1
|
El Baassiri MG, Raouf Z, Badin S, Escobosa A, Sodhi CP, Nasr IW. Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. J Neuroinflammation 2024; 21:124. [PMID: 38730498 PMCID: PMC11083845 DOI: 10.1186/s12974-024-03118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.
Collapse
Affiliation(s)
- Mahmoud G El Baassiri
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zachariah Raouf
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sarah Badin
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alejandro Escobosa
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chhinder P Sodhi
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isam W Nasr
- Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
2
|
Wen X, Dong H, Zou W. The role of gut microorganisms and metabolites in intracerebral hemorrhagic stroke: a comprehensive review. Front Neurosci 2024; 18:1346184. [PMID: 38449739 PMCID: PMC10915040 DOI: 10.3389/fnins.2024.1346184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Intracerebral hemorrhagic stroke, characterized by acute hemorrhage in the brain, has a significant clinical prevalence and poses a substantial threat to individuals' well-being and productivity. Recent research has elucidated the role of gut microorganisms and their metabolites in influencing brain function through the microbiota-gut-brain axis (MGBA). This article provides a comprehensive review of the current literature on the common metabolites, short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO), produced by gut microbiota. These metabolites have demonstrated the potential to traverse the blood-brain barrier (BBB) and directly impact brain tissue. Additionally, these compounds have the potential to modulate the parasympathetic nervous system, thereby facilitating the release of pertinent substances, impeding the buildup of inflammatory agents within the brain, and manifesting anti-inflammatory properties. Furthermore, this scholarly analysis delves into the existing dearth of investigations concerning the influence of gut microorganisms and their metabolites on cerebral functions, while also highlighting prospective avenues for future research.
Collapse
Affiliation(s)
- Xin Wen
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Hao Dong
- The First Clinical Medical College, Heilongjiang University Of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Shen Y, Liu H, Meng X, Gao A, Liu Y, Ma W, Liang H, Hu F. The causal effects between gut microbiota and hemorrhagic stroke: a bidirectional two-sample Mendelian randomization study. Front Microbiol 2023; 14:1290909. [PMID: 38188561 PMCID: PMC10770845 DOI: 10.3389/fmicb.2023.1290909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Recent studies have suggested that the composition of gut microbiota (GM) may change after intracerebral hemorrhage. However, the causal inference of GM and hemorrhagic stroke is unknown. Mendelian Randomization (MR) is an effective research method that removes confounding factors and investigates the causal relationship between exposure and outcome. This study intends to explore the causal relationship between GM and hemorrhagic stroke with the help of MR. Methods Univariable and multivariable MR analyses were performed using summary statistics of the GM (n = 18,340) in the MiBioGen consortium vs. the FinnGen consortium R9 summary statistics (intracerebral hemorrhage, subarachnoid hemorrhage, and nontraumatic intracranial hemorrhage). Causal associations between gut microbiota and hemorrhagic stroke were analyzed using inverse variance weighted, MR-Egger regression, weighted median, weighted mode, simple mode, and MR-PRESSO. Cochran's Q statistic, MR-Egger regression, and leave-one-out analysis were used to test for multiplicity and heterogeneity of instrumental variables. Separate reverse MR analyses were performed for microbiota found to be causally associated with hemorrhagic stroke in the forward MR analysis. Also, multivariate MR analyses were conducted after incorporating common confounders. Results Based on the results of univariable and multivariate MR analyses, Actinobacteria (phylum) (OR, 0.80; 95%CI, 0.66-0.97; p = 0.025) had a protective effect against hemorrhagic stroke, while Rikenellaceae RC9 gut group (genus) (OR, 0.81; 95%CI, 0.67-0.99; p = 0.039) had a potential protective effect. Furthermore, Dorea (genus) (OR, 1.77; 95%CI, 1.27-2.46; p = 0.001), Eisenbergiella (genus) (OR, 1.24; 95%CI, 1.05-1.48; p = 0.013) and Lachnospiraceae UCG008 (genus) (OR, 1.28; 95%CI, 1.01-1.62; p = 0.041) acted as potential risk factors for hemorrhagic stroke. The abundance of Dorea (genus) (β, 0.05; 95%CI, 0.002 ~ 0.101; p = 0.041) may increase, and that of Eisenbergiella (genus) (β, -0.072; 95%CI, -0.137 ~ -0.007; p = 0.030) decreased after hemorrhagic stroke according to the results of reverse MR analysis. No significant pleiotropy or heterogeneity was detected in any of the MR analyses. Conclusion There is a significant causal relationship between GM and hemorrhagic stroke. The prevention, monitoring, and treatment of hemorrhagic stroke through GM represent a promising avenue and contribute to a deeper understanding of the mechanisms underlying hemorrhagic stroke.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Liu
- Clinical Laboratory of Molecular Biology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyi Meng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, China
| | - Yansong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Ma
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongsheng Liang
- NHC Key Laboratory of Cell Transplantation, Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
4
|
Farag E, Machado S, Argalious M. Multiorgan talks in the presence of brain injury. Curr Opin Anaesthesiol 2023; 36:476-484. [PMID: 37552078 DOI: 10.1097/aco.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
PURPOSE OF REVIEW The brain is the command center of the rest of the body organs. The normal multiorgan talks between the brain and the rest of the body organs are essential for the normal body homeostasis. In the presence of brain injury, the disturbed talks between the brain and the rest of body organs will result in several pathological conditions. The aim of this review is to present the most recent findings for the pathological conditions that would result from the impaired multiorgan talks in the presence of brain injury. RECENT FINDINGS The brain injury such as in acute ischemic stroke, subarachnoid hemorrhage and traumatic brain injury will result in cascade of pathological talks between the brain and the rest of body organs. These pathological talks could result in pathological conditions such as cardiomyopathy, acute lung and kidney injuries, impaired liver functions, and impaired gut barrier permeability as well. SUMMARY Better understanding of the pathological conditions that could result from the impaired multiorgan talks in the presence of brain injury will open the doors for precise targeted therapies in the future for myriad of pathological conditions.
Collapse
Affiliation(s)
- Ehab Farag
- Department of General Anesthesiology, Anesthesia Institute, Cleveland Clinic, Ohio, USA
| | | | | |
Collapse
|
5
|
Liangxue Tongyu Prescription Alleviates Brain Damage in Acute Intracerebral Hemorrhage Rats by Regulating Intestinal Mucosal Barrier Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2197763. [PMID: 36573082 PMCID: PMC9789913 DOI: 10.1155/2022/2197763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Background Liangxue Tongyu prescription (LTP) is a commonly used formula for acute intracerebral hemorrhage (AICH) in clinical practice that has significant ameliorative effects on neurological deficits and gastrointestinal dysfunction, yet the mechanism remains elusive. The aim of this study was to investigate the pathway by which LTP alleviates brain damage in AICH rats. Methods The AICH rat models were established by autologous caudal arterial blood injection. The neurological function scores were evaluated before and after treatment. The water content and the volume of Evans blue staining in the brain were measured to reflect the degree of brain damage. RT-PCR was used to detect the inflammatory factors of the brain. Western blotting was used to detect the expression of the tight junction proteins zonula occludens 1 (ZO-1), occludin (OCLN), and claudin (CLDN) in the brain and colon, followed by mucin 2 (MUC2), secretory immunoglobulin A (SIgA), and G protein-coupled receptor 43 (GPR43) in the colon. Flow cytometry was used to detect the ratios of helper T cells 17 (Th17) and regulatory T cells (Treg) in peripheral blood, and the vagus nerve (VN) discharge signals were collected. Results LTP reduced the brain damage of the AICH rats. Compared with the model group, LTP significantly improved the permeability of the colonic mucosa, promoted the secretion of MUC2, SigA, and GPR43 in the colon, and regulated the immune balance of peripheral T cells. The AICH rats had significantly faster VN discharge rates and lower amplitudes than normal rats, and these abnormalities were corrected in the LTP and probiotics groups. Conclusion LTP can effectively reduce the degree of brain damage in AICH rats, and the mechanism may be that it can play a neuroprotective role by regulating the function of the intestinal mucosal barrier.
Collapse
|
6
|
Zou X, Wang L, Xiao L, Wang S, Zhang L. Gut microbes in cerebrovascular diseases: Gut flora imbalance, potential impact mechanisms and promising treatment strategies. Front Immunol 2022; 13:975921. [PMID: 36389714 PMCID: PMC9659965 DOI: 10.3389/fimmu.2022.975921] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/28/2023] Open
Abstract
The high morbidity, mortality, and disability rates associated with cerebrovascular disease (CeVD) pose a severe danger to human health. Gut bacteria significantly affect the onset, progression, and prognosis of CeVD. Gut microbes play a critical role in gut-brain interactions, and the gut-brain axis is essential for communication in CeVD. The reflection of changes in the gut and brain caused by gut bacteria makes it possible to investigate early warning biomarkers and potential treatment targets. We primarily discussed the following three levels of brain-gut interactions in a systematic review of the connections between gut microbiota and several cerebrovascular conditions, including ischemic stroke, intracerebral hemorrhage, intracranial aneurysm, cerebral small vessel disease, and cerebral cavernous hemangioma. First, we studied the gut microbes in conjunction with CeVD and examined alterations in the core microbiota. This enabled us to identify the focus of gut microbes and determine the focus for CeVD prevention and treatment. Second, we discussed the pathological mechanisms underlying the involvement of gut microbes in CeVD occurrence and development, including immune-mediated inflammatory responses, variations in intestinal barrier function, and reciprocal effects of microbial metabolites. Finally, based on the aforementioned proven mechanisms, we assessed the effectiveness and potential applications of the current therapies, such as dietary intervention, fecal bacterial transplantation, traditional Chinese medicine, and antibiotic therapy.
Collapse
Affiliation(s)
- Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leiyun Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, China
| | - Linxiao Xiao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Changsha, Hunan, China
| |
Collapse
|
7
|
Villarreal D, Pradhan G, Zhou Y, Xue B, Sun Y. Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules 2022; 12:biom12040517. [PMID: 35454106 PMCID: PMC9028691 DOI: 10.3390/biom12040517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Ghrelin and obestatin are two “sibling proteins” encoded by the same preproghrelin gene but possess an array of diverse and complex functions. While there are ample literature documenting ghrelin’s functions, the roles of obestatin are less clear and controversial. Ghrelin and obestatin have been perceived to be antagonistic initially; however, recent studies challenge this dogma. While they have opposing effects in some systems, they function synergistically in other systems, with many functions remaining debatable. In this review, we discuss their functional relationship under three “C” categories, namely complex, complementary, and contradictory. Their functions in food intake, weight regulation, hydration, gastrointestinal motility, inflammation, and insulin secretion are complex. Their functions in pancreatic beta cells, cardiovascular, muscle, neuroprotection, cancer, and digestive system are complementary. Their functions in white adipose tissue, thermogenesis, and sleep regulation are contradictory. Overall, this review accumulates the multifaceted functions of ghrelin and obestatin under both physiological and pathological conditions, with the intent of contributing to a better understanding of these two important gut hormones.
Collapse
Affiliation(s)
- Daniel Villarreal
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
| | - Geetali Pradhan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yu Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China;
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA;
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX 77843, USA;
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-979-862-9143
| |
Collapse
|
8
|
Zhang Q, Huang L, Leng B, Li Y, Jiao N, Jiang S, Yang W, Yuan X. Zearalenone Affect the Intestinal Villi Associated with the Distribution and the Expression of Ghrelin and Proliferating Cell Nuclear Antigen in Weaned Gilts. Toxins (Basel) 2021; 13:toxins13100736. [PMID: 34679029 PMCID: PMC8537219 DOI: 10.3390/toxins13100736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
This study explored and investigated how zearalenone (ZEA) affects the morphology of small intestine and the distribution and expression of ghrelin and proliferating cell nuclear antigen (PCNA) in the small intestine of weaned gilts. A total of 20 weaned gilts (42-day-old, D × L × Y, weighing 12.84 ± 0.26 kg) were divided into the control and ZEA groups (ZEA at 1.04 mg/kg in diet) in a 35-d study. Histological observations of the small intestines revealed that villus injuries of the duodenum, jejunum and ileum, such as atrophy, retardation and branching dysfunction, were observed in the ZEA treatment. The villi branch of the ileum in the ZEA group was obviously decreased compared to that of the ileum, jejunum and duodenum, and the number of lymphoid nodules of the ileum was increased. Additionally, the effect of ZEA (1.04 mg/kg) was decreased by the immunoreactivity and distribution of ghrelin and PCNA in the duodenal and jejunal mucosal epithelial cells. Interestingly, ZEA increased the immunoreactivity of ghrelin in the ileal mucosal epithelial cells and decreased the immunoreactivity expression of PCNA in the gland epithelium of the small intestine. In conclusion, ZEA (1.04 mg/kg) had adverse effects on the development and the absorptive capacity of the villi of the intestines; yet, the small intestine could resist or ameliorate the adverse effects of ZEA by changing the autocrine of ghrelin in intestinal epithelial cells.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Libo Huang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Bo Leng
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Yang Li
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Ning Jiao
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Shuzhen Jiang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
| | - Weiren Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai’an City 271018, China; (Q.Z.); (L.H.); (B.L.); (Y.L.); (N.J.); (S.J.)
- Correspondence: (W.Y.); (X.Y.); Tel.: +86-186-0548-9796 (W.Y.); +86-134-7538-6175 (X.Y.)
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an City 271018, China
- Correspondence: (W.Y.); (X.Y.); Tel.: +86-186-0548-9796 (W.Y.); +86-134-7538-6175 (X.Y.)
| |
Collapse
|
9
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
10
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|
11
|
Exploratory Investigation of Intestinal Structure and Function after Stroke in Mice. Mediators Inflamm 2021; 2021:1315797. [PMID: 33642941 PMCID: PMC7902147 DOI: 10.1155/2021/1315797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. Patients who have a stroke are susceptible to many gastrointestinal (GI) complications, such as dysphagia, GI bleeding, and fecal incontinence. However, there are few studies focusing on the GI tract after stroke. The current study is to investigate the changes of intestinal structure and function in mice after ischemic stroke. Ischemic stroke was made as a disease model in mice, in which brain and ileal tissues were collected for experiments on the 1st and 7th day after stroke. Intestinal motility of mice was inhibited, and intestinal permeability was increased after stroke. Hematoxylin-eosin (HE) staining showed the accumulation of leucocytes in the intestinal mucosa. Myeloperoxidase (MPO) activity and inflammatory proteins (nuclear factor kappa-B (NF-κB), inducible nitric oxide synthase (iNOS)) in the small intestine were significantly increased in mice after stroke. The expression of tight junction (TJ) proteins (zonula occludens-1 (ZO-1), occludin, and claudin-1) was downregulated, and transmission electron microscopy (TEM) showed broken TJ of the intestinal mucosa after stroke. Glial fibrillary acidic protein (GFAP) and the apoptosis-associated proteins (tumor necrosis factor (TNF-α), caspase-3, and cleaved caspase-3) were notably upregulated as well. Ischemic stroke led to negative changes on intestinal structure and function. Inflammatory mediators and TNF-α-induced death receptor signaling pathways may be involved and disrupt the small intestinal barrier function. These results suggest that stroke patients should pay attention to GI protection.
Collapse
|
12
|
Affiliation(s)
- Yogesh Bhattarai
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Li XJ, You XY, Wang CY, Li XL, Sheng YY, Zhuang PW, Zhang YJ. Bidirectional Brain-gut-microbiota Axis in increased intestinal permeability induced by central nervous system injury. CNS Neurosci Ther 2020; 26:783-790. [PMID: 32472633 PMCID: PMC7366750 DOI: 10.1111/cns.13401] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Central nervous system injuries may lead to the disorders of the hypothalamic‐pituitary‐adrenal axis, autonomic nervous system, and enteric nervous system. These effects then cause the changes in the intestinal microenvironment, such as a disordered intestinal immune system as well as alterations of intestinal bacteria. Ultimately, this leads to an increase in intestinal permeability. Inflammatory factors produced by the interactions between intestinal neurons and immune cells as well as the secretions and metabolites of intestinal flora can then migrate through the intestinal barrier, which will aggravate any peripheral inflammation and the central nervous system injury. The brain‐gut‐microbiota axis is a complex system that plays a crucial role in the occurrence and development of central nervous system diseases. It may also increase the consequences of preventative treatment. In this context, here we have summarized the factors that can lead to the increased intestinal permeability and some of the possible outcomes.
Collapse
Affiliation(s)
- Xiao-Jin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Yu You
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cong-Ying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue-Li Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Sheng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| | - Yan-Jun Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin, China
| |
Collapse
|
14
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Okumura T. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology 2020; 173:108116. [PMID: 32442542 DOI: 10.1016/j.neuropharm.2020.108116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Abstract
Brain ghrelin plays a role in gastrointestinal functions. Among them, ghrelin acts centrally to stimulate gastrointestinal motility and induce visceral antinociception. Intestinal barrier function, one of important gastrointestinal functions, is also controlled by the central nervous system. Little is, however, known about a role of central ghrelin in regulation of intestinal permeability. The present study was performed to clarify whether brain ghrelin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of ghrelin dose-dependently abolished increased colonic permeability in response to LPS while intraperitoneal injection of ghrelin at the same dose or intracisternal injection of des-acyl-ghrelin failed to block it. Carbachol potently attenuated LPS-induced intestinal hyperpermeability, and atropine or bilateral subdiaphragmatic vagotomy prevented the improvement of intestinal hyperpermeability by central ghrelin. Intracisternal (D-Lys3)-GHRP-6, a selective ghrelin receptor antagonist, significantly blocked improvement of intestinal barrier function by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Intracisternal injection of orexin 1 receptor antagonist, SB-334867 blocked intracisternal ghrelin-induced improvement of colonic hyperpermeability. These results suggest that exogenously administered or endogenously released ghrelin acts centrally to improve a disturbed intestinal barrier function through orexinergic signaling and the vagal cholinergic pathway. Central ghrelin may be involved in the pathophysiology and be a novel therapeutic option in not only gastrointestinal diseases such as irritable bowel syndrome but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
15
|
Cheng Y, Chen B, Xie W, Chen Z, Yang G, Cai Y, Shang H, Zhao W. Ghrelin attenuates secondary brain injury following intracerebral hemorrhage by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway in mice. Int Immunopharmacol 2020; 79:106180. [PMID: 31926478 DOI: 10.1016/j.intimp.2019.106180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023]
Abstract
Ghrelin, a brain-gut peptide, has been proven to exert neuroprotection in different kinds of neurological diseases; however, its role and the potential molecular mechanisms in secondary brain injury (SBI) after intracerebral hemorrhage (ICH) are still unknown. In this study, we investigate whether treatment with ghrelin may attenuate SBI in a murine ICH model, and if so, whether the neuroprotective effects are due to the inhibition of nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and promotion of nuclear factor-E2-related factor 2 (Nrf2)/antioxidative response element (ARE) signaling pathway. Stereotactically intrastriatal infusion of autologous blood was performed to mimic ICH. Ghrelin was given intraperitoneally immediately following ICH and again 1 h later. Results showed that ghrelin attenuated neurobehavioral deficits, brain edema, hematoma volume, and perihematomal cell death post-ICH. Ghrelin inhibited the NLRP3 inflammasome activation and subsequently suppressed the neuroinflammatory response as evidenced by reduced microglia activation, neutrophil infiltration, and pro-inflammatory mediators release after ICH. Additionally, ghrelin alleviated ICH-induced oxidative stress according to the chemiluminescence of luminol and lucigenin, malondialdehyde (MDA) content, and total superoxide dismutase (SOD) activity assays. These changes were accompanied by upregulation of Nrf2 expression, Nrf2 nuclear accumulation, and enhanced Nrf2 DNA binding activity, as well as by increased expressions of Nrf2 downstream target antioxidative genes, including NAD(P)H quinine oxidoreductase-1 (NQO1), glutathione cysteine ligase regulatory subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM). Together, our data suggested that ghrelin protected against ICH-induced SBI by inhibiting NLRP3 inflammasome activation and promoting Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Bin Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Wanqun Xie
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhenghong Chen
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Guoyuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China; Department of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yu Cai
- Department of Neurosurgery, North Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hanbing Shang
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Weiguo Zhao
- Department of Neurosurgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
16
|
Shao XF, Li B, Shen J, Wang QF, Chen SS, Jiang XC, Qiang D. Ghrelin alleviates traumatic brain injury-induced acute lung injury through pyroptosis/NF-κB pathway. Int Immunopharmacol 2020; 79:106175. [PMID: 31918060 DOI: 10.1016/j.intimp.2019.106175] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is one of the severe complications in patients with traumatic brain injury (TBI), contributing to the high mortality. Ghrelin has protective effects against various inflammatory diseases, but the effects of Ghrelin on TBI-induced ALI and its mechanisms remain unknown. In this study, Ghrelin administration was performed on the mice with TBI, then histological change in cortex and lung tissues, lung vascular permeability and macrophage number in bronchoalveolar lavage fluid (BALF) were examined, respectively. Simultaneously, the alterations of proinflammatory factors and pyroptosis-related proteins in lung tissues were detected. As a result, TBI-induced ALI was ameliorated after Ghrelin treatment, which was demonstrated by improved histology, reduced lung vascular permeability, and peripheral macrophage number. Furthermore, Ghrelin decreased the mRNA levels of proinflammatory factors (IL-1β, IL-6, TNF-α and IL-18), the protein levels of pyroptosis-related proteins (NLRP3, Caspase1-P20, HMGB1 and Gasdermin D), and the phosphorylation levels of NF-κB in lung tissues. These results showed that Ghrelin attenuating TBI-induced ALI might be via ameliorating inflammasome-induced pyroptosis by blocking NF-κB signal, which are important for the prevention and treatment of TBI-induced ALI.
Collapse
Affiliation(s)
- Xue-Fei Shao
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China.
| | - Bo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Shen
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Qi-Fu Wang
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - San-Song Chen
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Chun Jiang
- Department of Neurosurgery, Yi Ji Shan Hospital of Wannan Medical College, Wuhu, China
| | - Di Qiang
- Department of Dermatology and STD, Yi-Ji Shan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
17
|
Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci 2019; 40:1105-1110. [PMID: 30771023 DOI: 10.1007/s10072-019-03739-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) can cause non-neurological injuries to other organs such as the intestine. Newer studies have shown that paracellular hyperpermeability is the basis of intestinal barrier dysfunction following TBI. Ischemia-reperfusion injury, inflammatory response, abnormal release of neurotransmitters and hormones, and malnutrition contribute to TBI-induced intestinal barrier dysfunction. Several interventions that may protect intestinal barrier function and promote the recovery of TBI have been proposed, but relevant studies are still limited. This review is to clarify the established mechanisms of intestinal barrier dysfunction following TBI and to describe the possible strategies to reduce or prevent intestinal barrier dysfunction.
Collapse
|
18
|
Parisi P. The relationship between mucosal damage in celiac disease and the risk of neurological and psychiatric conditions is much more complex than previously thought. Eur J Neurol 2018; 25:797-798. [PMID: 29509996 DOI: 10.1111/ene.13614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- P Parisi
- Pediatrics, Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University c/o Sant' Andrea Hospital, Rome, Italy
| |
Collapse
|
19
|
Xiong Y, Chen L, Fan L, Wang L, Zhou Y, Qin D, Sun Q, Wu J, Cao S. Free Total Rhubarb Anthraquinones Protect Intestinal Injury via Regulation of the Intestinal Immune Response in a Rat Model of Severe Acute Pancreatitis. Front Pharmacol 2018; 9:75. [PMID: 29487524 PMCID: PMC5816759 DOI: 10.3389/fphar.2018.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Intestinal mucosal immune barrier dysfunction plays a key role in the pathogenesis of severe acute pancreatitis (SAP). Rhubarb is a commonly used traditional Chinese medicine as a laxative in China. It markedly protects pancreatic acinar cells from trypsin-induced injury in rats. Free total rhubarb anthraquinones (FTRAs) isolated and extracted from rhubarb display the beneficial effects of antibacteria, anti-inflammation, antivirus, and anticancer. The principal aim of the present study was to investigate the effects of FTRAs on the protection of intestinal injury and modification of the intestinal barrier function through regulation of intestinal immune function in rats with SAP. We established a rat model of SAP by injecting 3.5% sodium taurocholate (STC, 350 mg/kg) into the biliopancreatic duct via retrograde injection and treated the rats with FTRAs (36 or 72 mg/kg) or normal saline (control) immediately and 12 h after STC injection. Then, we evaluated the protective effect of FTRAs on intestinal injury by pathological analysis and determined the levels of endotoxin (ET), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), nitric oxide (NO), myeloperoxidase (MPO), capillary permeability, nucleotide-binding oligomerization domain-like receptors 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD domain (ASC), casepase-1, secretary immunoglobulin A (SIgA), regulatory T cells (Tregs), and the ratio of Th1/Th2 in the blood and/or small intestinal tissues or mesenteric lymph node (MLN) cells. Moreover, the chemical profile of FTRAs was analyzed by HPLC-UV chromatogram. The results showed that FTRAs significantly protected intestinal damage and decreased the levels of ET, IL-1β, TNF-α, and NO in the blood and TNF-α, IL-1β, and protein extravasation in the intestinal tissues in SAP rats. Furthermore, FTRAs significantly decreased the expressions of NLRP3, ASC, and caspase-1, the number of Tregs and the ratio of Th1/Th2, while significantly increased the expression of SIgA in the intestinal tissues and/or MLN cells in SAP rats. Our results indicate that FTRAs could protect intestinal injury and improve intestinal mucosal barrier function through regulating immune function of SAP rats. Therefore, FTRAs may have the potential to be developed as the novel agent for the treatment of SAP clinically.
Collapse
Affiliation(s)
- Yuxia Xiong
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Li Chen
- Department of Pharmacy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Ling Fan
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lulu Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qin Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Guan XF, Duan ZJ. Protective effects of brain-gut peptides against intestinal barrier injury and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:2805-2812. [DOI: 10.11569/wcjd.v25.i31.2805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Brain-gut peptides, a group of small molecule polypeptides, have been found to distribute widely in the brain and the gastrointestinal system and act as both neurotransmitters and hormones. Intestinal barrier injury has a serious impact on the prognosis of critical diseases. Brain-gut peptides can modulate tight junction proteins, promote epithelial cell proliferation, and inhibit apoptosis and inflammatory cytokines, thus playing an important role in the maintenance of intestinal barrier and mucosal immunity. In this review, we discuss the protective effects of brain-gut peptides against intestinal barrier injury and the underlying mechanisms.
Collapse
Affiliation(s)
- Xing-Fang Guan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| | - Zhi-Jun Duan
- Department of Gastroenterology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, China
| |
Collapse
|
21
|
Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 2017; 66:31-44. [PMID: 28526435 DOI: 10.1016/j.bbi.2017.05.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.
Collapse
Affiliation(s)
- Mark H Sundman
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Vignesh Subbian
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA; Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Ying-Hui Chou
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Cognitive Science Program, University of Arizona, Tucson, AZ, USA; Arizona Center on Aging, University of Arizona, Tucson, AZ, USA
| |
Collapse
|