1
|
van Aalst EJ, Wylie BJ. An in silico framework to visualize how cancer-associated mutations influence structural plasticity of the chemokine receptor CCR3. Protein Sci 2025; 34:e70013. [PMID: 39723881 DOI: 10.1002/pro.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein Coupled Receptors (GPCRs) are the largest family of cell surface receptors in humans. Somatic mutations in GPCRs are implicated in cancer progression and metastasis, but mechanisms are poorly understood. Emerging evidence implicates perturbation of intra-receptor activation pathway motifs whereby extracellular signals are transmitted intracellularly. Recently, sufficiently sensitive methodology was described to calculate structural strain as a function of missense mutations in AlphaFold-predicted model structures, which was extensively validated on experimental and predicted structural datasets. When paired with Molecular Dynamics (MD) simulations, these tools provide a facile approach to screen mutations in silico. We applied this framework to calculate the structural and dynamic effects of cancer-associated mutations in the chemokine receptor CCR3, a Class A GPCR involved in cancer and autoimmune disorders. Residue-residue contact scoring refined effective strain results, highlighting significant remodeling of inter- and intra-motif contacts along the highly conserved GPCR activation pathway network. We then integrated AlphaFold-derived predicted Local Distance Difference Test scores with per-residue Root Mean Square Fluctuations and activation pathway Contact Analysis (CONAN) from coarse grain MD simulations to identify statistically significant changes in receptor dynamics upon mutation. Finally, analysis of negative control mutants suggests false positive results in AlphaFold pipelines should be considered but can be mitigated with stricter control of statistical analysis. Our results indicate selected mutants influence structural plasticity of CCR3 related to ligand interaction, activation, and G protein coupling, using a framework that could be applicable to a wide range of biochemically relevant protein targets following further validation.
Collapse
Affiliation(s)
- Evan J van Aalst
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Benjamin J Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
2
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
3
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
4
|
Liu R, Ma M, Li J, Luan F, Ren T, Wang N, Ma J. Loss of CCL28 and CXCL17 Expression and Increase in CCR1 Expression May Be Related to Malignant Transformation of LGBLEL into Lymphoma. Curr Issues Mol Biol 2024; 46:10969-10990. [PMID: 39451532 PMCID: PMC11505864 DOI: 10.3390/cimb46100652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
To investigate the differential expression of the chemokine signaling pathway in lacrimal gland benign lymphoepithelial lesion (LGBLEL) and lacrimal lymphoma, providing insights into the mechanisms underlying malignant transformation and aiding clinical differentiation. Transcriptome analysis was conducted on patients with LGBLEL, lymphoma, and orbital cavernous hemangioma (CH). Three cases of LGBLEL and three cases of lymphoma were randomly selected as control and experimental groups, respectively. A real-time quantitative polymerase chain reaction (RT-qPCR) was used to validate genes associated with the chemokine signaling pathway. Immunohistochemical (IHC) staining and quantitative Western blotting (WB) were performed for precise protein quantification. Transcriptome analysis revealed differential expression of the chemokine signaling pathway between the LGBLEL and lymphoma groups, identifying ten differentially expressed genes: CCL17, VAV2, CXCR5, NRAS, HCK, RASGRP2, PREX1, GNB5, ADRBK2, and CCL22. RT-qPCR showed that, compared to the lymphoma group, the LGBLEL group had significantly higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.001, <0.001, <0.001, <0.001, =0.020, <0.001, respectively) and lower expression of CCR1 (p = 0.002). IHC staining and quantitative analysis confirmed significant differences in protein expression between the groups for CCL28, CCR1, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.003, 0.011, 0.001, 0.024, 0.005, 0.019, and 0.031, respectively). While IHC provided localization, WB offered greater precision. WB revealed that, compared to the lymphoma group, the LGBLEL group exhibited significantly higher expression of CCL28, CXCL17, HCK, GNB5, NRAS, and VAV2 (p = 0.012, 0.005, 0.009, 0.011, 0.008, and 0.003, respectively) and lower expression of CCR1 (p = 0.014). The chemokine signaling pathway plays a role in the malignant transformation of LGBLEL. The decreased expression of CCL28 and CXCL17, coupled with the increased expression of CCR1, may be linked to the progression of LGBLEL into lymphoma.
Collapse
Affiliation(s)
- Rui Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.L.); (J.L.); (T.R.); (N.W.)
| | - Mingshen Ma
- Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (M.M.); (F.L.)
| | - Jing Li
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.L.); (J.L.); (T.R.); (N.W.)
| | - Fuxiao Luan
- Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (M.M.); (F.L.)
| | - Tingting Ren
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.L.); (J.L.); (T.R.); (N.W.)
| | - Nan Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.L.); (J.L.); (T.R.); (N.W.)
| | - Jianmin Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; (R.L.); (J.L.); (T.R.); (N.W.)
| |
Collapse
|
5
|
Hussain K, Lim HD, Devkota SR, Kemp-Harper BK, Lane JR, Canals M, Pease JE, Stone MJ. The chemokine receptor CCR8 is not a high-affinity receptor for the human chemokine CCL18. PLoS One 2024; 19:e0305312. [PMID: 39259753 PMCID: PMC11389940 DOI: 10.1371/journal.pone.0305312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
The primate-specific chemokine CCL18 is a potent chemoattractant for T cells and is expressed at elevated levels in several inflammatory diseases. However, the cognate receptor for CCL18 remains unconfirmed. Here, we describe attempts to validate a previous report that the chemokine receptor CCR8 is the human CCL18 receptor (Islam et al. J Exp Med. 2013, 210:1889-98). Two mouse pre-B cell lines (4DE4 and L1.2) exogenously expressing CCR8 exhibited robust migration in response to the known CCR8 ligand CCL1 but not to CCL18. Similarly, CCL1 but not CCL18 induced internalization of CCR8 on 4DE4 cells. CCR8 expressed on Chinese hamster ovarian (CHO) cells mediated robust G protein activation, inhibition of cAMP synthesis and β-arrestin2 recruitment in response to CCL1 but not CCL18. Several N- and C-terminal variants of CCL18 also failed to stimulate CCR8 activation. On the other hand, and as previously reported, CCL18 inhibited CCL11-stimulated migration of 4DE4 cells expressing the receptor CCR3. These data suggest that CCR8, at least in the absence of unidentified cofactors, does not function as a high affinity receptor for CCL18.
Collapse
Affiliation(s)
- Khansa Hussain
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Herman D Lim
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Barbara K Kemp-Harper
- Monash Biomedicine Discovery Institute, and Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - J Robert Lane
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, Nottingham, United Kingdom
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Martin J Stone
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Zhang C, Li G, Zhang F, Zhang Y, Hong S, Gao S, Liu Y, Du J, Li Y. IL-33 Facilitates Fibro-Adipogenic Progenitors to Establish the Pro-Regenerative Niche after Muscle Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405299. [PMID: 39037903 PMCID: PMC11425282 DOI: 10.1002/advs.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Indexed: 07/24/2024]
Abstract
During the process of muscle regeneration post-injury in adults, muscle stem cells (MuSCs) function is facilitated by neighboring cells within the pro-regenerative niche. However, the precise mechanism triggering the initiation of signaling in the pro-regenerative niche remains unknown. Using single-cell RNA sequencing, 14 different muscle cells are comprehensively mapped during the initial stage following injury. Among these, macrophages and fibro-adipogenic progenitor cells (FAPs) exhibit the most pronounced intercellular communication with other cells. In the FAP subclusters, the study identifies an activated FAP phenotype that secretes chemokines, such as CXCL1, CXCL5, CCL2, and CCL7, to recruit macrophages after injury. Il1rl1, encoding the protein of the interleukin-33 (IL-33) receptor, is identified as a highly expressed signature surface marker of the FAP phenotype. Following muscle injury, autocrine IL-33, an alarmin, has been observed to activate quiescent FAPs toward this inflammatory phenotype through the IL1RL1-MAPK/NF-κB signaling pathway. Il1rl1 deficiency results in decreased chemokine expression and recruitment of macrophages, accompanied by impaired muscle regeneration. These findings elucidate a novel mechanism involving the IL-33/IL1RL1 signaling pathway in promoting the activation of FAPs and facilitating muscle regeneration, which can aid the development of therapeutic strategies for muscle-related disorders and injuries.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Guoqi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yanhong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shiyao Hong
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
- Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, 100029, China
| |
Collapse
|
7
|
Yatsenko T, Rios R, Nogueira T, Salama Y, Takahashi S, Adachi E, Tabe Y, Hattori N, Osada T, Naito T, Takahashi K, Hattori K, Heissig B. The influence of 4G/5G polymorphism in the plasminogen-activator-inhibitor-1 promoter on COVID-19 severity and endothelial dysfunction. Front Immunol 2024; 15:1445294. [PMID: 39281671 PMCID: PMC11392769 DOI: 10.3389/fimmu.2024.1445294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Plasminogen activator inhibitor-1 (PAI-1) is linked to thrombosis and endothelial dysfunction in severe COVID-19. The +43 G>A PAI-1 and 4G/5G promoter polymorphism can influence PAI-1 expression. The 4G5G PAI-1 promoter gene polymorphism constitutes the 4G4G, 4G5G, and 5G5G genotypes. However, the impact of PAI-1 polymorphisms on disease severity or endothelial dysfunction remains unclear. Methods Clinical data, sera, and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients were studied. Results Comorbidities and clinical biomarkers did not correlate with genotypes in either polymorphism. However, differences between fibrinolytic factors and interleukin-1β (IL-1β) were identified in genotypes of the 4G/5G but not the 43 G>A PAI polymorphism. Patients with the 4G4G genotype of the 4G/5G polymorphism showed high circulating PAI-1, mainly complexed with plasminogen activators, and low IL-1β and plasmin levels, indicating suppressed fibrinolysis. NFκB was upregulated in PBMCs of COVID-19 patients with the 4G4G genotype. Discussion Mechanistically, IL-1β enhanced PAI-1 expression in 4G4G endothelial cells, preventing the generation of plasmin and cleavage products like angiostatin, soluble uPAR, and VCAM1. We identified inflammation-induced endothelial dysfunction coupled with fibrinolytic system overactivation as a risk factor for patients with the 5G5G genotype.
Collapse
Affiliation(s)
- Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Enzymes Chemistry and Biochemistry, Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ricardo Rios
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Tatiane Nogueira
- Institute of Computing, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University, Urayasu Hospital, Urayasu-shi, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
8
|
Guo D, Zhu W, Qiu H. C-C Motif Chemokine Ligand 2 and Chemokine Receptor 2 in Cardiovascular and Neural Aging and Aging-Related Diseases. Int J Mol Sci 2024; 25:8794. [PMID: 39201480 PMCID: PMC11355023 DOI: 10.3390/ijms25168794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Aging is a prominent risk factor for numerous chronic diseases. Understanding the shared mechanisms of aging can aid in pinpointing therapeutic targets for age-related disorders. Chronic inflammation has emerged as a pivotal mediator of aging and a determinant in various age-related chronic conditions. Recent findings indicate that C-C motif chemokine ligand 2 and receptor 2 (CCL2-CCR2) signaling, an important physiological modulator in innate immune response and inflammatory defense, plays a crucial role in aging-related disorders and is increasingly recognized as a promising therapeutic target, highlighting its significance. This review summarizes recent advances in the investigation of CCL2-CCR2 signaling in cardiovascular and neural aging, as well as in various aging-related disorders. It also explores the underlying mechanisms and therapeutic potentials in these contexts. These insights aim to deepen our understanding of aging pathophysiology and the development of aging-related diseases.
Collapse
Affiliation(s)
- David Guo
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Center for Regenerative Biotherapeutics, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA;
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA;
- Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
9
|
Mubariki R, Samara R, Gimenez-Arnua AM, Maurer M, Bejar J, Toubi E, Vadasz Z. CD4 +CCR5 + T cells and CCL3+ mast cells are increased in the skin of patients with chronic spontaneous urticaria. Front Immunol 2024; 15:1327040. [PMID: 39104520 PMCID: PMC11298339 DOI: 10.3389/fimmu.2024.1327040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Background The proximity of activated T cells and mast cells in the lesional skin of patients with chronic spontaneous urticaria (CSU) is held to contribute to the development of wheals and angioedema. In a previous study, we demonstrated that increased IL-17 expression in T cells and mast cells in skin lesions of patients with CSU is associated with T/mast cell proximity, but the mechanisms that drive T cell/mast cell co-localization remain unknown. Objectives To assess if chemokines expressed in lesional CSU skin contribute to T cell/mast cell proximity. Patients and methods Biopsies from lesional CSU skin were compared to biopsies from healthy skin for expression of CCR5 and its ligand CCL3 by CD4+ T cells and mast cells, respectively. Results Numbers of CCR5-positive CD4+ T cells in lesional CSU skin were significantly increased as compared to healthy normal skin (p < 0.0001). The number of mast cells expressing CCL3 (ligand for CCR5) in CSU skin was also increased (p < 0.0002) and significant association with T-cell close proximity (p < 0.0001) is noticed. Conclusions The close proximity of T cells and mast cells in the skin of severe CSU may be driven, at least in part by increased CCR5 and CCL3 expression. Therapies that target CCL3 interaction with CCR5 should be assessed for their effects in CSU.
Collapse
Affiliation(s)
- Raeda Mubariki
- The Unit of Proteomics and Flow Cytometry, Allergy and Clinical Immunology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Reem Samara
- Department of Pathology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Anna Maria Gimenez-Arnua
- Department of Dermatology, Hospital del Mar & Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marcus Maurer
- Institute of Allergology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, Berlin, Germany
| | - Jacob Bejar
- Department of Pathology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Elias Toubi
- The Unit of Proteomics and Flow Cytometry, Allergy and Clinical Immunology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Zahava Vadasz
- The Unit of Proteomics and Flow Cytometry, Allergy and Clinical Immunology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
10
|
Dilly JJ, Morgan AL, Bedding MJ, Low JKK, Mackay JP, Conibear AC, Bhusal RP, Stone MJ, Franck C, Payne RJ. Tyrosine Sulfation Modulates the Binding Affinity of Chemokine-Targeting Nanobodies. ACS Chem Biol 2024; 19:1426-1432. [PMID: 38941516 DOI: 10.1021/acschembio.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Chemokines are an important family of small proteins integral to leukocyte recruitment during inflammation. Dysregulation of the chemokine-chemokine receptor axis is implicated in many diseases, and both chemokines and their cognate receptors have been the targets of therapeutic development. Analysis of the antigen-binding regions of chemokine-binding nanobodies revealed a sequence motif suggestive of tyrosine sulfation. Given the well-established importance of post-translational tyrosine sulfation of receptors for chemokine affinity, it was hypothesized that the sulfation of these nanobodies may contribute to chemokine binding and selectivity. Four nanobodies (16C1, 9F1, 11B1, and 11F2) were expressed using amber codon suppression to incorporate tyrosine sulfation. The sulfated variant of 16C1 demonstrated significantly improved chemokine binding compared to the non-sulfated counterpart, while the other nanobodies displayed equipotent or reduced affinity upon sulfation. The ability of tyrosine sulfation to modulate chemokine binding, both positively and negatively, could be leveraged for chemokine-targeted sulfo-nanobody therapeutics in the future.
Collapse
Affiliation(s)
- Joshua J Dilly
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexandra L Morgan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Max J Bedding
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anne C Conibear
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, Wien 1060, Austria
| | - Ram Prasad Bhusal
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
11
|
Toy L, Huber ME, Lee M, Bartolomé AA, Ortiz Zacarías NV, Nasser S, Scholl S, Zlotos DP, Mandour YM, Heitman LH, Szpakowska M, Chevigné A, Schiedel M. Fluorophore-Labeled Pyrrolones Targeting the Intracellular Allosteric Binding Site of the Chemokine Receptor CCR1. ACS Pharmacol Transl Sci 2024; 7:2080-2092. [PMID: 39022357 PMCID: PMC11249626 DOI: 10.1021/acsptsci.4c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
In this study, we describe the structure-based development of the first fluorescent ligands targeting the intracellular allosteric binding site (IABS) of the CC chemokine receptor type 1 (CCR1), a G protein-coupled receptor (GPCR) that has been pursued as a drug target in inflammation and immune diseases. Starting from previously reported intracellular allosteric modulators of CCR1, tetramethylrhodamine (TAMRA)-labeled ligands were designed, synthesized, and tested for their suitability as fluorescent tracers to probe binding to the IABS of CCR1. In the course of these studies, we developed LT166 (12) as a highly versatile fluorescent CCR1 ligand, enabling cell-free as well as cellular NanoBRET-based binding studies in a nonradioactive and high-throughput manner. Besides the detection of intracellular allosteric ligands by direct competition with 12, we were also able to monitor the binding of extracellular antagonists due to their positive cooperative binding with 12. Thereby, we provide a straightforward and nonradioactive method to easily distinguish between ligands binding to the IABS of CCR1 and extracellular negative modulators. Further, we applied 12 for the identification of novel chemotypes for intracellular CCR1 inhibition that feature high binding selectivity for CCR1 over CCR2. For one of the newly identified intracellular CCR1 ligands (i.e., 23), we were able to show CCR1 over CCR2 selectivity also on a functional level and demonstrated that this compound inhibits basal β-arrestin recruitment to CCR1, thereby acting as an inverse agonist. Thus, our fluorescent CCR1 ligand 12 represents a highly promising tool for future studies of CCR1-targeted pharmacology and drug discovery.
Collapse
Affiliation(s)
- Lara Toy
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Max E. Huber
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
| | - Minhee Lee
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Ana Alonso Bartolomé
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
- Faculty
of Science, Technology and Medicine, University
of Luxembourg, 2 Avenue
de l’Université, Esch-sur-Alzette L-4365, Luxembourg
| | - Natalia V. Ortiz Zacarías
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
| | - Sherif Nasser
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Stephan Scholl
- Institute
for Chemical and Thermal Process Engineering (ICTV), Technische Universität Braunschweig, Langer Kamp 7, Braunschweig 38106, Germany
| | - Darius P. Zlotos
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, the German University in Cairo, New Cairo City 11835, Cairo, Egypt
| | - Yasmine M. Mandour
- School
of Life and Medical Sciences, University
of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Laura H. Heitman
- Leiden
Academic Centre for Drug Research (LACDR), Division of Chemistry, Leiden University, Leiden 2333 CC, Netherlands
- Oncode
Institute, Leiden University, Leiden 2333 CC, Netherlands
| | - Martyna Szpakowska
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology
and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Rue Henri Koch 29, Esch-sur-Alzette L-4354, Luxembourg
| | - Matthias Schiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, Erlangen 91058, Germany
- Institute
of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
12
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
13
|
Devkota SR, Aryal P, Wilce MCJ, Payne RJ, Stone MJ, Bhusal RP. Structural basis of chemokine recognition by the class A3 tick evasin EVA-ACA1001. Protein Sci 2024; 33:e4999. [PMID: 38723106 PMCID: PMC11081419 DOI: 10.1002/pro.4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024]
Abstract
Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.
Collapse
Affiliation(s)
- Shankar Raj Devkota
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Pramod Aryal
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSWAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSWAustralia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
14
|
Luo H, Li L, Han S, Liu T. The role of monocyte/macrophage chemokines in pathogenesis of osteoarthritis: A review. Int J Immunogenet 2024; 51:130-142. [PMID: 38462560 DOI: 10.1111/iji.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/08/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Osteoarthritis (OA) is one of the most common degenerative diseases characterised by joint pain, swelling and decreased mobility, with its main pathological features being articular synovitis, cartilage degeneration and osteophyte formation. Inflammatory cytokines and chemokines secreted by activated immunocytes can trigger various inflammatory and immune responses in articular cartilage and synovium, contributing to the genesis and development of OA. A series of monocyte/macrophage chemokines, including monocyte chemotaxis protein (MCP)-1/CCL2, MCP2/CCL8, macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4, MIP-3α/CCL20, regulated upon activation, normal T-cell expressed and secreted /CCL5, CCL17 and macrophage-derived chemokine/CCL22, was proven to transmit cell signals by binding to G protein-coupled receptors on recipient cell surface, mediating and promoting inflammation in OA joints. However, the underlying mechanism of these chemokines in the pathogenesis of OA remains still elusive. Here, published literature was reviewed, and the function and mechanisms of monocyte/macrophage chemokines in OA pathogenesis were summarised. The symptoms and disease progression of OA were found to be effectively alleviated when the expression of these chemokines is inhibited. Elucidating these mechanisms could contribute to further understand how OA develops and provide potential targets for the early diagnosis of arthritis and drug treatment to delay or even halt OA progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Linfeng Li
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Song Han
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Liu
- Department of Orthopaedics, The People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Naidu G, Tripathi DK, Nagar N, Mishra A, Poluri KM. Targeting chemokine-receptor mediated molecular signaling by ethnopharmacological approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117837. [PMID: 38310985 DOI: 10.1016/j.jep.2024.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Infection and inflammation are critical to global human health status and the goal of current pharmacological interventions intends formulating medications/preventives as a measure to deal with this situation. Chemokines and their cognate receptors are major regulatory molecules in many of these ailments. Natural products have been a keen source to the drug development industry, every year contributing significantly to the growing list of FDA approved drugs. A multiverse of natural resource is employed as a part of curative regimen in folk/traditional/ethnomedicine which can be employed to discover, repurpose, and design potent medications for the diseases of clinical concern. AIM OF THE STUDY This review aims to systematically document the ethnopharmacologically active agents targeting the infectious-inflammatory diseases through the chemokine-receptor nexus. MATERIALS AND METHODS Articles related to chemokine/receptor modulating ethnopharmacological anti-inflammatory, anti-infectious natural sources, bioactive compounds, and formulations have been examined with special emphasis on women related diseases. The available literature has been thoroughly scrutinized for the application of traditional medicines in chemokine associated experimental methods, their regulatory outcomes, and pertinence to women's health wherever applicable. Moreover, the potential traditional regimens under clinical trials have been critically assessed. RESULTS A systematic and comprehensive review on the chemokine-receptor targeting ethnopharmaceutics from the available literature has been provided. The article discusses the implication of traditional medicine in the chemokine system dynamics in diverse infectious-inflammatory disorders such as cardiovascular diseases, allergic diseases, inflammatory diseases, neuroinflammation, and cancer. On this note, critical evaluation of the available data surfaced multiple diseases prevalent in women such as osteoporosis, rheumatoid arthritis, breast cancer, cervical cancer and urinary tract infection. Currently there is no available literature highlighting chemokine-receptor targeting using traditional medicinal approach from women's health perspective. Moreover, despite being potent in vitro and in vivo setups there remains a gap in clinical translation of these formulations, which needs to be strategically and scientifically addressed to pave the way for their successful industrial translation. CONCLUSIONS The review provides an optimistic global perspective towards the applicability of ethnopharmacology in chemokine-receptor regulated infectious and inflammatory diseases with special emphasis on ailments prevalent in women, consecutively addressing their current status of clinical translation and future directions.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| | - Deepak Kumar Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
16
|
Huang CG, Liu Q, Zheng ST, Liu T, Tan YY, Peng TY, Chen J, Lu XM. Chemokines and Their Receptors: Predictors of Therapeutic Potential in Tumor Microenvironment on Esophageal Cancer. Dig Dis Sci 2024; 69:1562-1570. [PMID: 38580886 PMCID: PMC11098888 DOI: 10.1007/s10620-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.
Collapse
Affiliation(s)
- Cong-Gai Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shu-Tao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi-Yi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yuan Peng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Mei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
17
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
18
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
19
|
Mizejewski GJ. The Role of Ion Channels and Chemokines in Cancer Growth and Metastasis: A Proposed Mode of Action Using Peptides in Cancer Therapy. Cancers (Basel) 2024; 16:1531. [PMID: 38672613 PMCID: PMC11048196 DOI: 10.3390/cancers16081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Metastasis (Met) largely contributes to the major cause of cancer deaths throughout the world, rather than the growth of the tumor mass itself. The present report brings together several of the pertinent contributors to cancer growth and metastatic processes from an activity standpoint. Such biological activities include the following: (1) cell adherence and detachment; (2) cell-to-cell contact; (3) contact inhibition; (4) the cell interfacing with the extracellular matrix (ECM); (5) tumor cell-to-stroma communication networks; (6) chemotaxis; and (7) cell membrane potential. Moreover, additional biochemical factors that contribute to cancer growth and metastasis have been shown to comprise the following: (a) calcium levels in the extracellular matrix and in intracellular compartments; (b) cation voltage and ATP-regulated potassium channels; (c) selective and non-selective cation channels; and (d) chemokines (cytokines) and their receptors, such as CXCL12 (SDF-1) and its receptor/binding partner, CXCR4. These latter molecular components represent a promising group of an interacting and synchronized set of candidates ideal for peptide therapeutic targeting for cancer growth and metastasis. Such peptides can be obtained from naturally occurring proteins such as alpha-fetoprotein (AFP), an onco-fetal protein and clinical biomarker.
Collapse
Affiliation(s)
- Gerald J. Mizejewski
- Division of Translational Medicine, Molecular Diagnostics Laboratory, Albany, NY 12201, USA; ; Tel.: +518-486-5900; Fax: +518-402-5002
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201, USA
- Biggs Laboratory, Empire State Plaza, Albany, NY 12237, USA
| |
Collapse
|
20
|
Kim HM, Kwon MH, Lee ES, Ha KB, Chung CH. DA-6034 ameliorates hepatic steatosis and inflammation in high fat diet-induced obese mice. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:103-112. [PMID: 38486464 DOI: 10.12701/jyms.2023.01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is characterized by an increase in hepatic triglyceride content and increased inflammatory macrophage infiltration through the C-C motif chemokine receptor (CCR) 5 pathway in the liver. DA-6034 (7-carboxymethyloxy-3',4',5-trimethoxy flavone), is a synthetic derivative of eupatilin that exhibits anti-inflammatory activity in inflammatory bowel disease. However, the effect of DA-6034 on the inflammatory response in NAFLD is not well elucidated. Therefore, we aimed to determine the effect of DA-6034 on hepatic steatosis and inflammation. METHODS Forty male C57BL/6J mice were divided into the following four groups: (1) regular diet (RD), (2) RD with DA-6034, (3) high fat diet (HFD), and (4) HFD with DA-6034. All mice were sacrificed 12 weeks after the start of the experiment. The effects of DA-6034 on macrophages were assessed using RAW264.7 cells. RESULTS DA-6034 not only reduced hepatic triglyceride levels and lipid accumulation but also macrophage infiltration and proinflammatory cytokines in HFD-fed mice. According to fluorescence-activated cell sorter analysis, DA-6034 reduced the CD8+ T cell fraction in the liver of HFD-fed mice. DA-6034 also reduced CCR5 expression and the migration of liver macrophages in HFD-fed mice and inhibited CCR2 ligand and CCR4 ligand, which stimulated the migration of macrophages. CONCLUSION Overall, DA-6034 attenuates hepatic steatosis and inflammation in obesity by regulating CCR5 expression in macrophages.
Collapse
Affiliation(s)
| | - Mi-Hye Kwon
- The East Coast Research Institute of Life Science, Gangneung-Wonju National University, Gangneung, Korea
| | - Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Kyung Bong Ha
- Department of Clinical Research, Vaccine Center for Assisting Safety & Technology, Hwasun, Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
21
|
Zhang SS, Zhang JW, Zhang KX, Cui WQ, Zhi HW, Li HT, Wu HY, Wang YH. Hsa-miR-877-5p Expression in Acute Ischemic Stroke Based on Bioinformatics Analysis and Clinical Validation. Mol Neurobiol 2024; 61:1990-2005. [PMID: 37837492 DOI: 10.1007/s12035-023-03675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/24/2023] [Indexed: 10/16/2023]
Abstract
Inflammation and immunity play important roles in the pathogenesis of ischemic stroke. This study aimed to explore key regulatory genes in acute ischemic stroke (AIS) and their underlying mechanisms to provide new research targets for the diagnosis and treatment of ischemic stroke. We searched for differentially expressed mRNAs and miRNAs in patients with AIS and healthy populations in GEO databases, constructed a miRNA-mRNA network, and screened key miRNAs using least absolute shrinkage and selection operator regression and the support vector machine-recursive feature elimination model. Correlations between key miRNAs and infiltrating immune cells and inflammatory factors were analyzed using CIBERSORT and immunoassays and verified using clinical experiments. Bioinformatics analysis identified hsa-miR-877-5p as a key regulatory miRNA in AIS that can modulate immune and inflammatory responses. In clinical studies, it was verified by quantitative PCR analysis that the expression of hsa-miR-877-5p in the blood of AIS patients was higher than that of the healthy group. Then, enzyme-linked immunosorbent assay revealed that the expression of IL-23 and TNF-α related to inflammation in AIS patients was higher than that of the healthy. Quantitative PCR further found that the relative mRNA expression of IL-23, CXCR3, and TNF-α in AIS group was higher than that of the healthy group. This study may provide a basis for a more comprehensive understanding of the potential mechanism of the occurrence and development of AIS, and hsa-miR-877-5p and its downstream effectors IL-23, CXCR3, and TNF-α may be potential intervention targets in AIS.
Collapse
Affiliation(s)
- Si-Shuo Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Ji-Wei Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, University Road NO.4655 in Changqing District, Jinan, China
| | - Kai-Xin Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, University Road NO.4655 in Changqing District, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hong-Wei Zhi
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hai-Tao Li
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China
| | - Ya-Han Wang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Road No.16369 in Lixia District, Jinan, China.
| |
Collapse
|
22
|
Ouchida T, Isoda Y, Nakamura T, Yanaka M, Tanaka T, Handa S, Kaneko MK, Suzuki H, Kato Y. Establishment of a Novel Anti-Mouse CCR1 Monoclonal Antibody C 1Mab-6. Monoclon Antib Immunodiagn Immunother 2024; 43:67-74. [PMID: 38512465 DOI: 10.1089/mab.2023.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Isoda
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
23
|
Vanalken N, Boon K, Szpakowska M, Chevigné A, Schols D, Van Loy T. Systematic Assessment of Human CCR7 Signalling Using NanoBRET Biosensors Points towards the Importance of the Cellular Context. BIOSENSORS 2024; 14:142. [PMID: 38534251 DOI: 10.3390/bios14030142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited β-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.
Collapse
Affiliation(s)
- Nathan Vanalken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Katrijn Boon
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Martyna Szpakowska
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Andy Chevigné
- Department of Infection and Immunity, Immuno-Pharmacology and Interactomics, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| | - Tom Van Loy
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
25
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
26
|
Ermis E, Nargis T, Webster K, Tersey SA, Anderson RM, Mirmira RG. Leukotriene B4 receptor 2 governs macrophage migration during tissue inflammation. J Biol Chem 2024; 300:105561. [PMID: 38097183 PMCID: PMC10790086 DOI: 10.1016/j.jbc.2023.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024] Open
Abstract
Chronic inflammation is the underlying cause of many diseases, including type 1 diabetes, obesity, and non-alcoholic fatty liver disease. Macrophages are continuously recruited to tissues during chronic inflammation where they exacerbate or resolve the pro-inflammatory environment. Although leukotriene B4 receptor 2 (BLT2) has been characterized as a low affinity receptor to several key eicosanoids and chemoattractants, its precise roles in the setting of inflammation and macrophage function remain incompletely understood. Here we used zebrafish and mouse models to probe the role of BLT2 in macrophage function during inflammation. We detected BLT2 expression in bone marrow derived and peritoneal macrophages of mouse models. Transcriptomic analysis of Ltb4r2-/- and WT macrophages suggested a role for BLT2 in macrophage migration, and studies in vitro confirmed that whereas BLT2 does not mediate macrophage polarization, it is required for chemotactic function, possibly mediated by downstream genes Ccl5 and Lgals3. Using a zebrafish model of tailfin injury, we demonstrated that antisense morpholino-mediated knockdown of blt2a or chemical inhibition of BLT2 signaling impairs macrophage migration. We further replicated these findings in zebrafish models of islet injury and liver inflammation. Moreover, we established the applicability of our zebrafish findings to mammals by showing that macrophages of Ltb4r2-/- mice have defective migration during lipopolysaccharide stimulation in vivo. Collectively, our results demonstrate that BLT2 mediates macrophage migration during inflammation, which implicates it as a potential therapeutic target for inflammatory pathologies.
Collapse
Affiliation(s)
- Ebru Ermis
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; The College, The University of Chicago, Chicago, Illinois, USA
| | - Titli Nargis
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Kierstin Webster
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Sarah A Tersey
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Ryan M Anderson
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA.
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, The University of Chicago, Chicago, Illinois, USA; The College, The University of Chicago, Chicago, Illinois, USA; Department of Medicine, The University of Chicago, Chicago, Illinois, USA; Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
27
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Wang X, Lu D, Peng D, Liu D, Liu Y, Liu Y, Xu W, Zhang Y, Xu C, Ren R, Li M, Gao J, Pang G. Studying allosteric regulation of chemokines and antagonists using a nanoscale hCCR3 receptor sensor. Int J Biol Macromol 2023; 253:126892. [PMID: 37709231 DOI: 10.1016/j.ijbiomac.2023.126892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
CC chemokine receptor-3 (hCCR3), a G protein-coupled receptor (GPCR) expressed predominantly on eosinophils, is an important drug target. However, it was unclear how chemokine ligands, activators and antagonists recognize hCCR3, and quantitative measurements of hCCR3 inhibition or activation were rare. This study constructed a nanogold receptor sensor using hCCR3 as the molecular recognition element and horseradish peroxidase as the signal amplifier. We quantified the kinetic antagonism between chemokines and hCCR3 before and after adding hCCR3 antagonists. A molecular docking study was carried out to investigate how hCCR3 and its ligands work. The study results indicate chemokines interact with hCCR3 at low concentrations, and reversible hCCR3 inhibitors solely inhibit hCCR3, not CCLs. Moreover, a quantitative evaluation of hCCR3 chemokine activators and their antagonists was carried out using a directed weighted network. This offers a novel approach to quantitatively evaluate chemokine-receptor activation and antagonism together. This research could potentially offer new insights into the mechanisms of action of chemokines and drug screening.
Collapse
Affiliation(s)
- Xinqian Wang
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Dingqiang Lu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China.
| | - Dandan Peng
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Danyang Liu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Yujiao Liu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Yixuan Liu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Wei Xu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Yifei Zhang
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Chenyu Xu
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Ruijuan Ren
- Tianjin institute for food safety inspection technology, Tianjin, China.
| | - Ming Li
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Jinghan Gao
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China
| | - Guangchang Pang
- College of Biotechnology & food Science, Tianjin University of Commerce, Tianjin, China.
| |
Collapse
|
29
|
Cheng Y, Yang X, Liang L, Xin H, Dong X, Li W, Li J, Guo X, Li Y, He J, Zhang C, Wang W. Elevated expression of CXCL3 in colon cancer promotes malignant behaviors of tumor cells in an ERK-dependent manner. BMC Cancer 2023; 23:1162. [PMID: 38031087 PMCID: PMC10685652 DOI: 10.1186/s12885-023-11655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND CXC chemokine ligand 3 (CXCL3) is a member of CXC-type chemokine family that is identified as a major regulator in immune and inflammation responses. Recently, numerous evidence indicated that CXCL3 is broadly expressed in various human tumor types, and it is also known to play a critical role in mediating tumor development and progression. However, the expression profile of CXCL3 and the exact molecular mechanism behind the role of CXCL3 in colon adenocarcinoma (COAD) has not been fully elucidated. METHODS The expression and clinical significance of CXCL3 mRNA and protein in the tissues from COAD patients were estimated using bioinformatics and immunohistochemistry assays. The expression and roles of exogenous administration or overexpression of CXCL3 in HT-29 and SW480 COAD cells were determined using enzyme-linked immunosorbent assay(ELISA), Cell Counting Kit-8 (CCK-8) and Transwell assays. Mechanically, CXCL3-induced malignant behaviors were elucidated using western blotting assay and extracellular signal-regulated protein kinase 1/2 (ERk1/2) inhibitor PD98059. RESULTS The cancer genome atlas (TCGA)-COAD data analysis revealed that CXCL3 mRNA is highly expressed and has high clinical diagnostic accuracy in COAD. Increased expression of CXCL3 mRNA was associated with patient's clinical stage, race, gender, age, histological subtype, nodal mestastasis and tumor protein 53 (TP53) mutation status. Similarly, immunohistochemistry assay also exhibited that CXCL3 protein in COAD tissues was significantly up-regulated. Gene expression associated assay implied that CXC chemokine ligand 1 (CXCL1) and CXC chemokine ligand 2 (CXCL2) were markedly correlated with CXCL3 in COAD. Protein-protein interaction (PPI) analysis revealed that cyclin B1 (CCNB1), mitotic arrest deficient 2 like 1 (MAD2L1), H2A family member Z (H2AFZ) and CXCL2 may be the important protein molecules involved in CXCL3-related tumor biology. Gene set enrichment analysis (GSEA) analysis revealed that CXCL3 was mainly enriched in the cell cycle, DNA replication, NOD-like receptors, NOTCH and transforming growth factor-β (TGF-β) Signal pathways. In vitro, exogenous administration or overexpression of CXCL3 resulted in increased malignant behaviors of HT-29 and SW480 cells, and down-regulation of CXCL3 expression inhibited the malignant behaviors of these tumor cells. In addition, overexpression of CXCL3 affected the expression of genes related to extracellular signal regulated kinase (ERK) pathway, including ERK1/2, p-ERK, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cyclin D1. Finally, CXCL3-induced malignant behaviors in HT-29 and SW480 cells were obviously attenuated following treatment with ERK inhibitor PD98059. CONCLUSION CXCL3 is upregulated in COAD and plays a crucial role in the control of malignant behaviors of tumor cells, which indicated its involvement in the pathogenesis of COAD.
Collapse
Grants
- Person in charge: Xinyan Yang; has been filed, the number to be issued. Basic scientific research business cost scientific research project of Heilongjiang Provincial Colleges and Universities in 2022
- Person in charge: Xinyan Yang; has been filed, the number to be issued. Basic scientific research business cost scientific research project of Heilongjiang Provincial Colleges and Universities in 2022
- Person in charge: Xinyan Yang; has been filed, the number to be issued. Basic scientific research business cost scientific research project of Heilongjiang Provincial Colleges and Universities in 2022
- Person in charge: Xinyan Yang; has been filed, the number to be issued. Basic scientific research business cost scientific research project of Heilongjiang Provincial Colleges and Universities in 2022
- Person in charge: Xinyan Yang; has been filed, the number to be issued. Basic scientific research business cost scientific research project of Heilongjiang Provincial Colleges and Universities in 2022
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- LPHGRD2022-005 Open Project Program of Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education
- 2022J01531 Natural Science Foundation of Fujian Province
- 2022J01531 Natural Science Foundation of Fujian Province
Collapse
Affiliation(s)
- Yao Cheng
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
- Clinical Laboratory, Beidahuang Industry Group General Hospital, Harbin 150088, Heilongjiang, China
| | - Xinyan Yang
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Lichun Liang
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Hua Xin
- First Affiliated Hospital, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Xinyu Dong
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Weidong Li
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Jie Li
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Xiaoli Guo
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Yue Li
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China
| | - Jian He
- Department of Medical Technology, Collaborative Innovation Center for Translation Medical Testing and Application Technology Zhangzhou, Zhang Zhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Chunbin Zhang
- Department of Medical Technology, Collaborative Innovation Center for Translation Medical Testing and Application Technology Zhangzhou, Zhang Zhou Health Vocational College, Zhangzhou 363000, Fujian Province, China.
| | - Weiqun Wang
- Basic Medical College, Jiamusi University, Jiamusi 154002, Heilongjiang, China.
| |
Collapse
|
30
|
Chauhan R, Tiwari M, Chaudhary A, Sharan Thakur R, Pande V, Das J. Chemokines: A key driver for inflammation in protozoan infection. Int Rev Immunol 2023; 43:211-228. [PMID: 37980574 DOI: 10.1080/08830185.2023.2281566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Chemokines belong to the group of small proteins within the cytokine family having strong chemo-attractant properties. In most cases, the strong immuno-modulatory role of chemokines is crucial for generating the immune response against pathogens in various protozoan diseases. In this review, we have given a brief update on the classification, characterization, homeostasis, transcellular migration, and immuno-modulatory role of chemokines. Here we will evaluate the potential role of chemokines and their regulation in various protozoan diseases. There is a significant direct relationship between parasitic infection and the recruitment of effector cells of the immune response. Chemokines play an indispensable role in mediating several defense mechanisms against infection, such as leukocyte recruitment and the generation of innate and cell-mediated immunity that aids in controlling/eliminating the pathogen. This process is controlled by the chemotactic movement of chemokines induced as a primary host immune response. We have also addressed that chemokine expressions during infection are time-dependent and orchestrated in a systematic pattern that ultimately assists in generating a protective immune response. Taken together, this review provides a systematic understanding of the complexity of chemokines profiles during protozoan disease conditions and the rationale of targeting chemokines for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Mrinalini Tiwari
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi, India
| |
Collapse
|
31
|
Catană MG, Popențiu IA, Văleanu M, Roman-Filip C, Mihăilă RG. IL-1 Beta-A Biomarker for Ischemic Stroke Prognosis and Atherosclerotic Lesions of the Internal Carotid Artery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1790. [PMID: 37893508 PMCID: PMC10608497 DOI: 10.3390/medicina59101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Stroke is a leading cause of mortality and morbidity worldwide. Treatment of this pathology is still under development and its risk factors remain to be determined. Therefore, we aim to determine the role of interleukin-1 beta in atherosclerotic lesions of the internal carotid artery as a risk factor for stroke and the role of this biomarker in stroke prognosis. Materials and Methods: This study enrolled 56 patients diagnosed with ischemic stroke in the anterior vascular territory (AVT) and posterior vascular territory (PVT). All the patients had venous blood collected at admission and 7 days after the onset of the cerebral ischemia in order to determine the plasma concentration of interleukin-1 beta. At the same time, an extracranial carotid ultrasound was performed. Results: The interleukin-1 beta collected at admission was positively correlated with the NIHSS at admission (Pearson index 0.424), and both measurements were correlated with carotid stenosis (Spearmen correlation index of 0.529 and 0.653, respectively). Conclusions: Interleukin-1 beta could be a reliable biomarker for stroke prognosis and the development of atherosclerotic lesions of the internal carotid.
Collapse
Affiliation(s)
- Maria-Gabriela Catană
- Faculty of Medicine, Lucian Blaga University of Sibiu, Izvorului Street, 550169 Sibiu, Romania
- Neurology Department, Emergency County Clinical Hospital Sibiu, Corneliu Coposu bvd, 550245 Sibiu, Romania
| | - Ioan-Adrian Popențiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Izvorului Street, 550169 Sibiu, Romania
- Department of General Surgery, “Alexandru Augustin” Military Emergency Hospital, Victoriei bvd, 550024 Sibiu, Romania
| | - Mădălina Văleanu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 7 Horea Street, 400174 Cluj-Napoca, Romania
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, Izvorului Street, 550169 Sibiu, Romania
- Neurology Department, Emergency County Clinical Hospital Sibiu, Corneliu Coposu bvd, 550245 Sibiu, Romania
| | - Romeo-Gabriel Mihăilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Izvorului Street, 550169 Sibiu, Romania
- Hematology Department, Emergency County Clinical Hospital Sibiu, Sibiu Corneliu Coposu bvd, 550245 Sibiu, Romania
| |
Collapse
|
32
|
Liu WS, Wu LL, Chen CM, Zheng H, Gao J, Lu ZM, Li M. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors. Mater Today Bio 2023; 22:100751. [PMID: 37636983 PMCID: PMC10448342 DOI: 10.1016/j.mtbio.2023.100751] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Tumors are among the leading causes of death worldwide. Cell-derived biomimetic functional materials have shown great promise in the treatment of tumors. These materials are derived from cell membranes, extracellular vesicles and bacterial outer membrane vesicles and may evade immune recognition, improve drug targeting and activate antitumor immunity. However, their use is limited owing to their low drug-loading capacity and complex preparation methods. Liposomes are artificial bionic membranes that have high drug-loading capacity and can be prepared and modified easily. Although they can overcome the disadvantages of cell-derived biomimetic functional materials, they lack natural active targeting ability. Lipids can be hybridized with cell membranes, extracellular vesicles or bacterial outer membrane vesicles to form lipid-hybrid cell-derived biomimetic functional materials. These materials negate the disadvantages of both liposomes and cell-derived components and represent a promising delivery platform in the treatment of tumors. This review focuses on the design strategies, applications and mechanisms of action of lipid-hybrid cell-derived biomimetic functional materials and summarizes the prospects of their further development and the challenges associated with it.
Collapse
Affiliation(s)
- Wen-Shang Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| | - Li-Li Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Cui-Min Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hao Zheng
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zheng-Mao Lu
- Department of Gastrointestinal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, 200011, China
| |
Collapse
|
33
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, Du J, Liu L, Li Y, Bai Y. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis 2023; 14:587. [PMID: 37666813 PMCID: PMC10477351 DOI: 10.1038/s41419-023-06110-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is made up of cells and extracellular matrix (non-cellular component), and cellular components include cancer cells and non-malignant cells such as immune cells and stromal cells. These three types of cells establish complex signals in the body and further influence tumor genesis, development, metastasis and participate in resistance to anti-tumor therapy. It has attracted scholars to study immune cells in TME due to the significant efficacy of immune checkpoint inhibitors (ICI) and chimeric antigen receptor T (CAR-T) in solid tumors and hematologic tumors. After more than 10 years of efforts, the role of immune cells in TME and the strategy of treating tumors based on immune cells have developed rapidly. Moreover, ICI have been recommended by guidelines as first- or second-line treatment strategies in a variety of tumors. At the same time, stromal cells is another major class of cellular components in TME, which also play a very important role in tumor metabolism, growth, metastasis, immune evasion and treatment resistance. Stromal cells can be recruited from neighboring non-cancerous host stromal cells and can also be formed by transdifferentiation from stromal cells to stromal cells or from tumor cells to stromal cells. Moreover, they participate in tumor genesis, development and drug resistance by secreting various factors and exosomes, participating in tumor angiogenesis and tumor metabolism, regulating the immune response in TME and extracellular matrix. However, with the deepening understanding of stromal cells, people found that stromal cells not only have the effect of promoting tumor but also can inhibit tumor in some cases. In this review, we will introduce the origin of stromal cells in TME as well as the role and specific mechanism of stromal cells in tumorigenesis and tumor development and strategies for treatment of tumors based on stromal cells. We will focus on tumor-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), tumor-associated adipocytes (CAAs), tumor endothelial cells (TECs) and pericytes (PCs) in stromal cells.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Liangqiang Wu
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Haiqin Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yixuan Yao
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Qingbiao Yang
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Linlin Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China
| | - Yapeng Li
- Key Laboratory of Special Engineering Plastics Ministry of Education, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China.
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, 130033, Changchun, Jilin, China.
| |
Collapse
|
34
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
35
|
Ferreira JM, dos Santos BRC, de Moura EL, dos Santos ACM, Vencioneck Dutra JC, Figueiredo EVMDS, de Lima Filho JL. Narrowing the Relationship between Human CCR5 Gene Polymorphisms and Chagas Disease: Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:1677. [PMID: 37629534 PMCID: PMC10455882 DOI: 10.3390/life13081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Our aim was to carry out a qualitative and quantitative synthesis of the influence of CCR5 genetic variants on Chagas disease (CD) through a systematic review. A total of 1197 articles were analyzed, and eleven were included in the review. A meta-analysis was conducted along with principal component analyses (PCAs). The polymorphisms found were analyzed using the SNP2TFBS tool to identify possible variants that influence the interaction with gene binding sites. Eleven studied variants were identified: rs2856758, rs2734648, rs1799987, rs1799988, rs41469351, rs1800023, rs1800024, Δ32/rs333, rs3176763, rs3087253 and rs11575815. The studies analyzed were published between 2001 and 2019, conducted in Argentina, Brazil, Spain, Colombia and Venezuela, and included Argentine, Brazilian, Colombian, Peruvian and Venezuelan patients. Eight polymorphisms were subjected to the meta-analysis, of which six were associated with the development of the cardiac form of CD: rs1799987-G/G and G/A in the dominance model and G/G in the recessiveness model; rs2856758-A/G in the codominance model; rs2734648-T/T and T/G in the dominance model; rs1799988-T/T in both the codominance and recessiveness models; rs1800023-G allele and the G/G genotype in the codominance and recessiveness models, and the G/G and G/A genotypes in the dominance model; and rs1800024-T allele. The PCA analyses were able to indicate the relationships between the alleles and the genotypes of the polymorphisms. The SNP2TFBS tool identified rs1800023 as an influencer of the Spi1 transcription factor (p < 0.05). A correlation was established between the alleles associated with the cardiac form of CD in this review, members of the C haplotype of the gene (HHC-TGTG), and the cardiac form of CD.
Collapse
Affiliation(s)
- Jean Moisés Ferreira
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Barbara Rayssa Correia dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Ana Caroline Melo dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Jean Carlos Vencioneck Dutra
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Elaine Virgínia Martins de Sousa Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
36
|
Radtke D, Voehringer D. Granulocyte development, tissue recruitment, and function during allergic inflammation. Eur J Immunol 2023; 53:e2249977. [PMID: 36929502 DOI: 10.1002/eji.202249977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Granulocytes provide a fast innate response to pathogens and allergens. In allergy and anti-helminth immunity, epithelial cells of damaged barriers release alarmins like IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) but also chemokines like CXCL1 or CCL11 to promote cell recruitment and inflammation. In addition, mast cells positioned at barrier tissue sites also quickly release mediators upon specifically sensing antigens through IgE bound to FcεR1 on their surface. Released mediators induce the recruitment of different granulocytes in a timely ordered manner. First, neutrophils extravasate from the blood vasculature to the side of alarmin release and promote a potent inflammatory response. Alarmins and activated mast cells further promote activation of ILC2s and recruitment of basophils and eosinophils, which inhibit neutrophil recruitment and enhance tissue type 2 immunity. In addition to their potent pro-inflammatory effector functions, granulocytes can also contribute to termination and resolution of inflammation. Here, we summarize the development and tissue recruitment of granulocyte subsets, and describe general effector functions and aspects of their increasingly appreciated role in limiting tissue damage. We further discuss targeting approaches for therapeutic interventions in allergic disorders.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Kaffashi K, Dréau D, Nesmelova IV. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Int J Mol Sci 2023; 24:11639. [PMID: 37511398 PMCID: PMC10380872 DOI: 10.3390/ijms241411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a family of signaling proteins that play a crucial role in cell-cell communication, cell migration, and cell trafficking, particularly leukocytes, under both normal and pathological conditions. The oligomerization state of chemokines influences their biological activity. The heterooligomerization occurs when multiple chemokines spatially and temporally co-localize, and it can significantly affect cellular responses. Recently, obligate heterodimers have emerged as tools to investigate the activities and molecular mechanisms of chemokine heterodimers, providing valuable insights into their functional roles. This review focuses on the latest progress in understanding the roles of chemokine heterodimers and their contribution to the functioning of the chemokine network.
Collapse
Affiliation(s)
- Kimia Kaffashi
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Didier Dréau
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina, Charlotte, NC 28223, USA
| |
Collapse
|
38
|
Zhang B, Huang B, Zhang X, Li S, Zhu J, Chen X, Song H, Shang D. PANoptosis-related molecular subtype and prognostic model associated with the immune microenvironment and individualized therapy in pancreatic cancer. Front Oncol 2023; 13:1217654. [PMID: 37519797 PMCID: PMC10382139 DOI: 10.3389/fonc.2023.1217654] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Background PANoptosis is an inflammatory type of programmed cell death regulated by PANopotosome. Mounting evidence has shown that PANoptosis could be involved in cancer pathogenesis and the tumor immune microenvironment. Nevertheless, there have been no studies on the mechanism of PANoptosis on pancreatic cancer (PC) pathogenesis. Methods We downloaded the data on transcriptomic and clinical features of PC patients from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Additionally, the data on copy number variation (CNV), methylation and somatic mutations of genes in 33 types of cancers were obtained from TCGA. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic model using LASSO and Cox regression analyses. Moreover, RT-qPCR was performed to determine the expression of genes involved in the model. Results We obtained 66 PANoptosis-related genes (PANRGs) from published studies. Of these, 24 PC-specific prognosis-related genes were identified. Pan-cancer analysis revealed complex genetic changes, including CNV, methylation, and mutation in PANRGs were identified in various cancers. By consensus clustering analysis, PC patients were classified into two PANoptosis-related patterns: PANcluster A and B. In PANcluster A, the patient prognosis was significantly worse compared to PANcluster B. The CIBERSORT algorithm showed a significant increase in the infiltration of CD8+ T cells, monocytes, and naïve B cells, in patients in PANcluster B. Additionally, the infiltration of macrophages, activated mast cells, and dendritic cells were higher in patients in PANcluster A. Patients in PANcluster A were more sensitive to erlotinib, selumetinib and trametinib, whereas patients in PANcluster B were highly sensitive to irinotecan, oxaliplatin and sorafenib. Moreover, we constructed and validated the PANoptosis-related prognostic model to predict the patient's survival. Finally, the GEPIA and Human Protein Atlas databases were analyzed, and RT-qPCR was performed. Compared to normal tissues, a significant increase in CXCL10 and ITGB6 (associated with the model) expression was observed in PC tissues. Conclusion We first identified the PANoptosis-related molecular subtypes and established a PANoptosis-related prognostic model for predicting the survival of patients with PC. These results would aid in exploring the mechanisms of PANoptosis in PC pathogenesis.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Shuang Li
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Zhu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Yang L, Yan L, Tan W, Zhou X, Yang G, Yu J, Lu Z, Liu Y, Zou L, Li W, Yu L. Liang-Ge-San: a classic traditional Chinese medicine formula, attenuates acute inflammation via targeting GSK3β. Front Pharmacol 2023; 14:1181319. [PMID: 37456759 PMCID: PMC10338930 DOI: 10.3389/fphar.2023.1181319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a serious life-threatening health disorder with high morbidity and mortality rates that burden the world, but there is still a lack of more effective and reliable drug treatment. Liang-Ge-San (LGS) has been shown to have anti-inflammatory effects and is a promising candidate for the treatment of sepsis. However, the anti-sepsis mechanism of LGS has still not been elucidated. In this study, a set of genes related to inflammatory chemotaxis pathways was downloaded from Encyclopedia of Genes and Genomes (KEGG) and integrated with sepsis patient information from the Gene Expression Omnibus (GEO) database to perform differential gene expression analysis. Glycogen synthase kinase-3β (GSK-3β) was found to be the feature gene after these important genes were examined using the three algorithms Random Forest, support vector machine recursive feature elimination (SVM-REF), and least absolute shrinkage and selection operator (LASSO), and then intersected with possible treatment targets of LGS found through the search. Upon evaluation, the receiver operating characteristic (ROC) curve of GSK-3β indicated an important role in the pathogenesis of sepsis. Immune cell infiltration analysis suggested that GSK-3β expression was associated with a variety of immune cells, including neutrophils and monocytes. Next, lipopolysaccharide (LPS)-induced zebrafish inflammation model and macrophage inflammation model was used to validate the mechanism of LGS. We found that LGS could protect zebrafish against a lethal challenge with LPS by down-regulating GSK-3β mRNA expression in a dose-dependent manner, as indicated by a decreased neutrophils infiltration and reduction of inflammatory damage. The upregulated mRNA expression of GSK-3β in LPS-induced stimulated RAW 264.7 cells also showed the same tendency of depression by LGS. Critically, LGS could induce M1 macrophage polarization to M2 through promoting GSK-3β inactivation of phosphorylation. Taken together, we initially showed that anti-septic effects of LGS is related to the inhibition on GSK-3β, both in vitro and in vivo.
Collapse
Affiliation(s)
- Liling Yang
- Department of Pharmacy, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weifu Tan
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Xiangjun Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Guangli Yang
- Department of Central Laboratory, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Liyi Zou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wei Li
- Department of Neonatology, The Binhaiwan Central Hospital of Dongguan, The Dongguan Affiliated Hospital of Medical College of Jinan University, Dongguan, China
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Pawletko K, Jędrzejowska-Szypułka H, Bogus K, Pascale A, Fahmideh F, Marchesi N, Grajoszek A, Gendosz de Carrillo D, Barski JJ. After Ischemic Stroke, Minocycline Promotes a Protective Response in Neurons via the RNA-Binding Protein HuR, with a Positive Impact on Motor Performance. Int J Mol Sci 2023; 24:ijms24119446. [PMID: 37298395 DOI: 10.3390/ijms24119446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ischemic stroke is the most common cause of adult disability and one of the leading causes of death worldwide, with a serious socio-economic impact. In the present work, we used a new thromboembolic model, recently developed in our lab, to induce focal cerebral ischemic (FCI) stroke in rats without reperfusion. We analyzed selected proteins implicated in the inflammatory response (such as the RNA-binding protein HuR, TNFα, and HSP70) via immunohistochemistry and western blotting techniques. The main goal of the study was to evaluate the beneficial effects of a single administration of minocycline at a low dose (1 mg/kg intravenously administered 10 min after FCI) on the neurons localized in the penumbra area after an ischemic stroke. Furthermore, given the importance of understanding the crosstalk between molecular parameters and motor functions following FCI, motor tests were also performed, such as the Horizontal Runway Elevated test, CatWalk™ XT, and Grip Strength test. Our results indicate that a single administration of a low dose of minocycline increased the viability of neurons and reduced the neurodegeneration caused by ischemia, resulting in a significant reduction in the infarct volume. At the molecular level, minocycline resulted in a reduction in TNFα content coupled with an increase in the levels of both HSP70 and HuR proteins in the penumbra area. Considering that both HSP70 and TNF-α transcripts are targeted by HuR, the obtained results suggest that, following FCI, this RNA-binding protein promotes a protective response by shifting its binding towards HSP70 instead of TNF-α. Most importantly, motor tests showed that reduced inflammation in the brain damaged area after minocycline treatment directly translated into a better motor performance, which is a fundamental outcome when searching for new therapeutic options for clinical practice.
Collapse
Affiliation(s)
- Katarzyna Pawletko
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Katarzyna Bogus
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Foroogh Fahmideh
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Nicoletta Marchesi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | - Aniela Grajoszek
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| | - Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Jarosław Jerzy Barski
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland
| |
Collapse
|
41
|
van Aalst EJ, McDonald CJ, Wylie BJ. Cholesterol Biases the Conformational Landscape of the Chemokine Receptor CCR3: A MAS SSNMR-Filtered Molecular Dynamics Study. J Chem Inf Model 2023; 63:3068-3085. [PMID: 37127541 PMCID: PMC10208230 DOI: 10.1021/acs.jcim.2c01546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 05/03/2023]
Abstract
Cholesterol directs the pathway of ligand-induced G protein-coupled receptor (GPCR) signal transduction. The GPCR C-C motif chemokine receptor 3 (CCR3) is the principal chemotactic receptor for eosinophils, with roles in cancer metastasis and autoinflammatory conditions. Recently, we discovered a direct correlation between bilayer cholesterol and increased agonist-triggered CCR3 signal transduction. However, the allosteric molecular mechanism escalating ligand affinity and G protein coupling is unknown. To study cholesterol-guided CCR3 conformational selection, we implement comparative, objective measurement of protein architectures by scoring shifts (COMPASS) to grade model structures from molecular dynamics simulations. In this workflow, we scored predicted chemical shifts against 2-dimensional solid-state NMR 13C-13C correlation spectra of U-15N,13C-CCR3 samples prepared with and without cholesterol. Our analysis of trajectory model structures uncovers that cholesterol induces site-specific conformational restraint of extracellular loop (ECL) 2 and conserved motion in transmembrane helices and ECL3 not observed in simulations of bilayers with only phosphatidylcholine lipids. PyLipID analysis implicates direct cholesterol agency in CCR3 conformational selection and dynamics. Residue-residue contact scoring shows that cholesterol biases the conformational selection of the orthosteric pocket involving Y411.39, Y1133.32, and E2877.39. Lastly, we observe contact remodeling in activation pathway residues centered on the initial transmission switch, Na+ pocket, and R3.50 in the DRY motif. Our observations have unique implications for understanding of CCR3 ligand recognition and specificity and provide mechanistic insight into how cholesterol functions as an allosteric regulator of CCR3 signal transduction.
Collapse
Affiliation(s)
- Evan J. van Aalst
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79415, United States
| | - Corey J. McDonald
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79415, United States
| | - Benjamin J. Wylie
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79415, United States
| |
Collapse
|
42
|
Xu H, Lin S, Zhou Z, Li D, Zhang X, Yu M, Zhao R, Wang Y, Qian J, Li X, Li B, Wei C, Chen K, Yoshimura T, Wang JM, Huang J. New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. Cell Mol Immunol 2023:10.1038/s41423-023-01032-x. [PMID: 37198402 DOI: 10.1038/s41423-023-01032-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Over the past thirty years, the importance of chemokines and their seven-transmembrane G protein-coupled receptors (GPCRs) has been increasingly recognized. Chemokine interactions with receptors trigger signaling pathway activity to form a network fundamental to diverse immune processes, including host homeostasis and responses to disease. Genetic and nongenetic regulation of both the expression and structure of chemokines and receptors conveys chemokine functional heterogeneity. Imbalances and defects in the system contribute to the pathogenesis of a variety of diseases, including cancer, immune and inflammatory diseases, and metabolic and neurological disorders, which render the system a focus of studies aiming to discover therapies and important biomarkers. The integrated view of chemokine biology underpinning divergence and plasticity has provided insights into immune dysfunction in disease states, including, among others, coronavirus disease 2019 (COVID-19). In this review, by reporting the latest advances in chemokine biology and results from analyses of a plethora of sequencing-based datasets, we outline recent advances in the understanding of the genetic variations and nongenetic heterogeneity of chemokines and receptors and provide an updated view of their contribution to the pathophysiological network, focusing on chemokine-mediated inflammation and cancer. Clarification of the molecular basis of dynamic chemokine-receptor interactions will help advance the understanding of chemokine biology to achieve precision medicine application in the clinic.
Collapse
Affiliation(s)
- Hanli Xu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China
| | - Ziyun Zhou
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Duoduo Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xiting Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Muhan Yu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Ruoyi Zhao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Yiheng Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Junru Qian
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Xinyi Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Bohan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Chuhan Wei
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China
| | - Keqiang Chen
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Teizo Yoshimura
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Ji Ming Wang
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, 3 ShangyuanCun, Haidian District, 100044, Beijing, P.R. China.
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, 101149, Beijing, China.
- Laboratory of Cancer Innovation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
| |
Collapse
|
43
|
Park HK, Nguyen LP, Nguyen TU, Cho M, Nguyen HT, Hurh S, Kim HR, Seong JY, Lee CS, Ham BJ, Hwang JI. The N-terminus of CXCR4 splice variants determines expression and functional properties. PLoS One 2023; 18:e0283015. [PMID: 37141381 PMCID: PMC10159351 DOI: 10.1371/journal.pone.0283015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 05/06/2023] Open
Abstract
C-X-C motif chemokine ligand 12(CXCL12) is an essential chemokine for organ development and homeostasis in multiple tissues. Its receptor, C-X-C chemokine receptor type 4(CXCR4), is expressed on the surface of target cells. The chemokine and receptor are expressed almost ubiquitously in human tissues and cells throughout life, and abnormal expression of CXCL12 and CXCR4 is observed in pathological conditions, such as inflammation and cancer. CXCR4 is reportedly translated into five splicing variants of different lengths, which each have different amino acids in the N-terminus. As the N-terminus is the first recognition site for chemokines, CXCR4 variants may respond differently to CXCL12. Despite these differences, the molecular and functional properties of CXCR4 variants have not been thoroughly described or compared. Here, we explored the expression of CXCR4 variants in cell lines and analyzed their roles in cellular responses using biochemical approaches. RT-PCR revealed that most cell lines express more than one CXCR4 variant. When expressed in HEK293 cells, the CXCR4 variants differed in protein expression efficiency and cell surface localization. Although variant 2 demonstrated the strongest expression and cell surface localization, variants 1, 3, and 5 also mediated chemokine signaling and induced cellular responses. Our results demonstrate that the N-terminal sequences of each CXCR4 variant determine the expression of the receptor and affect ligand recognition. Functional analyses revealed that CXCR4 variants may also affect each other or interact during CXCL12-stimulated cellular responses. Altogether, our results suggest that CXCR4 variants may have distinct functional roles that warrant additional investigation and could contribute to future development of novel drug interventions.
Collapse
Affiliation(s)
- Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Thai Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minyeong Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Nowak R, Trzeciak-Ryczek A, Ciechanowicz A, Brodkiewicz A, Urasińska E, Kostrzewa-Nowak D. The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells 2023; 12:cells12081119. [PMID: 37190028 DOI: 10.3390/cells12081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to assess the post-effort transcriptional changes of selected genes encoding receptors for chemokines and interleukins in young, physically active men to better understand the immunomodulatory effect of physical activity. The participants, aged 16-21 years, performed physical exercise tasks of either a maximal multistage 20 m shuttle-run test (beep test) or a repeated speed ability test. The expression of selected genes encoding receptors for chemokines and interleukins in nucleated peripheral blood cells was determined using RT-qPCR. Aerobic endurance activity was a positive stimulant that induced increased expression of CCR1 and CCR2 genes following lactate recovery, while the maximum expression of CCR5 was found immediately post-effort. The increase in the expression of inflammation-related genes encoding chemokine receptors triggered by aerobic effort strengthens the theory that physical effort induces sterile inflammation. Different profiles of studied chemokine receptor gene expression induced by short-term anaerobic effort suggest that not all types of physical effort activate the same immunological pathways. A significant increase in IL17RA gene expression after the beep test confirmed the hypothesis that cells expressing this receptor, including Th17 lymphocyte subsets, can be involved in the creation of an immune response after endurance efforts.
Collapse
Affiliation(s)
- Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Child Nephrology, Dialysotherapy and Management of Acute Poisoning, Pomeranian Medical University, 4 Maczna St., 70-204 Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| |
Collapse
|
45
|
Ruixin S, Yifan L, Chuanlong W, Min Z, Hong L, Guoxiu D, Zhengyang L, Yansha S, Yiwei D, Jingwen S, Mingliang F, Bizhi S, Hua J, Zonghai L. Expressing IL-15/IL-18 and CXCR2 improve infiltration and survival of EGFRvIII-targeting CAR-T cells in breast cancer. Biochem Pharmacol 2023; 212:115536. [PMID: 37028461 DOI: 10.1016/j.bcp.2023.115536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Previously, we have generated EGFRvIII-targeting CAR-T cells and brought hope for treating advanced breast cancer. However, EGFRvIII-targeting CAR-T cells were defined limited anti-tumor efficacy, which might be due to reduced accumulation, persistence of therapeutic T cells in tumor site of breast cancer. CXCLs were highly expressed in tumor environment of breast cancer and CXCR2 is the main receptor for CXCLs. Here, CXCR2 could significantly improve the trafficking and tumor specific accumulation of CAR-T cells both in vivo and in vitro. However, the anti-tumor effect of CXCR2 CAR-T cells were weaken which might be results of the apoptosis of T cells. Cytokines could stimulate Tcell proliferation, such as interleukin (IL)-15 and IL-18. Then, we generated CXCR2 CAR with synthetic IL-15 or IL-18 production. Co-expressing IL-15 or IL-18 could significantly suppress the exhaustion and apoptosis of T cells and enhanced the anti-tumor activity of CXCR2 CAR-T cells in vivo. Further, coexpression IL-15 or IL-18 in CXCR2 CAR-T cells did not cause toxicity. These findings provide a potential therapy strategy of co-expression IL-15 or IL-18 in CXCR2 CAR-T cells for the treatment of advancing breast cancer in the future.
Collapse
|
46
|
Crawford KS, Volkman BF. Prospects for targeting ACKR1 in cancer and other diseases. Front Immunol 2023; 14:1111960. [PMID: 37006247 PMCID: PMC10050359 DOI: 10.3389/fimmu.2023.1111960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The chemokine network is comprised of a family of signal proteins that encode messages for cells displaying chemokine G-protein coupled receptors (GPCRs). The diversity of effects on cellular functions, particularly directed migration of different cell types to sites of inflammation, is enabled by different combinations of chemokines activating signal transduction cascades on cells displaying a combination of receptors. These signals can contribute to autoimmune disease or be hijacked in cancer to stimulate cancer progression and metastatic migration. Thus far, three chemokine receptor-targeting drugs have been approved for clinical use: Maraviroc for HIV, Plerixafor for hematopoietic stem cell mobilization, and Mogalizumab for cutaneous T-cell lymphoma. Numerous compounds have been developed to inhibit specific chemokine GPCRs, but the complexity of the chemokine network has precluded more widespread clinical implementation, particularly as anti-neoplastic and anti-metastatic agents. Drugs that block a single signaling axis may be rendered ineffective or cause adverse reactions because each chemokine and receptor often have multiple context-specific functions. The chemokine network is tightly regulated at multiple levels, including by atypical chemokine receptors (ACKRs) that control chemokine gradients independently of G-proteins. ACKRs have numerous functions linked to chemokine immobilization, movement through and within cells, and recruitment of alternate effectors like β-arrestins. Atypical chemokine receptor 1 (ACKR1), previously known as the Duffy antigen receptor for chemokines (DARC), is a key regulator that binds chemokines involved in inflammatory responses and cancer proliferation, angiogenesis, and metastasis. Understanding more about ACKR1 in different diseases and populations may contribute to the development of therapeutic strategies targeting the chemokine network.
Collapse
Affiliation(s)
- Kyler S. Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | | |
Collapse
|
47
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
48
|
Liu H, Bai Y, Li F, Tian Z. Combined serum CXCL8, CXCL9 and CXCL13 tests for the prediction of microvascular invasion in hepatocellular carcinoma. Biomark Med 2023; 17:265-272. [PMID: 37218545 DOI: 10.2217/bmm-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Aim: This work is to explore the predictive and diagnostic value of chemokine C-X-C motif ligand 8 (CXCL8), CXCL9 and CXCL13 combined detections for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) patients. Materials & methods: A total of 82 HCC patients with MVI were recruited as the MVI group and 154 patients with non MVI were recruited as the non MVI group. Results: In HCC patients with MVI, CXCL8, CXCL9, CXCL13 levels were significantly elevated. Child-Pugh scores and serum α-fetoprotein level had positive correlation with CXCL8, CXCL9 and CXCL13 levels. The serum levels of CXCL8, 9 and 13 were effective in predicting MVI in HCC patients. Conclusion: CXCL8, CXCL9 and CXCL13 levels in HCC patients are valuable parameters in the prediction of MVI.
Collapse
Affiliation(s)
- Hong Liu
- Department of General Surgery, Fifth People's Hospital, No. 1215 Guangrui Road, Liangxi District, Wuxi, Jiangsu, 214007, China
| | - Yang Bai
- Department of Hepatobiliary Surgery, the 904th Hospital of Joint Logistic Support Force of PLA, No. 101 Xingyuan North Road, Wuxi, Jiangsu, 214044, China
| | - Fuli Li
- Department of General Surgery, Fifth People's Hospital, No. 1215 Guangrui Road, Liangxi District, Wuxi, Jiangsu, 214007, China
| | - Zhiqiang Tian
- Department of General Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
49
|
Dragan P, Merski M, Wiśniewski S, Sanmukh SG, Latek D. Chemokine Receptors-Structure-Based Virtual Screening Assisted by Machine Learning. Pharmaceutics 2023; 15:pharmaceutics15020516. [PMID: 36839838 PMCID: PMC9965785 DOI: 10.3390/pharmaceutics15020516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.
Collapse
|
50
|
Cao Q, Liu D, Chen Z, Wang M, Wu M, Zeng G. Upregulated X-C motif chemokine ligand 2 (XCL2) is associated with poor prognosis and increased immune infiltration in clear cell renal cell carcinoma. Cell Signal 2023; 102:110556. [PMID: 36503163 DOI: 10.1016/j.cellsig.2022.110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most popular malignant carcinomas in the genitourinary system. As a novel tumor-related gene, X-C Motif Chemokine Ligand 2 (XCL2) was up-regulated in ccRCC. The current study aims to reveal the functional activity of XCL2 in ccRCC. METHODS The transcriptome profiling, clinical parameters, and simple nucleotide variation profiles of ccRCC samples were obtained from the Cancer Genome Atlas (TCGA) database. The survival analysis, multivariate/univariate Cox analysis, correlation analysis, gene set enrichment analysis (GSEA), and tumor mutation burden (TMB) analysis were performed. Next, immune cell infiltration and immune functions were analyzed. Finally, the functions of XCL2 were investigated in Caki-1 and 786-O cells. RESULTS Upregulated XCL2 was associated with worse overall survival of ccRCC and correlated to age, grade, stage, and T stage. Age, grade, and XCL2 were independent prognostic factors. Significant enrichment in apoptosis, DNA replication, and immune response was demonstrated by GSEA. XCL2 was not only tightly associated with immune cell infiltration, but also significantly linked with several immune functions. Moreover, patients, who had higher XCL2 expression, owned higher levels of TMB. Interestingly, XCL2 was positively correlated with common immune checkpoints. In vitro, XCL2 could inhibit apoptosis, and promote proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of Caki-1 and 786-O cells. CONCLUSIONS In general, the current study suggested that XCL2 may participate in the progression of ccRCC. Importantly, XCL2 may be a potential new target of immunotherapy.
Collapse
Affiliation(s)
- Qingqiong Cao
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|