1
|
Hiti L, Markovič T, Lainscak M, Farkaš Lainščak J, Pal E, Mlinarič-Raščan I. The immunopathogenesis of a cytokine storm: The key mechanisms underlying severe COVID-19. Cytokine Growth Factor Rev 2025; 82:1-17. [PMID: 39884914 DOI: 10.1016/j.cytogfr.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 02/01/2025]
Abstract
A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation. Some patients' immune systems then fail to shift from innate to adaptive immunity, suppressing interferon responses and leading to excessive pyroptosis and neutrophil activation. This amplifies tissue damage and inflammation, creating a pro-inflammatory loop. The result is the disruption of Th1/Th2 and Th17/Treg balances, lymphocyte exhaustion, and extensive blood clotting. Cytokine storm treatments include glucocorticoids to suppress the immune system, monoclonal antibodies to neutralize specific cytokines, and JAK inhibitors to block cytokine receptor signalling. However, the most effective treatment options for mitigating SARS-CoV-2 infection remain vaccines as a preventive measure and antiviral drugs for the early stages of infection. This article synthesizes insights into immune dysregulation in COVID-19, offering a framework to better understand cytokine storms and to improve monitoring, biomarker discovery, and treatment strategies for COVID-19 and other conditions involving cytokine storms.
Collapse
Affiliation(s)
- Luka Hiti
- Faculty of Pharmacy, University of Ljubljana, Slovenia
| | | | - Mitja Lainscak
- General Hospital Murska Sobota, Slovenia; Faculty of Medicine, University of Ljubljana, Slovenia
| | | | - Emil Pal
- General Hospital Murska Sobota, Slovenia
| | | |
Collapse
|
2
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Fei Y, Huang X, Ning F, Qian T, Cui J, Wang X, Huang X. NETs induce ferroptosis of endothelial cells in LPS-ALI through SDC-1/HS and downstream pathways. Biomed Pharmacother 2024; 175:116621. [PMID: 38677244 DOI: 10.1016/j.biopha.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Extracellular neutrophil extracellular traps (NETs) play an important role in acute lung injury (ALI), but their mechanisms are still unclear. The aim of this study is to explore the effects of NETs on endothelial glycocalyx/HGF/cMET pathway and ferroptosis in ALI and elucidate their potential mechanisms. METHODS Plasma was collected from healthy and sepsis patients to test for differences in neutrophil elastase (NE) expression of NETs components. In addition, LPS-ALI mice and endothelial cell injury models were established, and NETs were disrupted by siPAD4 (a driver gene for NETs) and sivelestat (an inhibitor of the NETs component) in the mice and by sivelestat in the endothelial cell injury models, and the effects of NETs on the SDC-1/HS/HGF/cMET pathway were studied. To verify the relationship between NETs and ferroptosis, Fer1, a ferroptosis inhibitor, was added as a positive control to observe the effect of NETs on ferroptosis indicators. RESULTS The expression level of NE was significantly higher in the plasma of sepsis patients. In ALI mice, intervention in the generation of NETs reduced pulmonary vascular permeability, protected the integrity of SDC-1/HS and promoted the downstream HGF/cMET pathway. In addition, sivelestat also improved the survival rate of mice, decreased the serious degree of ferroptosis. In the endothelial cells, the results were consistent with those of the ALI mice. CONCLUSION The study indicates that inhibiting the production of NETs can protect the normal conduction of the SDC-1/HS/HGF/cMET signalling pathway and reduce the severity of ferroptosis.
Collapse
Affiliation(s)
- Yuxin Fei
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiao Huang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fangyu Ning
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | | | - Jinfeng Cui
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaozhi Wang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiao Huang
- Department of Intensive Care Unit, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
4
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
5
|
Chen XY, Kao C, Peng SW, Chang JH, Lee YL, Laiman V, Chung KF, Bhavsar PK, Heriyanto DS, Chuang KJ, Chuang HC. Role of DCLK1/Hippo pathway in type II alveolar epithelial cells differentiation in acute respiratory distress syndrome. Mol Med 2023; 29:159. [PMID: 37996782 PMCID: PMC10668445 DOI: 10.1186/s10020-023-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS AECII MLE-12 cells were exposed to 0, 0.1, or 1 μg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ching Kao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Inhalation Toxicology Research Lab (ITRL), School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| |
Collapse
|
6
|
Mizuno T, Nagano F, Ito Y, Tatsukawa H, Shinoda Y, Takeuchi T, Takahashi K, Tsuboi N, Nagamatsu T, Yamada S, Maruyama S, Hitomi K. Novel function of transglutaminase 2 in extracellular histone-induced acute lung injury. Biochem Biophys Res Commun 2023; 678:179-185. [PMID: 37643535 DOI: 10.1016/j.bbrc.2023.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Extracellular histones induce endothelial damage, resulting in lung haemorrhage; however, the underlying mechanism remains unclear. Factor XIII, as a Ca2+-dependent cross-linking enzyme in blood, mediates fibrin deposition. As another isozyme, transglutaminase 2 (TG2) has a catalytic activity distributing in most tissues. Herein, we investigated whether TG2 promotes fibrin deposition and mediates the adhesion of platelets to ECs in histone-induced acute lung injury (ALI). We evaluated the lung histology and the adhesion of platelets to endothelial cells (ECs) after injecting histones to wild-type (WT) C57BL/6J and TG2 knockout (TG2-/-) mice, and administered a TG2 inhibitor (NC9) to WT mice. Pulmonary haemorrhage was more severe in TG2-/- mice than that in WT mice. The area of fibrin deposition and the proportion of CD41+CD31+ cells were lower in TG2-/- mice than in WT mice. Pre-treatment of NC9 decreased the area of fibrin deposition and the proportion of CD41+CD31+ cells in WT mice. These results suggest that TG2 prevents from pulmonary haemorrhage in ALI by promoting the adhesion of platelets to ECs and the fibrin deposition.
Collapse
Affiliation(s)
- Tomohiro Mizuno
- Department of Pharmacotherapeutics and Informatics, Fujita Health University School of Medicine, Toyoake, Japan.
| | - Fumihiko Nagano
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshimasa Ito
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoshiki Shinoda
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Taishu Takeuchi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Kazuo Takahashi
- Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine, Toyoake, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tadashi Nagamatsu
- Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Meijo University Faculty of Pharmacy, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
7
|
Sekijima H, Oshima T, Ueji Y, Kuno N, Kondo Y, Nomura S, Asakura T, Sakai-Sugino K, Kawano M, Komada H, Kotani H. Toxicologic pathological mechanism of acute lung injury induced by oral administration of benzalkonium chloride in mice. Toxicol Res 2023; 39:409-418. [PMID: 37398570 PMCID: PMC10313593 DOI: 10.1007/s43188-023-00178-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 07/04/2023] Open
Abstract
Benzalkonium chloride (BAC) intoxication causes fatal lung injuries, such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the pathogenesis of ALI/ARDS induced by BAC ingestion is poorly understood. This study aimed to clarify the mechanism of lung toxicity after BAC ingestion in a mouse model. BAC was orally administered to C57BL/6 mice at doses of 100, 250, and 1250 mg/kg. After administration, BAC concentrations in the blood and lungs were evaluated via liquid chromatography with tandem mass spectrometry. Lung tissue injury was evaluated via histological and protein analyses. Blood and lung BAC concentration levels after oral administration increased in a dose-dependent manner, with the concentrations directly proportional to the dose administered. The severity of lung injury worsened over time after the oral administration of 1250 mg/kg BAC. An increase in the terminal transferase dUTP nick end labeling-positive cells and cleaved caspase-3 levels was observed in the lungs after 1250 mg/kg BAC administration. In addition, increased cleaved caspase-9 levels and mitochondrial cytochrome c release into the cytosol were observed. These results suggest that lung tissue injury with excessive apoptosis contributes to BAC-induced ALI development and exacerbation. Our findings provide useful information for developing an effective treatment for ALI/ARDS induced by BAC ingestion.
Collapse
Affiliation(s)
- Hidehisa Sekijima
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Toru Oshima
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Yuno Ueji
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Naoko Kuno
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Yukino Kondo
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Saera Nomura
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Tomomi Asakura
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Kae Sakai-Sugino
- Department of Food and Nutrition, Tsu City College, 157 Isshinden-Nakano, Tsu, Mie 514-0112 Japan
| | - Mitsuo Kawano
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hiroshi Komada
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine and Sciences, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507 Japan
| |
Collapse
|
8
|
Griffin BR. The Promise of Continuous Kidney Replacement Therapy Optimization to Improve Patient Outcomes and Reduce Resource Utilization. Kidney Med 2023; 5:100665. [PMID: 37250501 PMCID: PMC10220390 DOI: 10.1016/j.xkme.2023.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Affiliation(s)
- Benjamin R. Griffin
- Department of Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
9
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
10
|
de Araújo LJT, de Oliveira Louzado LC, Cirqueira CS, Réssio RA, Sansone M, Guerra JM. Histopathologic and Immunohistochemical Assessment of Acute Respiratory Distress Syndrome (ARDS): Challenges and Complexities of Postmortem Diagnosis. Appl Immunohistochem Mol Morphol 2023; 31:311-317. [PMID: 37010513 DOI: 10.1097/pai.0000000000001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/02/2023] [Indexed: 04/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition due to acute lung injury (ALI), characterized by rapid-onset respiratory failure, leading to the clinical manifestations of poor lung compliance, severe hypoxemia, and dyspnea. ARDS/ALI has many causes, most commonly related to infections (sepsis, pneumonia), traumas, and multiple transfusions. The objective of this study is to assess the performance of postmortem anatomopathological examination in identifying etiological agents associated with ARDS or ALI in deceased patients from the State of São Paulo from 2017 to 2018. A retrospective cross-sectional study was performed based on the final outcome obtained by histopathology, histochemical, and immunohistochemical examination for ARDS/ALI differential diagnosis at the Pathology Center of the Adolfo Lutz Institute in São Paulo, Brazil. Of the 154 patients clinically diagnosed with ARDS or ALI, 57% tested positive for infectious agents, and the most frequent outcome was influenza A/H1N1 virus infection. In 43% of cases, no etiologic agent was identified. The opportunity to establish a diagnosis, identify particular infections, confirm a microbiological diagnosis, and uncover unanticipated etiologies is provided by postmortem pathologic analysis of ARDS. A molecular assessment could improve the diagnosis accuracy and lead to research into host responses and public health measures.
Collapse
Affiliation(s)
- Leonardo José Tadeu de Araújo
- Pathology Center, Adolfo Lutz Institute
- Department of Infectious and Parasitic Diseases, Institute of Tropical Medicine, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Singh SJ, Fonseca AJ, Rajyaguru S. Evaluation of adherence with lung-protective ventilator strategies in moderate-to-severe acute respiratory distress syndrome in a tertiary care setup in India: A prospective observational study. Int J Crit Illn Inj Sci 2023; 13:60-65. [PMID: 37547188 PMCID: PMC10401554 DOI: 10.4103/ijciis.ijciis_66_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 08/08/2023] Open
Abstract
Background Evaluation of the efficacy and safety of mechanical ventilation settings is a cornerstone of the early phase of the management of acute respiratory distress syndrome (ARDS). This study aimed to evaluate the adherence to currently recommended lung-protective ventilator strategies (tidal volume, plateau pressure, driving pressure, prone positioning, and positive end-expiratory pressure [PEEP]) for adults with moderate-to-severe ARDS in a tertiary care setup, thereby evaluating if lung-protective ventilation is associated with improved outcomes. Methods This was an observational study over 1 year in ventilated moderate-to-severe ARDS participants. All participants were mechanically ventilated when required using the protocol followed by the ARDS Network low-tidal volume lung-protective ventilation strategy and monitored. Results The total number of participants in the study was 32. Septic shock was the most common cause of ARDS. The mean duration of intensive care unit (ICU) stay was 6.13 (±5.4) days, mean ventilator days were 3.66 (±3.75) days and mortality rate of 71.8%.Adherence to low-tidal volume was 78.12% with an improvement of 36% in the adherent group (P = 0.06). Adherence to high PEEP was 34.38% with a survival of 73% in the adherent group (P = 0.0004). Adherence to prone ventilation was 18.75% with a survival of 33% in the adherent group (P = 0.7). Conclusion Intensivists should take an extra effort to focus on evidence-based ventilator strategies and increase adherence to these recommendations in their ICUs to improve patient survival.
Collapse
Affiliation(s)
- Simran J. Singh
- Department of Critical Care, P. D. Hinduja Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Alex Jude Fonseca
- Department of Critical Care, P. D. Hinduja Hospital and Medical Research Center, Mumbai, Maharashtra, India
| | - Spandan Rajyaguru
- Department of Critical Care, P. D. Hinduja Hospital and Medical Research Center, Mumbai, Maharashtra, India
| |
Collapse
|
12
|
Lin H, Liu Q, Zhao L, Liu Z, Cui H, Li P, Fan H, Guo L. Circulating Pulmonary-Originated Epithelial Biomarkers for Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24076090. [PMID: 37047065 PMCID: PMC10093822 DOI: 10.3390/ijms24076090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have found several biomarkers for acute respiratory distress syndrome (ARDS), but the accuracy of most biomarkers is still in doubt due to the occurrence of other comorbidities. In this systematic review and meta-analysis, we aimed to explore ideal ARDS biomarkers which can reflect pathophysiology features precisely and better identify at-risk patients and predict mortality. Web of Science, PubMed, Embase, OVID, and the Cochrane Library were systematically searched for studies assessing the reliability of pulmonary-originated epithelial proteins in ARDS. A total of 32 studies appeared eligible for meta-analysis, including 2654 ARDS/ALI patients in this study. In the at-risk patients' identification group, the highest pooled effect size was observed in Krebs von den Lungren-6 (KL-6) (SMD: 1.17 [95% CI: 0.55, 1.79]), followed by club cell proteins 16 (CC16) (SMD: 0.74 [95% CI: 0.01, 1.46]), and surfactant proteins-D (SP-D) (SMD: 0.71 [95% CI: 0.57, 0.84]). For the mortality prediction group, CC16 exhibited the largest effect size with SMD of 0.92 (95% CI: 0.42, 1.43). Meanwhile, the summary receiver operating characteristic (SROC) of CC16 for ARDS diagnosis reached an AUC of 0.80 (95% CI: 0.76, 0.83). In conclusion, this study provides a ranking system for pulmonary-originated epithelial biomarkers according to their association with distinguishing at-risk patients and predicting mortality. In addition, the study provides evidence for the advantage of biomarkers over traditional diagnostic criteria. The performance of biomarkers may help to clinically improve the ARDS diagnosis and mortality prediction.
Collapse
Affiliation(s)
- Huishu Lin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin 300381, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Huanhuan Cui
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
13
|
Liang X, Wang G, Li Z, Chen R, Wu H, Li H, Shen C, Deng M, Hao Z, Wu S, Yu K, Wei X, Liu R, Zhang K, Sun Q, Wang Z. Accurate identification of traumatic lung injury (TLI) by ATR-FTIR spectroscopy combined with chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122186. [PMID: 36481535 DOI: 10.1016/j.saa.2022.122186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Traumatic lung injury (TLI), which is a common mechanical injury, is receiving increasing attention because of its serious hazards. In forensic practices, accurately identifying TLI is of great importance for investigations and case trials. The main goal of this research was to identify TLI utilizing attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics. The macroscopic appearance of lung tissue showed that identifying TLI in lung tissue at the decomposition stage is not feasible by only visualization, and significant pulmonary hypostasis was observed in the lungs regardless of whether the lung tissue was injured. Average spectra and principal component analysis (PCA) suggested that the biochemical difference between injured lung tissue samples from the TLI group and noninjured lung tissue samples from the negative control group was mainly attributed to the different structures and contents of proteins. Partial least squares discriminant analysis (PLS-DA) was then utilized to identify TLI with an accuracy of 96.4% and 98.6% based on the training set and the test set, respectively. Next, we focused on samples that were misclassified in the model and proposed that the misclassification could be caused by the pulmonary hypostasis effect. Therefore, two additional PCA and PLS-DA models were created to identify the pulmonary hypostatic areas between the TLI group and the negative control group and the nonpulmonary hypostatic areas between the TLI group and the negative control group. The PCA results indicated that the biochemical difference between the two groups was still associated with proteins, and the two PLS-DA models achieved 100% accuracy based on both the training and test sets. This result indicated that when pulmonary hypostasis was considered and the lung tissue was divided into pulmonary hypostatic areas and nonpulmonary hypostatic areas for separate comparisons, TLI identification was achieved with a greater accuracy than that obtained when the two areas were combined. This research confirms that the combined application of ATR-FTIR spectroscopy and chemometrics can be utilized to accurately identify TLI.
Collapse
Affiliation(s)
- Xinggong Liang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zefeng Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Run Chen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huiyu Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chen Shen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingyan Deng
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zeyi Hao
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shuo Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
14
|
Unger K, Martin LG. Noncardiogenic pulmonary edema in small animals. J Vet Emerg Crit Care (San Antonio) 2023; 33:156-172. [PMID: 36815753 DOI: 10.1111/vec.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To review various types of noncardiogenic pulmonary edema (NCPE) in cats and dogs. ETIOLOGY NCPE is an abnormal fluid accumulation in the lung interstitium or alveoli that is not caused by cardiogenic causes or fluid overload. It can be due to changes in vascular permeability, hydrostatic pressure in the pulmonary vasculature, or a combination thereof. Possible causes include inflammatory states within the lung or in remote tissues (acute respiratory distress syndrome [ARDS]), airway obstruction (post-obstructive pulmonary edema), neurologic disease such as head trauma or seizures (neurogenic pulmonary edema), electrocution, after re-expansion of a collapsed lung or after drowning. DIAGNOSIS Diagnosis of NCPE is generally based on history, physical examination, and diagnostic imaging. Radiographic findings suggestive of NCPE are interstitial to alveolar pulmonary opacities in the absence of signs of left-sided congestive heart failure or fluid overload such as cardiomegaly or congested pulmonary veins. Computed tomography and edema fluid analysis may aid in the diagnosis, while some forms of NCPE require additional findings to reach a diagnosis. THERAPY The goal of therapy for all types of NCPE is to preserve tissue oxygenation and reduce the work of breathing. This may be achieved by removing the inciting cause (eg, airway obstruction) and cage rest in mild cases and supplemental oxygen in moderate cases and may require mechanical ventilation in severe cases. PROGNOSIS Prognosis is generally good for most causes of veterinary NCPE except for ARDS, although data are scarce for some etiologies of NCPE.
Collapse
Affiliation(s)
- Karin Unger
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | - Linda G Martin
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
15
|
Pooladanda V, Thatikonda S, Priya Muvvala S, Godugu C. Acute respiratory distress syndrome enhances tumor metastasis into lungs: Role of BRD4 in the tumor microenvironment. Int Immunopharmacol 2023; 115:109701. [PMID: 36641892 PMCID: PMC9827001 DOI: 10.1016/j.intimp.2023.109701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is associated with severe lung inflammation, edema, hypoxia, and high vascular permeability. The COVID-19-associated pandemic ARDS caused by SARS-CoV-2 has created dire global conditions and has been highly contagious. Chronic inflammatory disease enhances cancer cell proliferation, progression, and invasion. We investigated how acute lung inflammation activates the tumor microenvironment and enhances lung metastasis in LPS induced in vitro and in vivo models. Respiratory illness is mainly caused by cytokine storm, which further influences oxidative and nitrosative stress. The LPS-induced inflammatory cytokines made the conditions suitable for the tumor microenvironment in the lungs. In the present study, we observed that LPS induced the cytokine storm and promoted lung inflammation via BRD4, which further caused the nuclear translocation of p65 NF-κB and STAT3. The transcriptional activation additionally triggers the tumor microenvironment and lung metastasis. Thus, BRD4-regulated p65 and STAT3 transcriptional activity in ARDS enhances lung tumor metastasis. Moreover, LPS-induced ARDS might promote the tumor microenvironment and increase cancer metastasis into the lungs. Collectively, BRD4 plays a vital role in inflammation-mediated tumor metastasis and is found to be a diagnostic and molecular target in inflammation-associated cancers.
Collapse
Affiliation(s)
- Venkatesh Pooladanda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA,Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sowjanya Thatikonda
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India,Department of Head and Neck‐Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sai Priya Muvvala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
16
|
Kong M, Zhu D, Dong J, Kong L, Luo J. Iso-seco-tanapartholide from Artemisia argyi inhibits the PFKFB3-mediated glycolytic pathway to attenuate airway inflammation in lipopolysaccharide-induced acute lung injury mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115781. [PMID: 36195302 DOI: 10.1016/j.jep.2022.115781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese folk medicine, Artemisia argyi H.Lév. & Vaniot (A. argyi) has been used for thousands of years, and it is clinically used to treat bronchitis and asthma. However, the mechanism of action of A. argyi on respiratory tract inflammation is not clear. Accumulating evidence that phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is actively expressed in inflammation. Here, we found that iso-seco-tanapartholide (IST), a sesquiterpene isolated from A. argyi, exhibited potent anti-inflammatory activity and significant inhibition of PFKFB3 expression. Therefore, we evaluated the effect of IST on airway inflammation and revealed its possible mechanisms. AIM OF THE STUDY This study aimed to investigate the protective effect and possible mechanism of IST in lipopolysaccharide (LPS)-induced acute lung injury in mice. MATERIALS AND METHODS In vitro, RAW264.7 cells and BMDMs were stimulated with LPS, and the level of NO and inflammatory factors TNF-α, IL-1β, and IL-6 were detected by Griess reagent and ELISA, respectively. The effect of IST on the levels of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in cells was assayed by western blotting. Lactate and glycolytic phenotypes were detected by lactate kit and Seahorse assay. In vivo, a mouse model of acute lung injury was induced by LPS, and the levels of inflammatory factors were measured by ELISA. Expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65) in mouse alveolar macrophages by western blotting analysis. Lung permeability assessment by Evans Blue dye assay. H&E staining and Immunocytochemistry were used to observe the protection of IST against lung injury. RESULTS IST significantly reduced LPS-induced expression of PFKFB3 and its downstream proteins (p-STAT3, p-p65). The inhibition of PFKFB3 has an impact on the glycolytic phenotype, such as a reduction in the rate of extracellular acidification (ECAR) and elevated lactate levels, and an increase in the rate of cellular oxygen consumption (OCR). Furthermore, IST inhibited LPS-induced NO release and increased the expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. In vivo, IST reduced pulmonary edema in LPS-induced acute lung injury, improved lung function, and reduced levels of inflammatory factors and lactate secretion. CONCLUSIONS These results suggest that IST improves the characteristics of ALI by inhibiting the expression of the PFKFB3-mediated glycolytic pathway and may be a potential anti-inflammatory agent for inflammation-related lung diseases.
Collapse
Affiliation(s)
- Min Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Dongrong Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Junyi Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
17
|
Fuse Y, Ohdaira H, Kamada T, Takahashi J, Nakashima K, Nakaseko Y, Suzuki N, Yoshida M, Okada S, Suzuki Y. Acute respiratory distress syndrome due to sepsis caused by Bacteroides ovatus after acute appendicectomy. Surg Case Rep 2022; 8:115. [PMID: 35718841 PMCID: PMC9206994 DOI: 10.1186/s40792-022-01475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Background Appendicectomy is generally a minimally invasive surgery, after which postoperative complications such as acute respiratory distress syndrome (ARDS) are rare. We describe a case of ARDS due to sepsis caused by Bacteroides ovatus after appendicectomy. Case presentation A man in his 60 s presented to our hospital with a chief complaint of right lower quadrant abdominal pain. He was diagnosed with acute appendicitis and underwent emergency laparoscopic appendicectomy. Cefmetazole was administered as a perioperative antibacterial drug. Postoperatively, the abdominal findings improved. However, on postoperative day three, bloody sputum and respiratory distress were observed. We performed thoracoabdominal computed tomography (CT) and observed bilateral pleural effusion and mottled frosted glass shadows extending to both lung fields. ARDS was diagnosed. We treated the patient with steroids and sivelestat sodium and switched the antibacterial drug to meropenem. The patient’s general condition improved. After the patient was treated, Bacteroides ovatus was isolated from preoperative blood culture, which was resistant to cefmetazole. Conclusions We encountered a case in which ARDS due to sepsis was caused by Bacteroides ovatus after acute appendicectomy. Blood culture to isolate the causative organism and determine its antimicrobial sensitivity after commencement of empiric antibiotics is important even in common diseases, such as acute appendicitis.
Collapse
|
18
|
Tang J, Suo L, Li F, Bian K, Yang C, Wang Y. Transcriptome profiling of lung immune responses potentially related to acute respiratory distress syndrome in forest musk deer. BMC Genomics 2022; 23:701. [PMID: 36221054 PMCID: PMC9552132 DOI: 10.1186/s12864-022-08917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Forest musk deer is an endangered species globally. The death of captive forest musk deer can be caused by certain respiratory system diseases. Acute respiratory distress syndrome (ARDS) is a huge threat to the life of forest muck deer that breed in our department. Methods Lung histopathologic analysis was conducted by hematoxylin and eosin (HE) staining. The lung gene changes triggered by ARDS were examined by RNA sequencing and related bioinformatics analysis in forest musk deer. The potential functions of unigenes were investigated by NR, SwissProt KOG, GO, and KEGG annotation analyses. Vital biological processes or pathways in ARDS were examined by GO and KEGG enrichment analyses. Results A total of 3265 unigenes were differentially expressed (|log2fold-change|> 2 and adjusted P value < 0.01) in lung tissues of 3 forest musk deer with ARDS compared with normal lung tissues of the non-ARDS group. These differentially expressed unigenes (DEGs) played crucial roles in immunity and defense responses to pathogens. Moreover, we identified the DEGs related to one or more of the following biological processes: lung development, immunity, and bacterial/viral/fungal infection. And six DEGs that might be involved in lung injury caused by immune dysregulation or viral/fungal infection were identified. Conclusion ARDS-mediated lung gene alterations were identified in forest musk deer. Moreover, multiple genes involved in lung development and lung defense responses to bacteria/viruses/fungi in ARDS were filtered out in forest musk deer. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08917-7.
Collapse
Affiliation(s)
- Jie Tang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Lijuan Suo
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Feiran Li
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Kun Bian
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Chao Yang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.
| | - Yan Wang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.,Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Xi'an 723400, Shaanxi, China
| |
Collapse
|
19
|
Fang J, Ting YN, Chen YW. Quantitative Assessment of Lung Ultrasound Grayscale Images Based on Shannon Entropy for the Detection of Pulmonary Aeration: An Animal Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:1699-1711. [PMID: 34698398 DOI: 10.1002/jum.15851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Lung ultrasound (LUS) is a radiation-free, affordable, and bedside monitoring method that can detect changes in pulmonary aeration before hypoxic damage. However, visual scoring methods of LUS only enable subjective diagnosis. Therefore, quantitative analysis of LUS is necessary for obtaining objective information on pulmonary aeration. Because raw data are not always available in conventional ultrasound systems, Shannon entropy (ShanEn) of information theory without the requirement of raw data is valuable. In this study, we explored the feasibility of ShanEn estimated through grayscale histogram (GSH) analysis of LUS images for the quantification of pulmonary aeration. METHODS Different degrees of pulmonary aeration caused by edema was induced in 32 male New Zealand rabbits intravenously injected with 0.1 mL/kg saline (the control group) and 0.025, 0.05, and 0.1 mL/kg oleic acid (mild, moderate, and severe groups, respectively). In vivo grayscale LUS images were acquired using a commercial point-of-care ultrasound system for estimation of GSH and corresponding ShanEn. Both lungs of each rabbit were dissected, weighed, and dried to determine the wet weight-to-dry weight ratio (W/D) through gravimetry. RESULTS The determination coefficients of linear correlations between ShanEn and W/D increased from 0.0487 to 0.7477 with gain and dynamic range (DR). In contrast to visual scoring methods of pulmonary aeration that use median gain and low DR, ShanEn for quantifying pulmonary aeration requires high gain and DR. CONCLUSION The current findings indicate that ShanEn estimated through GSH analysis of LUS images acquired using conventional ultrasonic imaging systems has great potential to provide objective information on pulmonary aeration.
Collapse
Affiliation(s)
- Jui Fang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan
| | - Yen-Nien Ting
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
- High Performance Materials Institute for xD Printing, Asia University, Taichung City, Taiwan
| |
Collapse
|
20
|
Shnaiderman‐Torban A, Steinman A, Abu Ahmad W, Kushnir Y, Abells Sutton G, Epstein A, Kelmer G. Preoperative and intraoperative risk factors for post‐anaesthetic pulmonary oedema in horses. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Anat Shnaiderman‐Torban
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Amir Steinman
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Wiessam Abu Ahmad
- Hadassah Braun School of Public Health and Community Medicine The Hebrew University of Jerusalem Israel
| | - Yishai Kushnir
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Gila Abells Sutton
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Ana Epstein
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| | - Gal Kelmer
- Veterinary Teaching Hospital Koret School of Veterinary Medicine The Robert H. Smith Faculty of Agriculture, Food and Environment The Hebrew University of Jerusalem Rehovot Israel
| |
Collapse
|
21
|
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential. Inflammation 2022; 45:2124-2141. [PMID: 35641717 PMCID: PMC9154210 DOI: 10.1007/s10753-022-01692-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by progressive lung impairment typically triggered by inflammatory processes. The mortality toll for ARDS/ALI yet remains high because of the poor prognosis, lack of disease-specific inflammation management therapies, and prolonged hospitalizations. The urgency for the development of new effective therapeutic strategies has become acutely evident for patients with coronavirus disease 2019 (COVID-19) who are highly susceptible to ARDS/ALI. We propose that the lack of target specificity in ARDS/ALI of current treatments is one of the reasons for poor patient outcomes. Unlike traditional therapeutics, nanomedicine offers precise drug targeting to inflamed tissues, the capacity to surmount pulmonary barriers, enhanced interactions with lung epithelium, and the potential to reduce off-target and systemic adverse effects. In this article, we focus on the key cellular drivers of inflammation in ARDS/ALI: macrophages. We propose that as macrophages are involved in the etiology of ARDS/ALI and regulate inflammatory cascades, they are a promising target for new therapeutic development. In this review, we offer a survey of multiple nanomedicines that are currently being investigated with promising macrophage targeting potential and strategies for pulmonary delivery. Specifically, we will focus on nanomedicines that have shown engagement with proinflammatory macrophage targets and have the potential to reduce inflammation and reverse tissue damage in ARDS/ALI.
Collapse
|
22
|
Huang Z, Huang H, Shen M, Li C, Liu C, Zhu H, Zhang W. MicroRNA-155-5p modulates the progression of acute respiratory distress syndrome by targeting interleukin receptors. Bioengineered 2022; 13:11732-11741. [PMID: 35506298 PMCID: PMC9276023 DOI: 10.1080/21655979.2022.2071020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a multifactorial inflammatory lung failure with a high incidence and a high cost burden. However, the underlying pathogenesis of ARDS is still unclear. Recently, microRNA has been shown to have critical function in regulating the pathogenesis of ARDS development and inflammation. To identify the important microRNA in the serum from patients with ARDS that may be potential biomarkers for the disease and explore the underlying disease mechanism. We found significant upregulation of miR-155-5p expression in serum samples from patients with ARDS compared with the control group (p < 0.01). The levels of interleukin receptors and inflammatory cytokines were significantly increased in blood samples from patients with ARDS (p < 0.05). In the cell model, miR-155-5p had a binding site in the 3’-UTR of the three interleukin receptors. In LPS-simulated BEAS-2B cells, transfection of miR-155-5p mimic inhibited the expression levels of these interleukin receptors, and was found to directly target the inflammatory response of leukocyte nodulin receptor through NF-kB signaling. In conclusion, miR-155-5p can alleviate LPS-simulated injury that induces the expression of IL17RB, IL18R1, and IL22RA2 by affecting the NF-kB pathway; however, it cannot change the occurrence of inflammatory storms. Collectively, this suggests that the progression of ARDS is the result of effects of the multiple regulatory pathways, providing novel evidence for the therapy of ARDS.
Collapse
Affiliation(s)
- Zhenfei Huang
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Hui Huang
- Department of medical, GanZhou People`s hospital, Ganzhou, Jiangxi, China
| | - Meirong Shen
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Changrong Li
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Chao Liu
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Huayong Zhu
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| | - Weiwei Zhang
- Department of ICU, GanZhou People`s Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Levosimendan Ameliorates Cardiopulmonary Function but Not Inflammatory Response in a Dual Model of Experimental ARDS. Biomedicines 2022; 10:biomedicines10051031. [PMID: 35625767 PMCID: PMC9138326 DOI: 10.3390/biomedicines10051031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
The calcium sensitiser levosimendan, which is used as an inodilator to treat decompensated heart failure, may also exhibit anti-inflammatory properties. We examined whether treatment with levosimendan improves cardiopulmonary function and is substantially beneficial to the inflammatory response in acute respiratory response syndrome (ARDS). Levosimendan was administered intravenously in a new experimental porcine model of ARDS. For comparison, we used milrinone, another well-known inotropic agent. Our results demonstrated that levosimendan intravenously improved hemodynamics and lung function in a porcine ARDS model. Significant beneficial alterations in the inflammatory response and lung injury were not detected.
Collapse
|
24
|
Verdiperstat attenuates acute lung injury by modulating MPO/μ-calpain/β-catenin signaling. Eur J Pharmacol 2022; 924:174940. [DOI: 10.1016/j.ejphar.2022.174940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022]
|
25
|
Hernández-Cuervo H, Soundararajan R, Sidramagowda Patil S, Breitzig M, Alleyn M, Galam L, Lockey R, Uversky VN, Kolliputi N. BMI1 Silencing Induces Mitochondrial Dysfunction in Lung Epithelial Cells Exposed to Hyperoxia. Front Physiol 2022; 13:814510. [PMID: 35431986 PMCID: PMC9005903 DOI: 10.3389/fphys.2022.814510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute Lung Injury (ALI), characterized by bilateral pulmonary infiltrates that restrict gas exchange, leads to respiratory failure. It is caused by an innate immune response with white blood cell infiltration of the lungs, release of cytokines, an increase in reactive oxygen species (ROS), oxidative stress, and changes in mitochondrial function. Mitochondrial alterations, changes in respiration, ATP production and the unbalancing fusion and fission processes are key events in ALI pathogenesis and increase mitophagy. Research indicates that BMI1 (B cell-specific Moloney murine leukemia virus integration site 1), a protein of the Polycomb repressive complex 1, is a cell cycle and survival regulator that plays a role in mitochondrial function. BMI1-silenced cultured lung epithelial cells were exposed to hyperoxia to determine the role of BMI1 in mitochondrial metabolism. Its expression significantly decreases in human lung epithelial cells (H441) following hyperoxic insult, as determined by western blot, Qrt-PCR, and functional analysis. This decrease correlates with an increase in mitophagy proteins, PINK1, Parkin, and DJ1; an increase in the expression of tumor suppressor PTEN; changes in the expression of mitochondrial biomarkers; and decreases in the oxygen consumption rate (OCR) and tricarboxylic acid enzyme activity. Our bioinformatics analysis suggested that the BMI1 multifunctionality is determined by its high level of intrinsic disorder that defines the ability of this protein to bind to numerous cellular partners. These results demonstrate a close relationship between BMI1 expression and mitochondrial health in hyperoxia-induced acute lung injury (HALI) and indicate that BMI1 is a potential therapeutic target to treat ALI and Acute Respiratory Distress Syndrome.
Collapse
Affiliation(s)
- Helena Hernández-Cuervo
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sahebgowda Sidramagowda Patil
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Mason Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Epidemiology, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Richard Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Narasaiah Kolliputi,
| |
Collapse
|
26
|
Investigating the Intercellular Communication Network of Immune Cell in Acute Respiratory Distress Syndrome with Sepsis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4586648. [PMID: 35222683 PMCID: PMC8866031 DOI: 10.1155/2022/4586648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is recognized as a serious public health issue that results in respiratory failure and high mortality rates. The syndrome is characterized by immune cell aggregation, communication, activation, and alveolar epithelial damage. To elucidate the complex dynamic process of the immune system's response in ARDS, we construct the intercellular communication network of immune cells in ARDS based on a single-cell RNA sequencing dataset (including three sepsis-induced ARDS patients and four sepsis-only patients). The results show that macrophages relayed most of the intercellular signals (ligand–receptor pairs) in both groups. Many genes related to immune response (IFI44L, ISG, and HLA-DQB1) and biological functions (response to virus, negative regulation of viral life cycle, and response to interferon-beta) were detected via differentially expressed gene analysis of macrophages between the two groups. Deep analysis of the intercellular signals related to the macrophage found that sepsis-induced ARDS harbored distinctive intercellular signals related to chemokine–chemokine receptors (CCL3/4/5−CCR1), which mainly are involved in the disturbance of the STAT family transcription factors (TFs), such as STAT2 and STAT3. These signals and downstream TFs might play key roles in macrophage M1/M2 polarization in the process of sepsis-induced ARDS. This study provides a comprehensive view of the intercellular communication landscape between sepsis and sepsis-induced ARDS and identifies key intercellular communications and TFs involved in sepsis-induced ARDS. We believe that our study provides valuable clues for understanding the immune response mechanisms of ARDS.
Collapse
|
27
|
Quality of life and mortality among survivors of acute respiratory distress syndrome in South Korea: a nationwide cohort study. J Anesth 2022; 36:230-238. [PMID: 35061069 PMCID: PMC8777182 DOI: 10.1007/s00540-022-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/01/2022] [Indexed: 11/12/2022]
Abstract
Purpose Worsening quality of life (QOL) is an important health issue in acute respiratory distress syndrome (ARDS) survivors. We aimed to investigate the prevalence of worsening QOL among ARDS survivors and their association with mortality. Methods South Korean National Health Insurance database information for all adults admitted to intensive care units for ARDS from January 1, 2010 to December 31, 2018 who survived ≥ 365 days were included in this study. Results A total of 4452 ARDS survivors were included in the final analysis. Total QOL had worsened in 1667 (37.4%) of the survivors at the follow-up 1 year after being diagnosed with the syndrome. Specifically, 1298 patients (29.2%) experienced decreased income, 334 (7.5%) lost their jobs, and 327 (7.3%) had newly acquired disabilities. In the multivariable Cox regression analysis, worsening QOL was not associated with 2-year all-cause mortality among survivors (P = 0.140). However, newly acquired disability was associated with 1.74-fold (hazard ratio [HR]: 1.74, 95% confidence interval [CI] 1.31–2.33; P < 0.001) higher 2-year all-cause mortality, while decreased income (P = 0.571) and unemployment (P = 0.952) were not associated with it. In addition, newly acquired respiratory disability was associated with a 6.61-fold higher risk of 2-year respiratory mortality (HR: 6.61, 95% CI 3.14–13.90; P < 0.001). Conclusions At the 1-year follow-up period, one-third of ARDS survivors experienced worsening QOL in South Korea. Specifically, newly acquired disability was associated with a higher risk of 2-year all-cause and respiratory mortality among patients who survived ARDS. Supplementary Information The online version contains supplementary material available at 10.1007/s00540-022-03036-9.
Collapse
|
28
|
Revell E, Glasbey M, Brown P. Rhinovirus induced bronchiolitis and ARDS in pregnancy: a case report. BMJ Case Rep 2021; 14:e246927. [PMID: 34880041 PMCID: PMC8655544 DOI: 10.1136/bcr-2021-246927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/04/2022] Open
Abstract
A 25-year-old woman in her 30th week of pregnancy presented with a 3-day history of fevers, productive cough and dyspnoea. On presentation she was tachypnoeic, tachycardic and hypoxic. Auscultation of the chest revealed widespread wheeze and crepitations at the right mid-zone. Despite initial treatment with intravenous antibiotics, nebulised bronchodilators and oral corticosteroids, the patient continued to deteriorate and required transfer to intensive care. Serial chest radiographs showed increasing bilateral alveolar densities consistent with acute respiratory distress syndrome (ARDS). The only positive investigation was a nasopharyngeal swab which revealed rhinovirus RNA. With supportive management, the patient made a full recovery and went on to deliver a healthy infant at 36 weeks gestation. This case explores human rhinoviruses-induced ARDS and highlights the clinical and diagnostic challenges posed by pregnancy in the critically unwell patient.
Collapse
Affiliation(s)
- Elliot Revell
- Department of Internal Medicine, Gisborne Hospital, Gisborne, New Zealand
| | - Madeleine Glasbey
- Department of Internal Medicine, Gisborne Hospital, Gisborne, New Zealand
| | - Peter Brown
- Department of Internal Medicine, Gisborne Hospital, Gisborne, New Zealand
| |
Collapse
|
29
|
Kicman A, Pędzińska-Betiuk A, Kozłowska H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur J Pharmacol 2021; 911:174560. [PMID: 34648805 DOI: 10.1016/j.ejphar.2021.174560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| |
Collapse
|
30
|
Novak C, Ballinger MN, Ghadiali S. Mechanobiology of Pulmonary Diseases: A Review of Engineering Tools to Understand Lung Mechanotransduction. J Biomech Eng 2021; 143:110801. [PMID: 33973005 PMCID: PMC8299813 DOI: 10.1115/1.4051118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Cells within the lung micro-environment are continuously subjected to dynamic mechanical stimuli which are converted into biochemical signaling events in a process known as mechanotransduction. In pulmonary diseases, the abrogated mechanical conditions modify the homeostatic signaling which influences cellular phenotype and disease progression. The use of in vitro models has significantly expanded our understanding of lung mechanotransduction mechanisms. However, our ability to match complex facets of the lung including three-dimensionality, multicellular interactions, and multiple simultaneous forces is limited and it has proven difficult to replicate and control these factors in vitro. The goal of this review is to (a) outline the anatomy of the pulmonary system and the mechanical stimuli that reside therein, (b) describe how disease impacts the mechanical micro-environment of the lung, and (c) summarize how existing in vitro models have contributed to our current understanding of pulmonary mechanotransduction. We also highlight critical needs in the pulmonary mechanotransduction field with an emphasis on next-generation devices that can simulate the complex mechanical and cellular environment of the lung. This review provides a comprehensive basis for understanding the current state of knowledge in pulmonary mechanotransduction and identifying the areas for future research.
Collapse
Affiliation(s)
- Caymen Novak
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Megan N. Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Samir Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210; Department of Biomedical Engineering, The Ohio State University, 2124N Fontana Labs, 140 West 19th Avenue, Columbus, OH 43210
| |
Collapse
|
31
|
Chan Y, Raju Allam VSR, Paudel KR, Singh SK, Gulati M, Dhanasekaran M, Gupta PK, Jha NK, Devkota HP, Gupta G, Hansbro PM, Oliver BGG, Chellappan DK, Dua K. Nutraceuticals: unlocking newer paradigms in the mitigation of inflammatory lung diseases. Crit Rev Food Sci Nutr 2021:1-31. [PMID: 34613853 DOI: 10.1080/10408398.2021.1986467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Persistent respiratory tract inflammation contributes to the pathogenesis of various chronic respiratory diseases, such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. These inflammatory respiratory diseases have been a major public health concern as they are the leading causes of worldwide mortality and morbidity, resulting in heavy burden on socioeconomic growth throughout these years. Although various therapeutic agents are currently available, the clinical applications of these agents are found to be futile due to their adverse effects, and most patients remained poorly controlled with a low quality of life. These drawbacks have necessitated the development of novel, alternative therapeutic agents that can effectively improve therapeutic outcomes. Recently, nutraceuticals such as probiotics, vitamins, and phytochemicals have gained increasing attention due to their nutritional properties and therapeutic potential in modulating the pathological mechanisms underlying inflammatory respiratory diseases, which could ultimately result in improved disease control and overall health outcomes. As such, nutraceuticals have been held in high regard as the possible alternatives to address the limitations of conventional therapeutics, where intensive research are being performed to identify novel nutraceuticals that can positively impact various inflammatory respiratory diseases. This review provides an insight into the utilization of nutraceuticals with respect to their molecular mechanisms targeting multiple signaling pathways involved in the pathogenesis of inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Yinghan Chan
- School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto City, Kumamoto, Japan
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
32
|
Della Sala F, di Gennaro M, Lista G, Messina F, Ambrosio L, Borzacchiello A. Effect of Hyaluronic Acid on the Differentiation of Mesenchymal Stem Cells into Mature Type II Pneumocytes. Polymers (Basel) 2021; 13:polym13172928. [PMID: 34502968 PMCID: PMC8433838 DOI: 10.3390/polym13172928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hyaluronic acid (HA) is an essential component of the extracellular matrix (ECM) of the healthy lung, playing an important role in the structure of the alveolar surface stabilizing the surfactant proteins. Alveolar type II (ATII) cells are the fundamental element of the alveolus, specializing in surfactant production. ATII cells represent the main target of lung external lesion and a cornerstone in the repair process of pulmonary damage. In this context, knowledge of the factors influencing mesenchymal stem cell (MSC) differentiation in ATII cells is pivotal in fulfilling therapeutic strategies based on MSCs in lung regenerative medicine. To achieve this goal, the role of HA in promoting the differentiation of MSCs in mature Type II pneumocytes capable of secreting pulmonary surfactant was evaluated. Results demonstrated that HA, at a specific molecular weight can greatly increase the expression of lung surfactant protein, indicating the ability of HA to influence MSC differentiation in ATII cells.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
| | - Mario di Gennaro
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Gianluca Lista
- Neonatologia e Terapia Intensiva Neonatale, Ospedale dei Bambini “Vittore Buzzi”, 20154 Milan, Italy;
| | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy; (F.D.S.); (M.d.G.); (L.A.)
- Correspondence:
| |
Collapse
|
33
|
Zhan Y, Yang C, Zhang Q, Yao L. Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. J Biochem 2021; 169:613-620. [PMID: 33481000 DOI: 10.1093/jb/mvaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Silent information regulator type-1 (SIRT1) is crucial during the development of acute respiratory distress syndrome (ARDS). We aimed to explore whether SIRT1 activation could protect against ARDS. SIRT1 was activated by its agonist SRT1720. ARDS was induced by intraperitoneal injection of 5 mg/kg lipopolysaccharide (LPS). Lung injuries were determined by the lung wet/dry ratio, inflammatory cells in the broncho-alveolar lavage fluid (BALF) and histological analysis. Inflammatory cytokine release was detected by enzyme-linked immunosorbent assay. The accumulation of neutrophils was detected by myeloperoxidase activity. Oxidative stress was evaluated by malondialdehyde, reduced glutathione, superoxide dismutase and catalase activities. The protein expression levels were detected using western blot. SIRT1 activation, either by SRT1720 administration or recombinant SIRT1, expression eliminated high-dose LPS-induced mortality in mice, attenuated lung injury, influenced cytokine release in BALF and decreased oxidative stress in the lung tissues of ARDS mice. Mechanically, SRT1720 administration inhibited p65 phosphorylation in the lung tissues of ARDS mice. SIRT1 ameliorates inflammatory response and oxidative stress in LPS-induced ARDS.
Collapse
Affiliation(s)
| | - Chunjian Yang
- Department of General Surgery, The Second People's Hospital of Hefei, No. 246 Heping Road, Yaohai District, Hefei 230011, Anhui, China
| | | | - Li Yao
- Department of Intensive Care Unit
| |
Collapse
|
34
|
Roberts A. Understanding the principles of non-invasive positive pressure ventilation. Nurs Stand 2021; 36:61-66. [PMID: 34219428 DOI: 10.7748/ns.2021.e11750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 11/09/2022]
Abstract
Non-invasive positive pressure ventilation (NPPV) provides respiratory support to patients without the need for invasive intubation. Although it has been used for several years in critical care, NPPV has come to prominence as a management option for certain patients with respiratory complications of coronavirus disease 2019 (COVID-19). This has led to increased care provision by nurses with little or no experience and expertise in critical care and NPPV. This article provides an overview of the principles of NPPV and its use in type 1 and type 2 respiratory failure. It explains the pathophysiology of several conditions that often lead to respiratory failure and how NPPV can mitigate respiratory failure and improve gas exchange. An individualised assessment of the patient's suitability for NPPV and an evaluation of the effectiveness of the therapy are crucial to ensure its safe and effective use. Nurses also have an important role in providing explanations and support to patients.
Collapse
Affiliation(s)
- Alexandra Roberts
- Faculty of Health Studies, School of Nursing and Healthcare Leadership, University of Bradford, Bradford, England
| |
Collapse
|
35
|
Parker EM, Bittner EA, Berra L, Pino RM. Efficiency of Prolonged Prone Positioning for Mechanically Ventilated Patients Infected with COVID-19. J Clin Med 2021; 10:2969. [PMID: 34279453 PMCID: PMC8267703 DOI: 10.3390/jcm10132969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Hypoxemia of the acute respiratory distress syndrome can be reduced by turning patients prone. Prone positioning (PP) is labor intensive, risks unplanned tracheal extubation, and can result in facial tissue injury. We retrospectively examined prolonged, repeated, and early versus later PP for 20 patients with COVID-19 respiratory failure. Blood gases and ventilator settings were collected before PP, at 1, 7, 12, 24, 32, and 39 h after PP, and 7 h after completion of PP. Analysis of variance was used for comparisons with baseline values at supine positions before turning prone. PP for >39 h maintained PaO2/FiO2 (P/F) ratios when turned supine; the P/F decrease at 7 h was not significant from the initial values when turned supine. Patients turned prone a second time, when again turned supine at 7 h, had significant decreased P/F. When PP started for an initial P/F ≤ 150 versus P/F > 150, the P/F increased throughout the PP and upon return to supine. Our results show that a single turn prone for >39 h is efficacious and saves the burden of multiple prone turns, and there is no significant advantage to initiating PP when P/F > 150 compared to P/F ≤ 150.
Collapse
Affiliation(s)
- Elizabeth M. Parker
- Surgical Intensive Care Unit, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (E.A.B.); (L.B.)
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (E.A.B.); (L.B.)
| | - Richard M. Pino
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; (E.A.B.); (L.B.)
- Louisiana State University Health Sciences Center, Department of Anesthesiology, New Orleans, LA 70112, USA
| |
Collapse
|
36
|
Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study. Crit Care Med 2021; 48:1494-1502. [PMID: 32897667 DOI: 10.1097/ccm.0000000000004518] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Hysteresis of the respiratory system pressure-volume curve is related to alveolar surface forces, lung stress relaxation, and tidal reexpansion/collapse. Hysteresis has been suggested as a means of assessing lung recruitment. The objective of this study was to determine the relationship between hysteresis, mechanical characteristics of the respiratory system, and lung recruitment assessed by a CT scan in mechanically ventilated acute respiratory distress syndrome patients. DESIGN Prospective observational study. SETTING General ICU of a university hospital. PATIENTS Twenty-five consecutive sedated and paralyzed patients with acute respiratory distress syndrome (age 64 ± 15 yr, body mass index 26 ± 6 kg/m, PaO2/FIO2 147 ± 42, and positive end-expiratory pressure 9.3 ± 1.4 cm H2O) were enrolled. INTERVENTIONS A low-flow inflation and deflation pressure-volume curve (5-45 cm H2O) and a sustained inflation recruitment maneuver (45 cm H2O for 30 s) were performed. A lung CT scan was performed during breath-holding pressure at 5 cm H2O and during the recruitment maneuver at 45 cm H2O. MEASUREMENTS AND MAIN RESULTS Lung recruitment was computed as the difference in noninflated tissue and in gas volume measured at 5 and at 45 cm H2O. Hysteresis was calculated as the ratio of the area enclosed by the pressure-volume curve and expressed as the hysteresis ratio. Hysteresis was correlated with respiratory system compliance computed at 5 cm H2O and the lung gas volume entering the lung during inflation of the pressure-volume curve (R = 0.749, p < 0.001 and R = 0.851, p < 0.001). The hysteresis ratio was related to both lung tissue and gas recruitment (R = 0.266, p = 0.008, R = 0.357, p = 0.002, respectively). Receiver operating characteristic analysis showed that the optimal cutoff value to predict lung tissue recruitment for the hysteresis ratio was 28% (area under the receiver operating characteristic curve, 0.80; 95% CI, 0.62-0.98), with sensitivity and specificity of 0.75 and 0.77, respectively. CONCLUSIONS Hysteresis of the respiratory system computed by low-flow pressure-volume curve is related to the anatomical lung characteristics and has an acceptable accuracy to predict lung recruitment.
Collapse
|
37
|
Chen J, Lv X, He H, Qi F, Chen J. Significance of vascular endothelium growth factor testing in exhaled breath condensate of patients with acute respiratory distress syndrome. Technol Health Care 2021; 28:347-354. [PMID: 32364167 PMCID: PMC7369122 DOI: 10.3233/thc-209035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: We aimed to observe and investigate the clinical significance of vascular endothelium growth factor (VEGF) levels in exhaled breath condensate (EBC) from patients with acute respiratory distress syndrome (ARDS). METHODS: An improved EcoScreen condenser was used to collect EBC from 31 ARDS patients on mechanical ventilation and from 22 healthy subjects. Serum and EBC VEGF levels were analyzed with ELISA. VEGF levels in the EBC of patients with different grades of lung injuries were analyzed. The correlation between VEGF levels and clinical indicators was analyzed. RESULTS: Serum and EBC VEGF levels were linearly and positively correlated with a correlation coefficient of 0.694 (P< 0.01). The VEGF level in the EBC of ARDS patients was significantly lower than that in the control group (P< 0.01). The VEGF level in the EBC of the mild ARDS group was higher than that in the moderate-severe ARDS group (P< 0.01). The VEGF level in the EBC of the survival group was higher than that in the mortality group. The VEGF level in the EBC of ARDS patients was positively correlated with PaO2/FiO2 and PaO2 and was negatively correlated with lung injury score (LIS) and A-aDO2/PaO2. CONCLUSION: The changes in VEGF levels in the EBC of ARDS patients can Respiratory Medicine, reflect the severity of lung injury. Therefore, VEGF level in EBC can be used as an auxiliary index for judging the severity and prognosis of ARDS patients.
Collapse
Affiliation(s)
- Jinliang Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xuedong Lv
- Department of Respiratory Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Haiyan He
- Department of Respiratory Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Feng Qi
- Intensive Care Unit, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianrong Chen
- Department of Respiratory Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
| |
Collapse
|
38
|
Mokra D, Mokry J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int J Mol Sci 2021; 22:1929. [PMID: 33669167 PMCID: PMC7919656 DOI: 10.3390/ijms22041929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Despite progress in understanding the pathophysiology of acute lung damage, currently approved treatment possibilities are limited to lung-protective ventilation, prone positioning, and supportive interventions. Various pharmacological approaches have also been tested, with neuromuscular blockers and corticosteroids considered as the most promising. However, inhibitors of phosphodiesterases (PDEs) also exert a broad spectrum of favorable effects potentially beneficial in acute lung damage. This article reviews pharmacological action and therapeutical potential of nonselective and selective PDE inhibitors and summarizes the results from available studies focused on the use of PDE inhibitors in animal models and clinical studies, including their adverse effects. The data suggest that xanthines as representatives of nonselective PDE inhibitors may reduce acute lung damage, and decrease mortality and length of hospital stay. Various (selective) PDE3, PDE4, and PDE5 inhibitors have also demonstrated stabilization of the pulmonary epithelial-endothelial barrier and reduction the sepsis- and inflammation-increased microvascular permeability, and suppression of the production of inflammatory mediators, which finally resulted in improved oxygenation and ventilatory parameters. However, the current lack of sufficient clinical evidence limits their recommendation for a broader use. A separate chapter focuses on involvement of cyclic adenosine monophosphate (cAMP) and PDE-related changes in its metabolism in association with coronavirus disease 2019 (COVID-19). The chapter illuminates perspectives of the use of PDE inhibitors as an add-on treatment based on actual experimental and clinical trials with preliminary data suggesting their potential benefit.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
39
|
Abstract
Acute lung injury is characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen, decreased lung compliance, and diffuse alveolar infiltrates on chest X-ray. The 1994 American-European Consensus Conference defined "acute respiratory distress syndrome, ARDS" by acute onset after a known trigger, severe hypoxemia defined by PaO2/FiO2</=200 mm Hg, bilateral infiltrates on chest X-ray, and absence of cardiogenic edema. Milder form of the syndrome with PaO2/FiO2 between 200-300 mm Hg was named "acute lung injury, ALI". Berlin Classification in 2012 defined three categories of ARDS according to hypoxemia (mild, moderate, and severe), and the term "acute lung injury" was assigned for general description or for animal models. ALI/ARDS can originate from direct lung triggers such as pneumonia or aspiration, or from extrapulmonary reasons such as sepsis or trauma. Despite growing understanding the ARDS pathophysiology, efficacy of standard treatments, such as lung protective ventilation, prone positioning, and neuromuscular blockers, is often limited. However, there is an increasing evidence that direct and indirect forms of ARDS may differ not only in the manifestations of alterations, but also in the response to treatment. Thus, individualized treatment according to ARDS subtypes may enhance the efficacy of given treatment and improve the survival of patients.
Collapse
Affiliation(s)
- D Mokrá
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| |
Collapse
|
40
|
Taghavi S, Ali A, Green E, Schmitt K, Jackson-Weaver O, Tatum D, Harris C, Guidry C, McGrew P, Schroll R, Kolls J, Duchesne J. Surgical stabilization of rib fractures is associated with improved survival but increased acute respiratory distress syndrome. Surgery 2020; 169:1525-1531. [PMID: 33461776 PMCID: PMC8039755 DOI: 10.1016/j.surg.2020.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Background How the surgical stabilization of rib fractures after trauma affects the development of acute respiratory distress syndrome and impacts survival has yet to be determined in a large database. We hypothesized that surgical stabilization of rib fractures would not decrease the incidence of acute respiratory distress syndrome. Methods The National Trauma Data Bank was queried for all traumatic rib fractures in 2016. Patients were divided into groups with single rib fractures, multiple rib fractures, and flail chest. Nonoperative therapy was compared with stabilization of rib fractures of 1 to 2 ribs or 3+ ribs. Results There were 114,972 total patients with rib fractures meeting inclusion criteria, with 5,106 (4.4%) having flail chest, 24,726 (21.5%) having single rib fractures, and 85,140 (74.1%) having multiple rib fractures. Those with flail chest (15.9%) were most likely to get rib plating in comparison to multiple rib fractures (0.9%) and single rib fractures (0.2%); P < .001. On logistic regression, surgical stabilization of rib fractures 1 to 2 ribs (odds ratio: 0.17, 95% confidence interval: 0.10–0.28) or 3+ ribs (odds ratio: 0.17, 95% confidence interval: 0.11–0.28), with nonoperative therapy as the reference was associated with survival. Variables associated with mortality included increasing age, male sex, increasing injury severity score, decreased Glasgow coma scale, requirement of transfusions, and hypotension on admission. Surgical stabilization of rib fractures 3+ ribs (odds ratio: 2.30, 95% confidence interval: 1.58–3.37) was associated with acute respiratory distress syndrome but not 1 to 2 ribs (odd ratio: 1.55, 95% confidence interval: 0.97–2.48). On logistic regression of only patients with flail chest, stabilization of rib fractures was associated with decreased mortality but not increased risk of acute respiratory distress syndrome. Conclusion The increased risk of acute respiratory distress syndrome should be considered in the preoperative assessment for stabilization of rib fractures.
Collapse
Affiliation(s)
- Sharven Taghavi
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA.
| | - Ayman Ali
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Erik Green
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Kyle Schmitt
- Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Olan Jackson-Weaver
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Danielle Tatum
- Trauma Specialists Program, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, (d)Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Charles Harris
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Chrissy Guidry
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Patrick McGrew
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Rebecca Schroll
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| | - Jay Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA
| | - Juan Duchesne
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
41
|
Zhang Z, Navarese EP, Zheng B, Meng Q, Liu N, Ge H, Pan Q, Yu Y, Ma X. Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome. J Evid Based Med 2020; 13:301-312. [PMID: 33185950 DOI: 10.1111/jebm.12418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023]
Abstract
Artificial intelligence (AI) has found its way into clinical studies in the era of big data. Acute respiratory distress syndrome (ARDS) or acute lung injury (ALI) is a clinical syndrome that encompasses a heterogeneous population. Management of such heterogeneous patient population is a big challenge for clinicians. With accumulating ALI datasets being publicly available, more knowledge could be discovered with sophisticated analytics. We reviewed literatures with big data analytics to understand the role of AI for improving the caring of patients with ALI/ARDS. Many studies have utilized the electronic medical records (EMR) data for the identification and prognostication of ARDS patients. As increasing number of ARDS clinical trials data is open to public, secondary analysis on these combined datasets provide a powerful way of finding solution to clinical questions with a new perspective. AI techniques such as Classification and Regression Tree (CART) and artificial neural networks (ANN) have also been successfully used in the investigation of ARDS problems. Individualized treatment of ARDS could be implemented with a support from AI as we are now able to classify ARDS into many subphenotypes by unsupervised machine learning algorithms. Interestingly, these subphenotypes show different responses to a certain intervention. However, current analytics involving ARDS have not fully incorporated information from omics such as transcriptome, proteomics, daily activities and environmental conditions. AI technology is assisting us to interpret complex data of ARDS patients and enable us to further improve the management of ARDS patients in future with individual treatment plans.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Eliano Pio Navarese
- Interventional Cardiology and Cardiovascular Medicine Research, Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
- Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - Bin Zheng
- Department of Surgery, 2D, Walter C Mackenzie Health Sciences Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qinghe Meng
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York
| | - Nan Liu
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelei Ma
- Department of biotherapy, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Raina R, Joshi H, Chakraborty R. Changing the terminology from kidney replacement therapy to kidney support therapy. Ther Apher Dial 2020; 25:437-457. [PMID: 32945598 DOI: 10.1111/1744-9987.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
Kidney replacement therapy (KRT) is a common supportive treatment for renal dysfunction, especially acute kidney injury. However, critically ill or immunosuppressed patients with renal dysfunction often have dysfunction in other organs as well. To improve patient outcomes, clinicians began to initiate kidney replacement therapy in situations where nonrenal conditions may lead to acute kidney injury, such as septic shock, hematopoietic stem cell transplantation, veno-occlusive renal disease, cardiopulmonary bypass, chemotherapy, tumor lysis syndrome, hyperammonemia, and various others. In this review, we discuss the use of various modes of kidney replacement therapy in treating renal and nonrenal complications to illustrate why kidney support therapy is a more appropriate terminology than kidney replacement therapy.
Collapse
Affiliation(s)
- Rupesh Raina
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA.,Department of Nephrology, Akron Children's Hospital, Akron, Ohio, USA
| | - Hirva Joshi
- Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Ronith Chakraborty
- Department of Nephrology, Cleveland Clinic Akron General/Akron Nephrology Associates, Akron, Ohio, USA
| |
Collapse
|
43
|
Haywood N, Byler MR, Zhang A, Roeser ME, Kron IL, Laubach VE. Isolated Lung Perfusion in the Management of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21186820. [PMID: 32957547 PMCID: PMC7555278 DOI: 10.3390/ijms21186820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS. Isolated machine lung perfusion is a promising surgical platform that has been associated with the rehabilitation of injured lungs and the induction of molecular and cellular changes in the lung, including upregulation of anti-inflammatory and regenerative pathways. Initially implemented in an ex vivo fashion to evaluate marginal donor lungs prior to transplantation, recent investigations of isolated lung perfusion have shifted in vivo and are focused on the management of ARDS. This review presents current tenants of ARDS management and isolated lung perfusion, with a focus on how ex vivo lung perfusion (EVLP) has paved the way for current investigations utilizing in vivo lung perfusion (IVLP) in the treatment of severe ARDS.
Collapse
|
44
|
Khan MJ, Singh P, Dohare R, Jha R, Rahmani AH, Almatroodi SA, Ali S, Syed MA. Inhibition of miRNA-34a Promotes M2 Macrophage Polarization and Improves LPS-Induced Lung Injury by Targeting Klf4. Genes (Basel) 2020; 11:genes11090966. [PMID: 32825525 PMCID: PMC7563942 DOI: 10.3390/genes11090966] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an outcome of an accelerated immune response that starts initially as a defensive measure, however, due to non-canonical signaling, it later proves to be fatal not only to the affected tissue but to the whole organ system. microRNAs are known for playing a decisive role in regulating the expression of genes involved in diverse functions such as lung development, repair, and inflammation. In-silico analyses of clinical data and microRNA databases predicted a probable interaction between miRNA-34a (miR-34a), mitogen-activated protein kinase 1 (ERK), and kruppel like factor 4 (Klf4). Parallel to in silico results, here, we show that intra-tracheal instillation of lipopolysaccharides (LPS) to mice enhanced miR-34a expression in lung macrophages. Inhibition of miR-34a significantly improved lung histology, whereas over-expression of miR-34a worsened the lung injury phenotype. miR-34a over-expression in macrophages were also demonstrated to favour pro-inflammatory M1 phenotype and inhibition of M2 polarization. In a quest to confirm this likely interaction, expression profiles of Klf4 as the putative target were analyzed in different macrophage polarizing conditions. Klf4 expression was found to be prominent in the miR-34a inhibitor-treated group but down-regulated in the miR-34a mimic treated group. Immuno-histopathological analyses of lung tissue from the mice treated with miR-34a inhibitor also showed reduced inflammatory M1 markers as well as enhanced cell proliferation. The present study indicates that miR-34a intensified LPS-induced lung injury and inflammation by regulating Klf4 and macrophage polarization, which may serve as a potential therapeutic target for acute lung injury/ARDS.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (P.S.); (R.D.); (R.J.)
| | - Arshad H. Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.H.R.); (S.A.A.)
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi 110025, India;
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India;
- Correspondence: ; Tel.: +91-995-378-6440
| |
Collapse
|
45
|
Shirazi J, Donzanti MJ, Nelson KM, Zurakowski R, Fromen CA, Gleghorn JP. Significant Unresolved Questions and Opportunities for Bioengineering in Understanding and Treating COVID-19 Disease Progression. Cell Mol Bioeng 2020; 13:259-284. [PMID: 32837585 PMCID: PMC7384395 DOI: 10.1007/s12195-020-00637-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
COVID-19 is a disease that manifests itself in a multitude of ways across a wide range of tissues. Many factors are involved, and though impressive strides have been made in studying this novel disease in a very short time, there is still a great deal that is unknown about how the virus functions. Clinical data has been crucial for providing information on COVID-19 progression and determining risk factors. However, the mechanisms leading to the multi-tissue pathology are yet to be fully established. Although insights from SARS-CoV-1 and MERS-CoV have been valuable, it is clear that SARS-CoV-2 is different and merits its own extensive studies. In this review, we highlight unresolved questions surrounding this virus including the temporal immune dynamics, infection of non-pulmonary tissue, early life exposure, and the role of circadian rhythms. Risk factors such as sex and exposure to pollutants are also explored followed by a discussion of ways in which bioengineering approaches can be employed to help understand COVID-19. The use of sophisticated in vitro models can be employed to interrogate intercellular interactions and also to tease apart effects of the virus itself from the resulting immune response. Additionally, spatiotemporal information can be gleaned from these models to learn more about the dynamics of the virus and COVID-19 progression. Application of advanced tissue and organ system models into COVID-19 research can result in more nuanced insight into the mechanisms underlying this condition and elucidate strategies to combat its effects.
Collapse
Affiliation(s)
- Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Michael J. Donzanti
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Katherine M. Nelson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Jason P. Gleghorn
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE 19716 USA
| |
Collapse
|
46
|
The Utility of Platelet Indices in Predicting Multiorgan Dysfunction in Scrub Typhus. Interdiscip Perspect Infect Dis 2020; 2020:3870354. [PMID: 32802052 PMCID: PMC7415085 DOI: 10.1155/2020/3870354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 11/18/2022] Open
Abstract
Platelet indices have been used to diagnose and prognosticate infections such as tuberculosis, malaria, dengue, and septic shock. Platelet indices have previously not been used in the prediction of multiorgan dysfunction (MODS) in patients with scrub typhus. A three-year retrospective review of patient charts was performed. Patients with and without MODS were compared. Platelet indices and other clinical and laboratory variables were used in logistic regression analysis to determine significant predictors. A ROC curve was generated with the platelet indices to predict MODS. Of 189 patients, 106 were male. Respiratory rate, serum creatinine, liver function tests, platelet count, thrombocytopenia <150 × 109/L, mean platelet volume (MPV) > 7.3 fL, and plateletcrit ≤0.19% varied significantly between patients with MODS and those without. Platelet indices are inexpensive and easily available. Only thrombocytopenia along with creatinine, alanine transaminase, and abnormal chest radiograph could significantly predict MODS in patients with scrub typhus.
Collapse
|
47
|
Kaniusas E, Szeles JC, Kampusch S, Alfageme-Lopez N, Yucuma-Conde D, Li X, Mayol J, Neumayer C, Papa M, Panetsos F. Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome. Front Physiol 2020; 11:890. [PMID: 32848845 PMCID: PMC7399203 DOI: 10.3389/fphys.2020.00890] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Covid-19 is an infectious disease caused by an invasion of the alveolar epithelial cells by coronavirus 19. The most severe outcome of the disease is the Acute Respiratory Distress Syndrome (ARDS) combined with hypoxemia and cardiovascular damage. ARDS and co-morbidities are associated with inflammatory cytokine storms, sympathetic hyperactivity, and respiratory dysfunction. Hypothesis: In the present paper, we present and justify a novel potential treatment for Covid19-originated ARDS and associated co-morbidities, based on the non-invasive stimulation of the auricular branch of the vagus nerve. Methods: Auricular vagus nerve stimulation activates the parasympathetic system including anti-inflammatory pathways (the cholinergic anti-inflammatory pathway and the hypothalamic pituitary adrenal axis) while regulating the abnormal sympatho-vagal balance and improving respiratory control. Results: Along the paper (1) we expose the role of the parasympathetic system and the vagus nerve in the control of inflammatory processes (2) we formulate our physiological and methodological hypotheses (3) we provide a large body of clinical and preclinical data that support the favorable effects of auricular vagus nerve stimulation in inflammation, sympatho-vagal balance as well as in respiratory and cardiac ailments, and (4) we list the (few) possible collateral effects of the treatment. Finally, we discuss auricular vagus nerve stimulation protective potential, especially in the elderly and co-morbid population with already reduced parasympathetic response. Conclusions: Auricular vagus nerve stimulation is a safe clinical procedure and it could be either an effective treatment for ARDS originated by Covid-19 and similar viruses or a supplementary treatment to actual ARDS therapeutic approaches.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Faculty of Electrical Engineering and Information Technology, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Jozsef C. Szeles
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Nuria Alfageme-Lopez
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Daniela Yucuma-Conde
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Xie Li
- The Pediatric Department, Women and Children's Hospital of Hunan, Changsha, China
| | - Julio Mayol
- San Carlos Clinical Hospital, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Christoph Neumayer
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
48
|
Harky A, Harahwa TA, Khan IH. Ventilatory Support for COVID-19 Patients. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:ahead of print. [PMID: 33525230 PMCID: PMC7927565 DOI: 10.23750/abm.v91i4.9895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus Disease (COVID-19), first emerged in Wuhan, China, in December 2019 and has now become a worldwide health emergency. The symptoms of Coronavirus vary from anosmia, fever, and cough to severe complications such as acute respiratory distress syndrome, which often require intubation and subsequent ventilation. Procedures such as these are aerosol-generating, and this adds additional challenges due to the risks posed to staff. In this brief article, we discuss the need for ventilation, risks raised to healthcare staff in this context, and ways to potentially mitigate these risks. We also discuss emerging themes, including phenotypes of COVID-19 and the role of prone positioning. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | | | - Inayat H Khan
- St. George's Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
49
|
Abstract
Dexmedetomidine has been widely used in the intensive care unit (ICU), with the primary aim to keep patients on an appropriate level of sedation. Both observational and randomized controlled trials have observed that the use of dexmedetomidine is associated with improved outcomes for mechanically ventilated patients [1]. In ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to other sedatives in maintaining sedation level, but was associated with shortened MV duration and improved ability to communicate pain [2]. MV is an important factor for delirium and dexmedetomidine was found to be associated with lower risk of delirium [3, 4]. Prophylactic low-dose dexmedetomidine is able to reduce the occurrence of delirium during the first 7 days after surgery for patients aged over 65 years who are admitted to the ICU after surgery [4]. Thus, the beneficial effect of might be explained by the reduction of delirium in the treated group. In fact, delirium can be considered as a type of acute organ dysfunction mediated via inflammatory response. There has been evidence that inflammatory biomarkers such as C-reactive protein was positively correlated with the occurrence of delirium [5].
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Somanath PR. Is targeting Akt a viable option to treat advanced-stage COVID-19 patients? Am J Physiol Lung Cell Mol Physiol 2020; 319:L45-L47. [PMID: 32519895 PMCID: PMC7324934 DOI: 10.1152/ajplung.00124.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia.,Charlie Norwood VA Medical Center, Augusta, Georgia.,Georgia Cancer Center, Vascular Biology Center and Department of Medicine, Augusta University, Augusta, Georgia
| |
Collapse
|