and idh1 in the glutathione metabolizing enzyme gene pathway, resulting in hepatic oxidative stress. At the same time, AFB1 also inhibited the expression of acox1, acsl1b, pparα, fabp2, and cpt1 genes in peroxidase and PPAR metabolic pathways, inducing hepatic steatosis and lipid droplet accumulation. Antioxidant N-Acetyl-l-cysteine (NAC) preconditioning up-regulated gsto1, gpx4a and idh1 genes, and improved the AFB1-induced lipid droplet accumulation in the liver. In summary, AFB1 induced hepatic oxidative stress and steatosis, resulting in abnormal liver fat metabolism and accumulation of cellular lipid droplets. NAC could be used as a potential preventative drug to improve AFB1-induced fat accumulation.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Department of Chemistry and Chemical Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongxia Bai
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Xu Chang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Zhixuan Wu
- Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China
| | - Qianqian Ma
- Inner Mongolia Minzu Univ, Inst Pharmaceut Chem & Pharmacol, Tongliao, Inner Mongolia, 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology,Tongliao,Inner Mongolia, 028000, China; Inner Mongolia Minzu Univ, Coll Anim Sci & Technol, Tongliao,Inner Mongolia, 028000, China.
| |
Collapse
|
11
|
Hawkey AB, Mead M, Natarajan S, Gondal A, Jarrett O, Levin ED. Embryonic exposure to PFAS causes long-term, compound-specific behavioral alterations in zebrafish. Neurotoxicol Teratol 2023; 97:107165. [PMID: 36801483 PMCID: PMC10198882 DOI: 10.1016/j.ntt.2023.107165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are commonly used as surfactants and coatings for industrial processes and consumer products. These compounds have been increasingly detected in drinking water and human tissue, and concern over their potential effects on health and development is growing. However, relatively little data are available for their potential impacts on neurodevelopment and the degree to which different compounds within this class may differ from one another in their neurotoxicity. The present study examined the neurobehavioral toxicology of two representative compounds in a zebrafish model. Zebrafish embryos were exposed to 0.1-100uM perfluorooctanoic acid (PFOA) or 0.01-1.0uM perfluorooctanesulfonic acid (PFOS) from 5 to 122 h post-fertilization. These concentrations were below threshold for producing increased lethality or overt dysmorphologies, and PFOA was tolerated at a concentration 100× higher than PFOS. Fish were maintained to adulthood, with behavioral assessments at 6 days, 3 months (adolescence) and 8 months of age (adulthood). Both PFOA and PFOS caused behavioral changes in zebrafish, but PFOS and PFOS produced strikingly different phenotypes. PFOA was associated with increased larval motility in the dark (100uM), and enhanced diving responses in adolescence (100uM) but not adulthood. PFOS was associated with a reversed light-dark response in the larval motility test (0.1-1uM), whereby the fish were more active in the light than the dark. PFOS also caused time-dependent changes in locomotor activity in the novel tank test during adolescence (0.1-1.0uM) and an overall pattern of hypoactivity in adulthood at the lowest concentration (0.01uM). Additionally, the lowest concentration of PFOS (0.01uM) reduced acoustic startle magnitude in adolescence, but not adulthood. These data suggest that PFOS and PFOA both produce neurobehavioral toxicity, but these effects are quite distinct from one another.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Mikayla Mead
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Sarabesh Natarajan
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Anas Gondal
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Olivia Jarrett
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
| |
Collapse
|
12
|
Başımoğlu Koca Y, Koca S, Öztel Z, Balcan E. Determination of histopathological effects and myoglobin, periostin gene-protein expression levels in Danio rerio muscle tissue after acaricide yoksorrun-5EC (hexythiazox) application. Drug Chem Toxicol 2023; 46:50-58. [PMID: 34879781 DOI: 10.1080/01480545.2021.2007945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although pesticides are essential agrochemicals to annihilate harmful organisms in agriculture, their uncontrolled use has become an important threat to environmental health. Exposure to pesticides can affect many biological systems including immune system, endocrine system, and nervous system. However, the potential side effects of pesticides to skeletal muscle system remain unclear. Present study has focused on the evaluation of this issue by using an acaricide, yoksorrun-5EC (hexythiazox), in an aquatic model organism, Danio rerio. The histological analyses revealed that increased concentrations of the acaricide cause degradation of skeletal muscle along with increased necrosis and atrophy in myocytes, intercellular edema, and increased infiltrations between perimysium sheaths of muscle fibers. The effects of acaricide on myoglobin and periostin, which are associated with oxygen transport and muscle regeneration, respectively, were investigated at the gene and protein levels. RT-PCR results suggested that high concentration yoksorrun-5EC (hexythiazox) can induce myoglobin and periostin genes. Similar results were also obtained in the protein levels of these genes by western blotting analysis. These results suggested that yoksorrun-5EC (hexythiazox)-dependent disruption of skeletal muscle architecture is closely associated with the expression levels of myoglobin and periostin genes in Danio rerio model.
Collapse
Affiliation(s)
- Yücel Başımoğlu Koca
- Department of Biology, Zoology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Serdar Koca
- Department of Biology, General Biology Section, Faculty of Science and Art, Adnan Menderes University, Aydin, Turkey
| | - Zübeyde Öztel
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Molecular Biology Section, Faculty of Science and Art, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
13
|
Silva Brito R, Canedo A, Farias D, Rocha TL. Transgenic zebrafish (Danio rerio) as an emerging model system in ecotoxicology and toxicology: Historical review, recent advances, and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157665. [PMID: 35907527 DOI: 10.1016/j.scitotenv.2022.157665] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Zebrafish (Danio rerio) is an alternative model system for drug screening, developing new products, and assessing ecotoxic effects of pollutants and biomonitor species in environmental risk assessment. However, the history and current use of transgenic zebrafish lines in ecotoxicology and toxicology studies remain poorly explored. Thus, the present study aimed to summarize and discuss the existing data in the literature about the applications of transgenic zebrafish lines in ecotoxicology and toxicology. The articles were analyzed according to publication year, journal, geographic distribution, and collaborations. Also, the bioassays were evaluated according to the tested chemical, transgenic lines, development stage, biomarkers, and exposure conditions (i.e., concentration, time, type, and route of exposure). Revised data showed that constitutive transgenic lines are the main type of transgenic used in the studies, besides most of uses embryos and larvae under static conditions. Tg(fli1: EGFP) was the main transgenic line, while the GFP and EGFP were the main reporter proteins. Transgenic zebrafish stands out in assessing vasotoxicity, neurotoxicity, systemic toxicity, hepatoxicity, endocrine disruption, cardiotoxicity, immunotoxicity, hematotoxicity, ototoxicity, and pancreotoxicity. This review showed that transgenic zebrafish lines are emerging as a suitable in vivo model system for assessing the mechanism of action and toxicity of chemicals and new biotechnology products, and the effects of traditional and emerging pollutants.
Collapse
Affiliation(s)
- Rafaella Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Center of Exact and Natural Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
14
|
Merola C, Fabrello J, Matozzo V, Faggio C, Iannetta A, Tinelli A, Crescenzo G, Amorena M, Perugini M. Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154414. [PMID: 35278537 DOI: 10.1016/j.scitotenv.2022.154414] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/26/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Pendimethalin (PND) is a dinitroaniline preemergent herbicide widely used to control grasses and weeds. The present study aimed to evaluate the PND potential effects on the development of zebrafish early-life stages. The research focuses first on acute toxicity, followed by the integration of toxicity results through histopathology, oxidative status, and neurotoxicity evaluation of sublethal and environmentally relevant concentrations. Zebrafish larvae exposed to PND showed mortality and developed sublethal alterations including impaired fin development, lordosis, scoliosis, blood congestion, impaired blood flow, and reduced heartbeat. PND exposure (0.5 mg/L) affects musculoskeletal development leading to delayed and reduced ossification of the vertebral centra in the developing vertebral column and disruption of muscle morphology. Herbicide exposure (0.5 mg/L and 0.05 mg/L) led also to biochemical changes of antioxidant enzymes, increasing the activity of CAT, GR, and GPx, while no effects were observed on the activity of SOD and GST in zebrafish larvae. Lastly, AChE activity, a biochemical marker of neurotoxicity, was also increased in zebrafish larvae exposed to 0.5 mg/L of PND. These results confirm the developmental toxicity of PND in zebrafish early-life stages, pointing out the potential role of oxidative stress in the onset of sublethal alterations.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Annamaria Iannetta
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Antonella Tinelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada p.le per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada p.le per Casamassima, km 3, Valenzano, 70010 Bari, Italy
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy
| |
Collapse
|
15
|
Kwiatkowska I, Hermanowicz JM, Iwinska Z, Kowalczuk K, Iwanowska J, Pawlak D. Zebrafish—An Optimal Model in Experimental Oncology. Molecules 2022; 27:molecules27134223. [PMID: 35807468 PMCID: PMC9268704 DOI: 10.3390/molecules27134223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 02/02/2023] Open
Abstract
A thorough understanding of cancer pathogenesis is a necessary step in the development of more effective and safer therapy. However, due to the complexity of the process and intricate interactions, studying tumor development is an extremely difficult and challenging task. In bringing this issue closer, different scientific models with various advancement levels are helpful. Cell cultures is a system that is too simple and does not allow for multidirectional research. On the other hand, rodent models, although commonly used, are burdened with several limitations. For this reason, new model organisms that will allow for the studying of carcinogenesis stages and factors reliably involved in them are urgently sought after. Danio rerio, an inconspicuous fish endowed with unique features, is gaining in importance in the world of scientific research. Including it in oncological research brings solutions to many challenges afflicting modern medicine. This article aims to illustrate the usefulness of Danio rerio as a model organism which turns out to be a powerful and unique tool for studying the stages of carcinogenesis and solving the hitherto incomprehensible processes that lead to the development of the disease.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Correspondence: ; Tel./Fax: +48-8574-856-01
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Zaneta Iwinska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Jolanta Iwanowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (Z.I.); (J.I.); (D.P.)
| |
Collapse
|
16
|
Zhu C, Jiang X, Tian J, Chen J, Lin C, Wang C, Tie C, Li M, Wu C. Integrated approach toward absorption, distribution, metabolism, and excretion of Xiaoke pills in zebrafish based on UPLC-HRMS and DESI-MS techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1200:123276. [DOI: 10.1016/j.jchromb.2022.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/16/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
|
17
|
Assessment of the Preventive Effect of L-carnitine on Post-statin Muscle Damage in a Zebrafish Model. Cells 2022; 11:cells11081297. [PMID: 35455976 PMCID: PMC9032104 DOI: 10.3390/cells11081297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Statins, such as lovastatin, are lipid-lowering drugs (LLDs) that have been used to treat hypercholesterolaemia, defined as abnormally elevated cholesterol levels in the patient’s blood. Although statins are considered relatively safe and well tolerated, recipients may suffer from adverse effects, including post-statin myopathies. Many studies have shown that supplementation with various compounds may be beneficial for the prevention or treatment of side effects in patients undergoing statin therapy. In our study, we investigated whether L-carnitine administered to zebrafish larvae treated with lovastatin alleviates post-statin muscle damage. We found that exposure of zebrafish larvae to lovastatin caused skeletal muscle disruption observed as a reduction of birefringence, changes in muscle ultrastructure, and an increase in atrogin-1. Lovastatin also affected heart performance and swimming behaviour of larvae. Our data indicated that the muscle-protective effect of L-carnitine is partial. Some observed myotoxic effects, such as disruption of skeletal muscle and increase in atrogin-1 expression, heart contraction could be rescued by the addition of L-carnitine. Others, such as slowed heart rate and reduced locomotion, could not be mitigated by L-carnitine supplementation.
Collapse
|
18
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
19
|
de Farias NO, de Sousa Andrade T, Santos VL, Galvino P, Suares-Rocha P, Domingues I, Grisolia CK, Oliveira R. Neuromotor activity inhibition in zebrafish early-life stages after exposure to environmental relevant concentrations of caffeine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1306-1315. [PMID: 34662262 DOI: 10.1080/10934529.2021.1989931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Caffeine (CAF), a neuroactive compound, has been found in surface waters at concentrations ranging from few nanograms up to micrograms and may induce adverse effects in aquatic vertebrates. Thus, the aim of this study was to evaluate the potential of CAF in affecting fish early-life stages in a wide concentration range, including occurring levels in surface waters. Specimens of zebrafish in early-life stages were exposed to CAF for 168 h and survival, developmental alterations, locomotor activity and acetylcholinesterase activity were evaluated. CAF induced mortality in embryos unable to hatch or in larvae after hatching (LC50 - 168 h = 283.2 mg/L). Tail deformities were observed in organisms exposed to concentrations ≥ 40 mg/L, while edemas were found at concentrations of 100 mg/L. CAF also decreased the total swimming time and distance moved of exposed organisms (LOEC = 0.0006 mg/L). Locomotor inhibition may be associated with an acetylcholinesterase inhibition observed at concentration ≥ 0.0088 mg/L. Therefore, the hazard of CAF for fish populations deserves further attention since unexpected effects on neuro-behavioral parameters occurs at concentrations often detected in natural aquatic ecosystems.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brasil
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, São Paulo, Brasil
- Programa de Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, IB - UNICAMP, Campinas, São Paulo, Brasil
| | - Thayres de Sousa Andrade
- Departamento de Engenharia Ambiental, Universidade Federal do Ceará, UFC, Crateús, Ceará, Brasil
| | - Viviani Lara Santos
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Pedro Galvino
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Paula Suares-Rocha
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, São Paulo, Brasil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brasil
| | - Rhaul Oliveira
- Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, Limeira, São Paulo, Brasil
| |
Collapse
|
20
|
Coral JA, Heaps S, Glaholt SP, Karty JA, Jacobson SC, Shaw JR, Bondesson M. Arsenic exposure induces a bimodal toxicity response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117637. [PMID: 34182391 DOI: 10.1016/j.envpol.2021.117637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 05/25/2023]
Abstract
In toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level. This study investigated the effect of arsenic (sodium arsenite) on post-gastrulated zebrafish embryos and elucidated effects of bimodal concentration-responses on different phenotypic perturbations. Six hour post fertilized (hpf) zebrafish embryos were exposed to arsenic to 96 hpf. Hatching success, mortality, and morphometric endpoints were evaluated both in embryos with chorions and dechorionated embryos. Zebrafish embryos exhibited a bimodal response to arsenic exposure. Concentration-response curves for exposed embryos with intact chorions had an initial peak in mortality (88%) at 1.33 mM arsenic, followed by a decrease in toxicity (~20% mortality) at 1.75 mM, and subsequently peaked to 100% mortality at higher concentrations. To account for the bimodal response, two distinct concentration-response curves were generated with estimated LC10 values (and 95% CI) of 0.462 (0.415, 0.508) mM and 1.69 (1.58, 1.78) mM for the 'low concentration' and 'high concentration' peaks, respectively. Other phenotypic analyses, including embryo length, yolk and pericardial edema all produced similar concentration-response patterns. Tests with dechorionated embryos also resulted in a bimodal toxicity response but with lower LC10 values of 0.170 (0.120, 0.220) mM and 0.800 (0.60, 0842) mM, respectively. Similarities in bimodal concentration-responses between with-chorion and dechorionated embryos indicate that the observed effect was not caused by the chorion limiting arsenic availability, thus lending support to other studies such as those that hypothesized a conserved bimodal mechanism of arsenic interference with nuclear receptor activation.
Collapse
Affiliation(s)
- Jason A Coral
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA.
| | - Samuel Heaps
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Stephen P Glaholt
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Joseph R Shaw
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| |
Collapse
|
21
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
22
|
Boyda J, Hawkey AB, Holloway ZR, Trevisan R, Di Giulio RT, Levin ED. The organophosphate insecticide diazinon and aging: Neurobehavioral and mitochondrial effects in zebrafish exposed as embryos or during aging. Neurotoxicol Teratol 2021; 87:107011. [PMID: 34224825 PMCID: PMC8440393 DOI: 10.1016/j.ntt.2021.107011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022]
Abstract
Organophosphate (OP) compounds comprise one of the most widely used classes of insecticides worldwide. OPs have been shown to have negative human health impacts, particularly developmental neurotoxicity. However, neurotoxic impacts in later adulthood and during the aging process are relatively uncharacterized. The present study examined diazinon (DZN), an OP, to determine the neurobehavioral consequences, in addition to mitochondrial dysfunction on a macroscale (whole organism basal respiration) and on a microscale (whole organ mitochondrial respiration), using zebrafish (ZF) as a model. One group of 14-month-old adult ZF were exposed acutely as adults (0.4, 1.25, and 4.0 μM) for five days and tested as adults, and another group was exposed developmentally 5-120 h post-fertilization (70, 210, and 700 nM) and tested at larval, adolescent, adult, and aging life stages. ZF exposed acutely as adults did not display many significant neurobehavioral impacts or mitochondrial dysfunction. Conversely, the embryonically exposed ZF showed altered behavioral functions at each stage of life which emerged and attenuated as fish transitioned from each developmental stage to the next. Mitochondrial oxygen consumptions measurement results for developmentally DZN exposed ZF showed significant increases in the low and middle dose groups in organs such as the brain and testes. Overall, there is an indication that early developmental exposure to DZN had continuing adverse neurobehavioral and cellular consequences throughout their lives well into adulthood and aging periods.
Collapse
Affiliation(s)
- Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Edward D Levin
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
23
|
Cadmium Accumulation and Depuration in the Muscle of Prussian Carp ( Carassius gibelio Bloch) after Sub-Chronic Cadmium Exposure: Ameliorating Effect of Melatonin. Animals (Basel) 2021; 11:ani11082454. [PMID: 34438910 PMCID: PMC8388658 DOI: 10.3390/ani11082454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/18/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Rapid urbanization and industrialization has resulted in substantial contamination of various ecosystems, especially aquatic environments with heavy metals. Heavy metals are classified as either essential (iron, zinc, or copper) or non-essential (cadmium, lead, or mercury) for organisms. Cadmium is a toxic, cancerogenic, and mutagenic metal, occurring as anthropogenic contamination in aquatic environments. The level of cadmium uptake in animals depends on the rate at which they are accumulated and eliminated. Exceeding the permissible levels of cadmium in fish muscle may pose risks for human health in the case of contaminated fish consumption. The aim of the present study was to evaluate the influence of melatonin on cadmium accumulation and elimination in fish muscle. Prussian carps were exposed to two doses of cadmium in the presence or without the melatonin implants. This is the first study to report that melatonin co-administration can effectively protect fish from the accumulation of cadmium in muscle tissue, improve the accumulated cadmium depuration from muscle, and prevent disturbance of the concentration of essential metals in fish body. Abstract The aim of this study was to investigate the bioaccumulation of cadmium in the muscle tissue of Prussian carp during 7 and 13 weeks of exposure to different concentrations of this metal in water (0.4 and 4.0 mg/L), and the depuration of cadmium from muscle during the following 6-week depuration period in the presence of melatonin implants. Furthermore, the relationship between cadmium accumulation and the levels of essential bioelements (copper, zinc, iron) in muscle was evaluated, as well as the bioconcentration factor of cadmium. Heavy metal concentration was determined using atomic absorption spectrometry. Cadmium accumulation in fish muscle increased with the duration of exposure. Cd concentrations exceeded the permissible levels for human consumption in groups exposed to the higher concentration of this metal. Moreover, a significant increase of Zn and Fe levels in the muscle was observed. In the fish that received melatonin implants and were exposed to Cd, its level in the muscle was significantly lower. The depuration of accumulated cadmium depended mainly on the duration of the elimination period. This is the first study to report that melatonin co-administration can effectively protect the fish from the accumulation of cadmium in muscle tissue and changes in trace metal levels.
Collapse
|
24
|
Yang L, Feng J, Gao Y, Zhu L. Role of Toxicokinetic and Toxicodynamic Parameters in Explaining the Sensitivity of Zebrafish Larvae to Four Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8965-8976. [PMID: 34129327 DOI: 10.1021/acs.est.0c08725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Given the persistence and toxic potencies of metal contaminants in ecosystems, animals, and human beings, they are considered to be hazardous global pollutants. While the lethality of metal toxicities (e.g., LC50) can significantly vary, even within the same species, the underlying mechanisms are less well-understood. In this study, we developed a subcellular two-compartment toxicokinetic-toxicodynamic (TK-TD) model for zebrafish larvae when exposed to four metals (cadmium, lead, copper, and zinc) to reveal whether differences in metal toxicity (LC50 values) were dominated by the TK or TD processes. Results showed that the subcellular TK and TD parameters of the four metals were significantly different, and the bioconcentration factor (BCF) value of copper was higher than those of the other metals. We also found that the TD parameter internal threshold concentration (CIT) was significantly positively correlated to the LC50 values (R2 = 0.7), suggesting a dominant role of TD processes in metal toxicity. Furthermore, the combined parameter CIT/BCF for a metal-sensitive fraction (BCFMSF), which linked exposure to effects through the TK-TD approach, explained up to 89% of the variation in toxicity to the four metals. The present study suggests that the observed variation in toxicity of these four metals was mainly determined by TD processes but that TK processes should not be ignored, especially for copper.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Thunga P, Truong L, Tanguay RL, Reif DM. Concurrent Evaluation of Mortality and Behavioral Responses: A Fast and Efficient Testing Approach for High-Throughput Chemical Hazard Identification. FRONTIERS IN TOXICOLOGY 2021; 3:670496. [PMID: 35295121 PMCID: PMC8915815 DOI: 10.3389/ftox.2021.670496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
The continual introduction of new chemicals into the market necessitates fast, efficient testing strategies for evaluating their toxicity. Ideally, these high-throughput screening (HTS) methods should capture the entirety of biological complexity while minimizing reliance on expensive resources that are required to assess diverse phenotypic endpoints. In recent years, the zebrafish (Danio rerio) has become a preferred vertebrate model to conduct rapid in vivo toxicity tests. Previously, using HTS data on 1060 chemicals tested as part of the ToxCast program, we showed that early, 24 h post-fertilization (hpf), behavioral responses of zebrafish embryos are predictive of later, 120 h post-fertilization, adverse developmental endpoints-indicating that embryonic behavior is a useful endpoint related to observable morphological effects. Here, our goal was to assess the contributions (i.e., information gain) from multiple phenotypic data streams and propose a framework for efficient identification of chemical hazards. We systematically swept through analysis parameters for data on 24 hpf behavior, 120 hpf behavior, and 120 hpf morphology to optimize settings for each of these assays. We evaluated the concordance of data from behavioral assays with that from morphology. We found that combining information from behavioral and mortality assessments captures early signals of potential chemical hazards, obviating the need to evaluate a comprehensive suite of morphological endpoints in initial screens for toxicity. We have demonstrated that such a screening strategy is useful for detecting compounds that elicit adverse morphological responses, in addition to identifying hazardous compounds that do not disrupt the underlying morphology. The application of this design for rapid preliminary toxicity screening will accelerate chemical testing and aid in prioritizing chemicals for risk assessment.
Collapse
Affiliation(s)
- Preethi Thunga
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - David M Reif
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
26
|
Bian X, Gao Y. DNA methylation and gene expression alterations in zebrafish embryos exposed to cadmium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30101-30110. [PMID: 33586102 DOI: 10.1007/s11356-021-12691-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
An unexplored attributing molecular mechanism of Cd toxicity is interference with the epigenetic machinery, such as DNA methylation, processes that are crucial for early fetal development. In order to investigate the effects of Cd on the expression of metallothionein (MT) and Dnmts transcripts, markers of DNA methylation, and signaling pathway gene expression, zebrafish embryos were exposed during 24 hours post-fertilization (starting at maximum 8-cell stage) to 0.0089, 0.089, and 0.89 μM Cd. The results showed that the Cd accumulation in zebrafish embryo reached a stable level after 12 hpf, and the Cd accumulation at individual time points was significantly different among different concentration groups. MT mRNA fold was significantly positive with the Cd content in embryos. We observed that the expression level of DNA methyltransferase (Dnmts) in the 0.089 μM Cd exposure group was significantly up-regulated. Dnmt1 expression was significantly up-regulated in the 0.89 μM Cd exposure group, and Dnmt3s expression and global methylation levels were significantly down-regulated. Cd up-regulated ErbB-3 gene expression, down-regulated ErbB-4 gene expression, and neutralized ErbB-1 gene expression. Cd activated Ca2+, MAPK-JUK, p38 MAP kinase, PI3K-AKT, and VEGF signaling pathway genes, indicating these pathway genes related to Cd exposure level. The results are helpful to clarify the molecular mechanism of DNA methylation in zebrafish embryo under metal pressure and further interference with the epigenetic machinery.
Collapse
Affiliation(s)
- Xiaoxue Bian
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Dubińska-Magiera M, Migocka-Patrzałek M, Lewandowski D, Daczewska M, Jagla K. Zebrafish as a Model for the Study of Lipid-Lowering Drug-Induced Myopathies. Int J Mol Sci 2021; 22:5654. [PMID: 34073503 PMCID: PMC8198905 DOI: 10.3390/ijms22115654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced myopathies are classified as acquired myopathies caused by exogenous factors. These pathological conditions develop in patients without muscle disease and are triggered by a variety of medicaments, including lipid-lowering drugs (LLDs) such as statins, fibrates, and ezetimibe. Here we summarise the current knowledge gained via studies conducted using various models, such as cell lines and mammalian models, and compare them with the results obtained in zebrafish (Danio rerio) studies. Zebrafish have proven to be an excellent research tool for studying dyslipidaemias as a model of these pathological conditions. This system enables in-vivo characterization of drug and gene candidates to further the understanding of disease aetiology and develop new therapeutic strategies. Our review also considers important environmental issues arising from the indiscriminate use of LLDs worldwide. The widespread use and importance of drugs such as statins and fibrates justify the need for the meticulous study of their mechanism of action and the side effects they cause.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (M.D.-M.); (M.M.-P.); (D.L.)
| | - Krzysztof Jagla
- Genetics Reproduction and Development Institute (iGReD), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| |
Collapse
|
28
|
Migocka-Patrzałek M, Elias M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021; 10:cells10040883. [PMID: 33924466 PMCID: PMC8070155 DOI: 10.3390/cells10040883] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches.
Collapse
|
29
|
Gao Y, Xie Z, Zhu J, Cao H, Tan J, Feng J, Zhu L. Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics-toxicodynamics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111788. [PMID: 33321419 DOI: 10.1016/j.ecoenv.2020.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Organisms are increasingly tolerant to metal toxicity in the natural ecosystems, which did not match the results of the environmental risk assessment (ERA) of metals based on toxicity data from organisms in the laboratory. Studies have described the effects of pre-exposure to metals on metal toxicity tolerance in terms of the toxicokinetic (TK) process; however, the toxicodynamic (TD) process may be more susceptible to metal pre-exposure. Therefore, to determine whether pre-exposure to low concentrations of silver (Ag) or cadmium (Cd) affects the metal TK and TD processes of zebrafish (Danio rerio) larvae, we investigated four TK-TD model parameters that control tolerance and sensitivity to metal toxicity on the survival. Our results showed that the killing rate (ks) of larvae exposed to high Cd concentrations was significantly lower following pre-exposure to 10 μg/L Cd than that of larvaenot pre-exposed. However, the ks for high Ag concentrations was significantly higher in zebrafish larvae following pre-exposure to 2 μg/L Ag than in larvae not pre-exposed. In other words, a one-day pre-exposure to 2 µg/L Ag rendered the larvae more sensitive to Ag during a subsequent 4-day exposure to higher Ag concentrations, whereas a one-day pre-exposure to 10 µg/L Cd rendered the larvae more tolerance to Cd during a subsequent 4-day exposure to higher Cd concentrations. Our results further the current understanding of toxic metal tolerance mechanisms, both in TK and TD processes, and they will guide future laboratory studies to assess actual pre-exposure scenarios that occur in natural environments. Thus, our study can help reduce uncertainty in testing and improve ecological management concerning metal risk assessments.
Collapse
Affiliation(s)
- Yongfei Gao
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhicheng Xie
- Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jingxue Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Honglei Cao
- R&D Department, Tianjin Litai Environmental Technology Co., Ltd, Tianjin 300450, China
| | - Jianguo Tan
- Deparment of Mathematics, Tiangong University, Tianjin 300387, China
| | - Jianfeng Feng
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Félix LM, Luzio A, Antunes L, Coimbra AM, Valentim AM. Malformations and mortality in zebrafish early stages associated with elevated caspase activity after 24 h exposure to MS-222. Toxicol Appl Pharmacol 2020; 412:115385. [PMID: 33370555 DOI: 10.1016/j.taap.2020.115385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
Tricaine methanesulfonate (MS-222) is a commonly used anaesthetic agent for immobilization of aquatic species. However, delayed development and malformations have been observed in 24 hpf (hours post-fertilization) zebrafish embryos after long-term immobilization. Still, no comprehensive study has been described regarding zebrafish exposure to MS-222 during the first hours of development, which are one of the most sensitive life stages to toxicants. Therefore, this research aimed to assess the toxicity of a 24 h exposure to MS-222 on zebrafish embryonic development. Based on the MS-222 LC50, early blastula stage embryos (~2 hpf) were exposed to 0, 12.5, 25 and 50 mg L-1 for 24 h and then allowed to develop up to 144 hpf. The chromatographic analysis showed that this anaesthetic agent bioaccumulates in 26 hpf zebrafish larvae in a concentration-dependent manner. In addition, increased mortalities and skeletal abnormalities were observed at 144 hpf, namely in the highest tested concentration. Yet, no craniofacial anomalies were observed either by alcian blue or calcein staining methods. Independently of the tested concentration, decreased speed and distance travelled were perceived in 144 hpf larvae. At the biochemical level, decreased in vivo reactive oxygen species (ROS) generation and apoptosis was observed. Additionally, catalase activity was increased at 26 hpf while results of mRNA expression showed a decreased gclc transcript content at the same time-point. Overall, data obtained highlight the toxicological risk of MS-222 and support ROS-mediated cell death signalling changes through the elevation of catalase activity as an adaptative or protective response.
Collapse
Affiliation(s)
- Luís M Félix
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Valentim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Laboratory Animal Science, IBMC - Instituto de Biologia Molecular Celular, Universidade do Porto, Porto, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
31
|
González-Renteria M, del Carmen Monroy-Dosta M, Guzmán-García X, Hernández-Calderas I, Ramos-Lopez YMA. Antibacterial activity of Lemna minor extracts against Pseudomonas fluorescens and safety evaluation in a zebrafish model. Saudi J Biol Sci 2020; 27:3465-3473. [PMID: 33304157 PMCID: PMC7715055 DOI: 10.1016/j.sjbs.2020.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/18/2020] [Accepted: 09/20/2020] [Indexed: 01/26/2023] Open
Abstract
The treatment of bacterial diseases in aquaculture is done using antibiotics, their applications has resulted in contamination and bacterial resistance. Natural extracts are a potential alternative as an antimicrobial, they have demonstrated effectiveness in their use aimed at treating conditions. The purpose of this study was to evaluate the antimicrobial activity of Lemna minor extracts against Pseudomonas fluorescens with different solvent for extraction. Methanol, chloroform and hexane were used. Subsequently, the safety assessment of the extracts in Danio rerio embryos and larvae was performed to validate as ecologically harmless. Antibacterial activity was detected in three extracts with significant differences (p = 0.001). Hexane extract had the highest antibacterial activity, followed by chloroform and methanol extracts. The three extracts have differences with respect to the control, between times and concentrations tested (p = 0.001). Minimum inhibitory concentration values (MIC) at 24 h methanolic extract ME 0.05 µg mL-1. In embryos and larvae increased safety of the LC50 methanolic extract was evidenced followed by the hexane and chloroform extract. No morphological or tissue changes were observed in embryos and larvae. The hexane extracts of L. minor had a greater bactericidal effect against P. fluorescens and are functional because of their antibacterial activity, but methanolic extract is more safety in embryos and larvae of D. rerio, making it a potential alternative for use in the treatment and control of septicemia in fish.
Collapse
Affiliation(s)
- Mariela González-Renteria
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana. Prolongación Canal de Miramontes 3855. Col. Ex-Hacienda San Juan de Dios Alcaldía de Tlalpan C.P. 14387, Ciudad de México
| | - María del Carmen Monroy-Dosta
- Departamanto el Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Coyoacán, México City, Mexico
| | - Xochitl Guzmán-García
- Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc., México City, Mexico
| | - Irma Hernández-Calderas
- Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc., México City, Mexico
| | - y Miguel Angel Ramos-Lopez
- Laboratorio de Compuestos Naturales e Insecticidas, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, Mexico
| |
Collapse
|
32
|
Cadena PG, Sales Cadena MR, Sarmah S, Marrs JA. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicol Teratol 2020; 82:106928. [PMID: 32861842 PMCID: PMC7669573 DOI: 10.1016/j.ntt.2020.106928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Protective effects of quercetin (QUE), polydatin (POL), and folic acid (FA) and their mixtures were tested using zebrafish to model fetal alcohol spectrum disorder in this study. Zebrafish embryos were exposed to 150 mM ethanol for 6 or 22 h and co-treated with QUE, POL, FA, and their mixtures (37.5-100.0 μM). Epiboly progression, teratogenic effects, and behavior were evaluated. Ethanol exposure reduced epiboly, and FA and QUE protected against these ethanol-induced defects. POL did not reduce epiboly defects. The mixture QUE + FA showed a possible antagonistic effect. The observed teratogenic effects were similar in all ethanol exposed groups. QUE, FA and QUE + POL reduced the percentage of affected animals, but treatments did not eliminate teratogenic effects. Behavioral measurements were divided into small (between 4 and 8 mm/s) and high swimming activity (>8 mm/s). All experimental groups displayed a reduction in small swimming activity as compared to control and ethanol groups when exposed to bright light. Additionally, larvae exposed to ethanol were more inhibited than control, not showing a habituation period (after 60 min of experiment) in high swimming activity. Chemical treatments like QUE and POL reduced behavioral defects induced by ethanol exposure. In conclusion, this study presents new evidence that QUE, POL, FA and their mixtures partially protected epiboly, teratogenic, and behavioral defects induced by ethanol exposure. QUE, FA and QUE + POL were more effective in reducing these defects than the other studied compounds and mixtures.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil; Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University Purdue University Indianapolis, 723 West Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
33
|
Effect of Cadmium and Nickel Exposure on Early Development in Zebrafish (Danio rerio) Embryos. WATER 2020. [DOI: 10.3390/w12113005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to even low concentrations of heavy metals can be toxic to aquatic organisms, especially during embryonic development. Thus, this study aimed to investigate the toxicity of nickel and cadmium in zebrafish (Danio rerio) embryos exposed to environmentally relevant concentrations of each metal alone or in combination from 4 h through to 72 h postfertilization. Neither metal altered survival, but individual and combined exposures decreased hatching rate. Whereas cadmium did not affect total body length, trunk area, eye diameter, or eye area, nickel alone and in combination with cadmium decreased each morphological parameter. Yolk sac area, an index of metabolic rate, was not affected by nickel, but was larger in embryos exposed to high cadmium concentrations or nickel and cadmium combined at high concentrations. Nickel decreased spontaneous movement, whereas cadmium alone or nickel and cadmium combined had no effect. Neither metal altered elicited movement, but nickel and cadmium combined decreased elicited movement. Myosin protein expression in skeletal muscle was not altered by cadmium exposure. However, exposure to nickel at low concentrations and combined exposure to nickel and cadmium decreased myosin expression. Overall, nickel was more toxic than cadmium. In conclusion, we observed that combined exposures had a greater effect on movement than gross morphology, and no significant additive or synergistic interactions were present. These results imply that nickel and cadmium are toxic to developing embryos, even at very low exposure concentrations, and that these metals act via different mechanisms.
Collapse
|
34
|
Gao Y, Xie Z, Feng M, Feng J, Zhu L. A biological characteristic extrapolation of compound toxicity for different developmental stage species with toxicokinetic-toxicodynamic model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111043. [PMID: 32888597 DOI: 10.1016/j.ecoenv.2020.111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/05/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Intraspecific difference in toxicity brings uncertainty to ecological risk assessment (ERA) and water quality criteria (WQC) of chemicals. Here, we compared intraspecies sensitivity to toxicants for Mesocyclops leuckarti of which toxicity data was obtained from published literatures, and zebrafish Danio rerio of which toxicity data was done in this study). Due to the internal concentration of chemicals not measured, simplified toxicokinetic-toxicodynamic (TK-TD) models were used, and we investigated whether TK-TD parameters estimated by Bayesian method might represent the differences in sensitivity between life-stages of 2 species. The results demonstrated that the difference in TK-TD parameters (background mortality m0, no effect concentration NEC, the killing rate ks, and the dominant rate kd) could represent the toxicity difference between life-stages of individual species. The TK-TD model could predict toxicity in individual species (Cyprinus carpio L., Enchytraeus crypticus, Folsomia candida, Hyalella Azteca) exposed to different chemical concentrations and successfully extrapolate toxicity between different life stages of Mesocyclops leuckarti and Danio rerio by scaling several TK-TD parameters. The modified TK-TD model on the extrapolation toxicity of chemicals between life stages for species could be useful for the ERA and for deriving and revising WQC for chemicals.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhicheng Xie
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Mingfeng Feng
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
Cadena PG, Cadena MRS, Sarmah S, Marrs JA. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reprod Toxicol 2020; 96:249-257. [PMID: 32763456 PMCID: PMC7858698 DOI: 10.1016/j.reprotox.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
The objective of this work was to determine whether folic acid (FA) reduces the embryonic ethanol (EtOH) exposure induced behavioral and morphological defects in our zebrafish fetal alcohol spectrum disorder (FASD) model. Teratogenic effects, mortality, the excitatory light-dark locomotion (ELD), sleep (SL), thigmotaxis (TH), touch sensitivity (TS), and optomotor response (OMR) tests were evaluated in larvae (6-7 days post-fertilization) using four treatment conditions: Untreated, FA, EtOH and EtOH + FA. FA reduced morphological defects on heart, eyes and swim bladder inflation seen in EtOH exposed fish. The larvae were more active in the dark than in light conditions, and EtOH reduced the swimming activity in the ELD test. EtOH affected the sleep pattern, inducing several arousal periods and increasing inactivity in zebrafish. FA reduces these toxic effects and produced more consistent inactivity during the night, reducing the arousal periods. FA also prevented the EtOH-induced defects in thigmotaxis and optomotor response of the larvae. We conclude that in this FASD model, EtOH exposure produced several teratogenic and behavioral defects, FA reduced, but did not totally prevent, these defects. Understanding of EtOH-induced behavioral defects could help to identify new therapeutic or prevention strategies for FASD.
Collapse
Affiliation(s)
- Pabyton Gonçalves Cadena
- Departamento de Morfologia e Fisiologia Animal (DMFA), Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| | - Marilia Ribeiro Sales Cadena
- Departamento de Biologia (DB), Universidade Federal Rural de Pernambuco. Av. Dom Manoel de Medeiros s/n, 52171-900, Dois Irmãos, Recife - PE, Brazil; Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - Swapnalee Sarmah
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA
| | - James A Marrs
- Department of Biology, Indiana University - Purdue University Indianapolis, 723 West Michigan, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Dubińska-Magiera M, Niedbalska-Tarnowska J, Migocka-Patrzałek M, Posyniak E, Daczewska M. Characterization of Hspb8 in Zebrafish. Cells 2020; 9:cells9061562. [PMID: 32604890 PMCID: PMC7348923 DOI: 10.3390/cells9061562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022] Open
Abstract
Hspb8 is a member of the small heat shock protein (sHSP) family. Its expression is known to be upregulated under heat shock. This protein interacts with different partners and can, therefore, be involved in various processes relevant to tissue integrity and functioning. In humans, mutations in the gene encoding Hspb8 can lead to the development of various diseases such as myopathies and neuropathies. In our study, we aimed to perform an in-depth characterization of zebrafish Hspb8 during zebrafish development. We applied techniques such as RT-qPCR, Western blot, immunofluorescence, co-immunoprecipitation, LC-MS, and morpholino-mediated knockdown. We broadened the knowledge regarding zebrafish hspb8 expression during development under normal and heat shock conditions as well as its tissue- and subcellular-specific localization. A co-IP analysis allowed us to conclude that zebrafish Hspb8 can interact with proteins such as Bag3 and Hsc70, which are crucial for formation of an autophagy-inducing complex. We also demonstrated that hspb8 morpholino-mediated knockdown has an impact on zebrafish embryos' morphology, muscle ultrastructure, and motility behavior. Our research provides a valuable resource for the potential use of the zebrafish as a model for studying pathological conditions associated with hspb8 disorders.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland; (J.N.-T.); (M.M.-P.); (E.P.)
- Correspondence: (M.D.-M.); (M.D.); Tel.: +48-71-375-4024 (M.D.-M.)
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland; (J.N.-T.); (M.M.-P.); (E.P.)
- Hirszfeld Institute of Immunology and Experimental Therapy, the Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland; (J.N.-T.); (M.M.-P.); (E.P.)
| | - Ewelina Posyniak
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland; (J.N.-T.); (M.M.-P.); (E.P.)
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland; (J.N.-T.); (M.M.-P.); (E.P.)
- Correspondence: (M.D.-M.); (M.D.); Tel.: +48-71-375-4024 (M.D.-M.)
| |
Collapse
|
37
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu J, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7148713 DOI: 10.1016/j.nrleng.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
The effect of muscle glycogen phosphorylase (Pygm) knockdown on zebrafish morphology. Int J Biochem Cell Biol 2019; 118:105658. [PMID: 31747538 DOI: 10.1016/j.biocel.2019.105658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022]
Abstract
Muscle glycogen phosphorylase (PYGM) is a key enzyme in the first step of glycogenolysis. Mutation in the PYGM gene leads to autosomal recessive McArdle disease. Patients suffer from exercise intolerance with premature fatigue, muscle cramps and myalgia due to lack of available glucose in muscles. So far, no efficient treatment has been found. The zebrafish has many experimental advantages, and was successfully implemented as an animal model of human myopathies. Since zebrafish skeletal muscles share high similarity with human skeletal muscles, it is our animal of choice to investigate the impact of Pygm knockdown on skeletal muscle tissue. The two forms of the zebrafish enzyme, Pygma and Pygmb, share more than 80% amino acid sequence identity with human PYGM. We show that the Pygm level varies at both the mRNA and protein level in distinct stages of zebrafish development, which is correlated with glycogen level. The Pygm distribution in muscles varies from dispersed to highly organized at 72 hpf. The pygma and pygmb morpholino knockdown resulted in a reduced Pygm level in zebrafish morphants, which exhibited altered, disintegrated muscle structure and accumulation of glycogen granules in the subsarcolemmal region. Thus, lowering the Pygm level in zebrafish larvae leads to an elevated glycogen level and to morphological muscle changes mimicking the symptoms of human McArdle disease. The zebrafish model of this human disease might contribute to further understanding of its molecular mechanisms and to the development of appropriate treatment.
Collapse
|
39
|
Chemello G, Randazzo B, Zarantoniello M, Fifi AP, Aversa S, Ballarin C, Radaelli G, Magro M, Olivotto I. Safety assessment of antibiotic administration by magnetic nanoparticles in in vitro zebrafish liver and intestine cultures. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108559. [PMID: 31254662 DOI: 10.1016/j.cbpc.2019.108559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Different in vitro models have been suggested to replace in vivo studies. In vitro studies are of great interest and give the opportunity to analyze cellular responses in a closed system with stable experimental conditions and to avoid direct animal exposure and distress during the experiments. These methods are useful to test drugs and chemicals toxicity in order to better understand their environmental impact. In the present study, fish organ cultures have been used to test different oxytetracycline exposure methods, including oxide nanoparticles (IONPs), using zebrafish as experimental model. Results showed that oxytetracycline accumulation at the end of the experiment (24 h) in the exposed organs did not show any significant difference in the analyzed samples and was not dependent on the exposure way (free or IONPs-bound oxytetracycline). However, as regards molecular analysis, the different exposure ways tested in this study showed some differences in the expression of genes involved in stress response. The present data did not completely agree with a previous in vivo study performed in zebrafish using IONPs, underlying that replacement of in vivo models with in vitro studies cannot always represent the complexity of interactions typical of a biological system.
Collapse
Affiliation(s)
- Giulia Chemello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | | | | | - Cristina Ballarin
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Giuseppe Radaelli
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Massimiliano Magro
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Agripolis, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
40
|
Marinho CS, Matias MVF, Brandão IGF, Santos EL, Machado SS, Zanta CLPS. Characterization and kinetic study of the brain and muscle acetylcholinesterase from Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:11-18. [PMID: 30981910 DOI: 10.1016/j.cbpc.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/09/2019] [Accepted: 04/08/2019] [Indexed: 11/26/2022]
Abstract
Acetylcholinesterase (AChE) plays an important role in the therapy of Alzheimer's disease and in the detection of pesticides such as organophosphates which are also widely used in chemical warfare. The aim of this study is the physicochemical and kinetic characterization of brain and muscle ChE from Danio rerio (Zebrafish). Optimal activity was found for brain ChE at alkaline pH 9.0 at 30 °C, and for muscle ChE at alkaline pH 8.5 at temperatures between 20 °C and 35 °C. The apparent kinetic constants, Kmapp and Vmaxapp, for brain ChE were determined as 0.191 ± 0.024 mM and 0.566 ± 0.028 U/mg protein, and for muscle ChE as 0.230 ± 0.030 mM and 0.677 ± 0.039 U/mg protein. Both brain and muscle ChE showed inhibition at high substrate concentrations. Brain and muscle ChE showed IC50 values for physostigmine of 0.61 μM and 0.37 μM, respectively. The ChE activity in brain was significantly inhibited by BW254c51 in all concentrations tested, but not by Iso-OMPA, while muscle ChE presented a moderate decrease (13 to 29%) in the activity values, indicating that BuChE is present.
Collapse
Affiliation(s)
- Claudiane S Marinho
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Marcos V F Matias
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Iago G F Brandão
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| | - Elton L Santos
- Federal University of Alagoas, Agricultural Sciences Center, BR-104, Rio Largo, AL, Brazil
| | - Sonia S Machado
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil.
| | - Carmem L P S Zanta
- Federal University of Alagoas, Institute of Chemistry and Biotechnology, Av. Lourival Melo Mota, S/N, Tabuleiro do Martins, Maceió, AL, Brazil
| |
Collapse
|
41
|
Gao Y, Zhang Y, Feng J, Zhu L. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:221-229. [PMID: 31082606 DOI: 10.1016/j.envpol.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Toxicity of hazard materials to organism is different between larvae and adult zebrafish. However, this different effect was seldom considered in toxicological modeling. Here, we measured Cd and Pb toxicity for larvae and adult zebrafish (Danio rerio) and assessed whether metal toxicity can be better simulated by the one-compartment or two-compartment toxicokinetic (TK) and toxicodynamic (TD) models with assumption of stochastic death (SD) and individual tolerance (IT), respectively. Results showed that, for larvae, the one-compartment model generally fitted the observed accumulation and survival better than two-compartment model. In contrast, for adult, the two-compartment model simulation satisfied the observed accumulation and survival better than one-compartment model. In addition, both the SD and the IT models generally described the Cd or Pb toxicity well, although the IT model predictions were slightly better than the SD model in adult fish, the opposite phenomenon was observed in larvae. Our results suggested that variations in both TK and TD parameters might be needed to quantify the toxicity sensitivity in larvae and adult zebrafish, and accounting these variations in mechanistic toxicological effect models (e.g. TK-TD) will allow more accurate predictions of hazard materials effects to organisms.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Cassar S, Beekhuijzen M, Beyer B, Chapin R, Dorau M, Hoberman A, Krupp E, Leconte I, Stedman D, Stethem C, van den Oetelaar D, Tornesi B. A multi-institutional study benchmarking the zebrafish developmental assay for prediction of embryotoxic plasma concentrations from rat embryo-fetal development studies. Reprod Toxicol 2019; 86:33-44. [PMID: 30876927 DOI: 10.1016/j.reprotox.2019.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/24/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023]
Abstract
Predicting embryotoxicity of pharmaceutical compounds or industrial chemicals is crucial for public safety. Conventional studies which monitor embryo-fetal development in rats and rabbits are costly and time consuming. Alternative assays which are simpler and less costly are being pursued. The purpose of this research was to assess the capacity for the zebrafish development assay to predict mammalian plasma levels that are embryotoxic. Previously published data on rat plasma levels associated with embryotoxicity were used to guide concentration ranges for each of 25 chemicals dissolved in the media bathing developing zebrafish embryos. Embryotoxic media concentrations were compared to embryotoxic rat plasma concentrations. Assays were conducted in parallel at multiple sites as a consortium effort through the Health and Environmental Sciences Institute (HESI). Considering results from all sites, the zebrafish embryo development assay predicted (within 1-log) the rat maternal exposure levels associated with embryotoxicity 75% of the time.
Collapse
|
43
|
Xiong XY, Liu Y, Shan LT, Xu YQ, Liang J, Lai YH, Hsiao CD. Evaluation of collagen mixture on promoting skin wound healing in zebrafish caused by acetic acid administration. Biochem Biophys Res Commun 2018; 505:516-522. [PMID: 30274782 DOI: 10.1016/j.bbrc.2018.09.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 11/15/2022]
Abstract
The aim of this study is to use zebrafish embryos as a quick platform for wound healing studies. At beginning, we optimized a protocol to induce skin lesion by acetic acid injection. The acetic acid injection induced regional inflammation wound hyperpigmentation by recruiting pigment cells to the wound area. Later, we applied established platform to evaluate the effect of tilapia's collagen peptide mixtures, including demonstration on promoting skin wound healing and eliminating inflammatory response. Results showed that after treating TY001, one of the above fish collagen peptide mixtures, not only repair and proliferation were induced, but also death and apoptosis cells were cleared within cutaneous lesion. Moreover, inflammatory response was suppressed along with collagen mixture treatment. Finally, the TY001-associated signaling was validated by real time-PCR, and numbers of gene associated with tissue repair and vessel proliferation were induced. To sum up, our findings provided a permissive model that may apply to generate a platform for further screening on repair and restoration technology. In addition, the tilapia fish collagen peptide mixture we applied on our model has great potential on developing clinical application on wound healing.
Collapse
Affiliation(s)
- Xiao-Yun Xiong
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, Shanxi, 044602, China
| | - Yi Liu
- The Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, 710054, China
| | - Le-Tian Shan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Qiao Xu
- Hunter Biotechnology, Inc, Hangzhou, China
| | - Jun Liang
- Yabao Pharmaceutical Group Co., Ltd, Fenglingdu, Shanxi, 044602, China.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 11114, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, 32023, Taiwan; Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan; Center of Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan; Center of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan.
| |
Collapse
|
44
|
Petit J, David L, Dirks R, Wiegertjes GF. Genomic and transcriptomic approaches to study immunology in cyprinids: What is next? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:48-62. [PMID: 28257855 DOI: 10.1016/j.dci.2017.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 02/24/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Accelerated by the introduction of Next-Generation Sequencing (NGS), a number of genomes of cyprinid fish species have been drafted, leading to a highly valuable collective resource of comparative genome information on cyprinids (Cyprinidae). In addition, NGS-based transcriptome analyses of different developmental stages, organs, or cell types, increasingly contribute to the understanding of complex physiological processes, including immune responses. Cyprinids are a highly interesting family because they comprise one of the most-diversified families of teleosts and because of their variation in ploidy level, with diploid, triploid, tetraploid, hexaploid and sometimes even octoploid species. The wealth of data obtained from NGS technologies provides both challenges and opportunities for immunological research, which will be discussed here. Correct interpretation of ploidy effects on immune responses requires knowledge of the degree of functional divergence between duplicated genes, which can differ even between closely-related cyprinid fish species. We summarize NGS-based progress in analysing immune responses and discuss the importance of respecting the presence of (multiple) duplicated gene sequences when performing transcriptome analyses for detailed understanding of complex physiological processes. Progressively, advances in NGS technology are providing workable methods to further elucidate the implications of gene duplication events and functional divergence of duplicates genes and proteins involved in immune responses in cyprinids. We conclude with discussing how future applications of NGS technologies and analysis methods could enhance immunological research and understanding.
Collapse
Affiliation(s)
- Jules Petit
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands
| | - Lior David
- Department of Animal Sciences, R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ron Dirks
- ZF-screens B.V., J.H, Oortweg 19, 2333 CH, Leiden, The Netherlands
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Wageningen Institute of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
45
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia 2017; 35:32-39. [PMID: 28863829 PMCID: PMC7115679 DOI: 10.1016/j.nrl.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/07/2022] Open
Abstract
Introducción El uso de modelos experimentales en animales permite aumentar el conocimiento sobre la patología del sistema nervioso central. Sin embargo, en la esclerosis múltiple, no existe un modelo que permita una visión general de la enfermedad, de forma que es necesario utilizar una variedad de modelos que abarquen los distintos cambios que se producen. Desarrollo Se revisan los distintos modelos experimentales que pueden ser utilizados en la investigación en la esclerosis múltiple, tanto in vitro como in vivo. En relación a los modelos in vitro se analizan los distintos cultivos celulares y sus potenciales modificaciones así como los modelos en rodajas. En los modelos in vivo, se analizan los modelos de base inmune-inflamatoria como la encefalitis alérgica experimental en los distintos animales, además de las enfermedades desmielinizantes por virus. Por otro lado, se analizan los modelos de desmielinización-remielinización incluyéndose las lesiones químicas por cuprizona, lisolecitina, bromuro de etidio, así como el modelo de zebrafish y los modelos transgénicos. Conclusiones Los modelos experimentales nos permiten acercarnos al conocimiento de los diversos mecanismos que ocurren en la esclerosis múltiple. La utilización de cada uno de ellos depende de los objetivos de investigación que planteen.
Collapse
Affiliation(s)
- L Torre-Fuentes
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Moreno-Jiménez
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - V Pytel
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - U Gómez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|