1
|
Xu M, Li L, Xu B, Yuan S, Zheng Q, Sun W. Observations on the efficacy of edaravone dexborneol in preventing post-stroke depression and its inflammatory mechanism: a prospective, randomized, control trial. Front Neurosci 2024; 18:1451060. [PMID: 39315079 PMCID: PMC11417031 DOI: 10.3389/fnins.2024.1451060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This study aimed to observe the effect of edaravone dexborneol (EDB) on the incidence of early post-stroke depression (PSD) and explore its inflammatory mechanisms. Methods A prospective, randomized controlled study was conducted from January 2022 to June 2023, involving patients with acute ischemic stroke (AIS) at the Neurology Department of the Third Affiliated Hospital of Beijing University of Traditional Chinese Medicine. The control group received routine treatment, while the experimental group received routine combined EDB treatment. The main outcome measures included PSD incidence, Patient Health Questionnaire (PHQ-9) and Hamilton Depression Scale (HAMD) scores on days 14 and 30, and inflammatory factor levels on day 14. Results A total of 93 patients were included in the study, 51 in the experimental group and 42 in the control group. On day 14, the PSD incidence was 13.7% in the experimental group, lower than 31.0% in the control group (95%CI 0.127-0.996; p = 0.044). Compared to the control group, the experimental group showed significantly lower concentrations of pro-inflammatory cytokines IL-1β (95%CI 3.353-5.184), IL-6 (95%CI 2.694-3.426), TNF-α (95%CI 4.985-12.196), IFN-γ (95%CI 0.163-0.451), MCP-1 (95%CI 0.335-0.787), IL-17A (95%CI 0.543-1.024), and IL-23p19 (95%CI 1.677-1.959) (all p < 0.001), and higher levels of anti-inflammatory cytokines IL-4 (95%CI -1.087 to -0.941), IL-10 (95%CI -6.125 to -1.662), and IL-13 (95%CI -6.078 to -2.953) (all p ≤ 0.001). On day 30, the PSD incidence in the experimental group was 15.7%, lower than 40.5% in the control group (95%CI 0.103-0.725; p = 0.007). Compared with the control group, the experimental group had lower PHQ-9 scores on day 14 (95%CI 0.034-1.577; p = 0.041) and day 30 (95%CI 0.018-1.573; p = 0.045), and also had lower HAMD scores on day 14 (95% CI 0.281-2.856; p = 0.018) and day 30 (95% CI 0.647-3.482; p = 0.005). Conclusion EDB could reduce the incidence of early PSD, reduce pro-inflammatory cytokine levels, and elevate anti-inflammatory cytokine levels, which was possibly related to the anti-inflammatory mechanism of EDB. Clinical trial registration http://www.chictr.org.cn/, identifier [ChiCTR2300067750].
Collapse
Affiliation(s)
- Mingyuan Xu
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lan Li
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Bu Xu
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shanfang Yuan
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qin Zheng
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjun Sun
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Yang Y, Wang F, Fang M, Yao X, Xu L, Liu Y, Liu Y, Liang D, Zeng K, Li N, Hou Y. Tamarixetin ameliorates cerebral ischemia-reperfusion injury via suppressing nicotinamide adenine dinucleotide phosphate oxidase 2/nucleotide-binding oligomerization domain like receptor family pyrin domain-containing 3 inflammasome activation. Phytother Res 2024; 38:4286-4306. [PMID: 38973314 DOI: 10.1002/ptr.8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 07/09/2024]
Abstract
Tamarixetin, a natural dietary flavone, exhibits remarkable potential for the treatment of ischemic stroke. The present article aimed to explore the impact of tamarixetin on ischemic stroke and elucidate the underlying mechanisms. Effects of tamarixetin on ischemic stroke were evaluated in rats using the middle cerebral artery occlusion and reperfusion (MCAO/R) model, by assessing the neurological deficit scores, brain water content, brain infraction, and neuronal damage. The levels of proinflammatory cytokines, NLRP3 inflammasome activation, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were measured in MCAO/R rats and lipopolysaccharide-stimulated cells. Tamarixetin administration improved the neurological dysfunction and neuronal loss in MCAO/R rats. In addition, tamarixetin reduced microglial hyperactivation and proinflammatory cytokines expression in vivo and in vitro. Tamarixetin attenuated NF-κB p65 phosphorylation and promoter activity, reduced NLRP3 expression and caspase-1 cleavage, and downregulated IL-1β and IL-18 secretions to suppress NLRP3 inflammasome activation. The levels of superoxide anion, hydrogen peroxide, and ROS were also suppressed by tamarixetin. The downregulation of NADP+ and NADPH levels, and gp91phox expression indicated the ameliorative effects of tamarixetin on NADPH oxidase activation. In the gp91phox knockdown cells treated with lipopolysaccharide, the effects of tamarixetin on NADPH oxidase activation, ROS generation, and NLRP3 inflammasome activation were diminished. Moreover, tamarixetin protects neurons against microglial hyperactivation in vitro. Our findings support the potential of tamarixetin as a therapeutic agent for ischemic stroke, and its mechanism of action involves the inhibition of NADPH oxidase-NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
- College of Information Science and Engineering, Northeastern University, Shenyang, China
| | - Feng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
3
|
Maida CD, Norrito RL, Rizzica S, Mazzola M, Scarantino ER, Tuttolomondo A. Molecular Pathogenesis of Ischemic and Hemorrhagic Strokes: Background and Therapeutic Approaches. Int J Mol Sci 2024; 25:6297. [PMID: 38928006 PMCID: PMC11203482 DOI: 10.3390/ijms25126297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke represents one of the neurological diseases most responsible for death and permanent disability in the world. Different factors, such as thrombus, emboli and atherosclerosis, take part in the intricate pathophysiology of stroke. Comprehending the molecular processes involved in this mechanism is crucial to developing new, specific and efficient treatments. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress and neuroinflammation. Furthermore, non-coding RNAs (ncRNAs) are critical in pathophysiology and recovery after cerebral ischemia. ncRNAs, particularly microRNAs, and long non-coding RNAs (lncRNAs) are essential for angiogenesis and neuroprotection, and they have been suggested to be therapeutic, diagnostic and prognostic tools in cerebrovascular diseases, including stroke. This review summarizes the intricate molecular mechanisms underlying ischemic and hemorrhagic stroke and delves into the function of miRNAs in the development of brain damage. Furthermore, we will analyze new perspectives on treatment based on molecular mechanisms in addition to traditional stroke therapies.
Collapse
Affiliation(s)
- Carlo Domenico Maida
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
- Molecular and Clinical Medicine Ph.D. Programme, University of Palermo, 90133 Palermo, Italy
| | - Rosario Luca Norrito
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Salvatore Rizzica
- Department of Internal Medicine, S. Elia Hospital, 93100 Caltanissetta, Italy;
| | - Marco Mazzola
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| | - Elisa Rita Scarantino
- Division of Geriatric and Intensive Care Medicine, Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy;
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro”, University of Palermo, 90133 Palermo, Italy; (R.L.N.); (M.M.); (A.T.)
| |
Collapse
|
4
|
Calado CMSDS, Manhães-de-Castro R, da Conceição Pereira S, da Silva Souza V, Barbosa LNF, Dos Santos Junior OH, Lagranha CJ, Juárez PAR, Torner L, Guzmán-Quevedo O, Toscano AE. Resveratrol Reduces Neuroinflammation and Hippocampal Microglia Activation and Protects Against Impairment of Memory and Anxiety-Like Behavior in Experimental Cerebral Palsy. Mol Neurobiol 2024; 61:3619-3640. [PMID: 38001357 DOI: 10.1007/s12035-023-03772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Cerebral palsy (CP) is a neurodevelopmental disorder characterized by motor and postural impairments. However, early brain injury can promote deleterious effects on the hippocampus, impairing memory. This study aims to investigate the effects of resveratrol treatment on memory, anxiety-like behavior, and neuroinflammation markers in rats with CP. Male Wistar rats were subjected to perinatal anoxia (P0-P1) and sensory-motor restriction (P2-P28). They were treated with resveratrol (10 mg/kg, 0.1 ml/100 g) or saline from P3-P21, being divided into four experimental groups: CS (n = 15), CR (n = 15), CPS (n = 15), and CPR (n = 15). They were evaluated in the tests of novel object recognition (NORT), T-Maze, Light-Dark Box (LDB), and Elevated Plus Maze (EPM). Compared to the CS group, the CPS group has demonstrated a reduced discrimination index on the NORT (p < 0.0001) and alternation on the T-Maze (p < 0.01). In addition, the CPS group showed an increase in permanence time on the dark side in LDB (p < 0.0001) and on the close arms of the EPM (p < 0.001). The CPR group demonstrated an increase in the object discrimination index (p < 0.001), on the alternation (p < 0.001), on the permanence time on the light side (p < 0.0001), and on the open arms (p < 0.001). The CPR group showed a reduction in gene expression of IL-6 (p = 0.0175) and TNF-α (p = 0.0007) and an increase in Creb-1 levels (p = 0.0020). The CPS group showed an increase in the activated microglia and a reduction in cell proliferation in the hippocampus, while CPR animals showed a reduction of activated microglia and an increase in cell proliferation. These results demonstrate promising effects of resveratrol in cerebral palsy behavior impairment through reduced neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Caio Matheus Santos da Silva Calado
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Sabrina da Conceição Pereira
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Vanessa da Silva Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Leticia Nicoly Ferreira Barbosa
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Osmar Henrique Dos Santos Junior
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Claudia Jacques Lagranha
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Graduate Program in Biochemistry and Physiology, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro Alberto Romero Juárez
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Experimental Neuronutrition and Food Engineering, Tecnológico Nacional de México (TECNM), Instituto Tecnológico Superior de Tacámbaro, 61651, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, 58330, Morelia, Michoacán, Mexico
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Rua Do Alto Do Reservatório S/N, Bela Vista, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| |
Collapse
|
5
|
Sørensen NV, Hasseldam H, Johansen FF, Kristiansen U, Overgaard K, Klingenberg Iversen H, Rasmussen RS. Long-term immune cell profiling in stroke patients with or without infections. Int J Neurosci 2024; 134:197-205. [PMID: 35791087 DOI: 10.1080/00207454.2022.2098733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Infections are frequent complications in acute ischemic stroke and may be caused by an altered immune response influencing brain damage. We compared long-term immune responses in stroke patients with or without infections during the recovery period by performing a long-term profiling of clinically relevant inflammatory parameters from stroke onset until day 49. MATERIALS AND METHODS Thirty-four stroke patients were retrospectively included and divided into two groups depending on infection status. Group 1 had no infections (N = 17) and group 2 had post-admission infection (N = 17). The patients were evaluated carefully for infections and evolution of the peripheral inflammatory response. Neutrophils, monocytes, lymphocytes, total leukocytes and C-reactive protein were evaluated in relation to the occurrence and development of infections. In both patient groups, an acute boost in neutrophils and monocytes were observed whereas the opposite was true for lymphocytes. RESULTS In Group 1, neutrophils and monocytes approached normal levels after 20-30 days, but remained elevated in Group 2. We found an increase in neutrophils (p = 0.01) and leukocytes (p < 0.01) as well as C-reactive protein (p < 0.01) among infected patients. Lymphocytes remained depressed in Group 2, while Group 1 slowly approached baseline levels. In both groups, CRP levels initially increased with a slow return to baseline levels. From day 0 to 49 after stroke, uninfected patients generally experienced a decline in leukocytes, neutrophils and monocytes (all p < 0.05), while no similar changes happened among infected patients. CONCLUSIONS Our study provides an overview of general immune cell kinetics after stroke related to infection status. Immune cell numbers were severely disturbed for weeks after the insult, independent of infection status, although infected patients achieved the highest cell counts of neutrophils, leukocytes and for C-reactive protein. The sustained depression of lymphocytes, especially and paradoxically among infected patients, warrants future studies into the mechanisms behind this, with potential for future therapies aimed at restoring normal immunity and thereby improving patient outcome.
Collapse
Affiliation(s)
| | - Henrik Hasseldam
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Karsten Overgaard
- Department of Neurology, University Hospital of Copenhagen, Herlev, Denmark
| | | | | |
Collapse
|
6
|
Zhao M, Xian W, Liu W, Chen D, Wang S, Cao J. Maresin1 alleviates neuroinflammation by inhibiting caspase-3/ GSDME-mediated pyroptosis in mice cerebral ischemia-reperfusion model. J Stroke Cerebrovasc Dis 2024; 33:107789. [PMID: 38782167 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were detected by RT-PCR. RESULTS Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1β, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1β and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.
Collapse
Affiliation(s)
- Maoji Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China.
| |
Collapse
|
7
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
8
|
Liang Y, Chen L, Huang J, Lan Z, Xia S, Yang H, Bao X, Yu X, Fan Y, Xu Y, Zhu X, Jin J. Neuroprotective effects of Aucubin against cerebral ischemia-reperfusion injury. Int Immunopharmacol 2024; 129:111648. [PMID: 38335656 DOI: 10.1016/j.intimp.2024.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
AIMS To study the role of Aucubin (AU) in cerebral ischemia-reperfusion injury and investigate the potential mechanisms. METHODS For the in vitro experiment, primary microglia were cultured and stimulated by Lipopolysaccharides (LPS) and treated with AU. Male C57/BL6J mice were used and middle cerebral artery occlusion (MCAO) model was performed to induce cerebral ischemia-reperfusion injury. For the short-term effects, mice administrated with AU (40 mg/kg) for 3 days after MCAO were evaluated for the infarct volume and neurological deficits. The neuroinflammatory factors and microglia activation were determined by Real-time PCR, western blot and immunofluorescence staining. For the long-term effects, MCAO mice were injected daily with AU (5 mg/kg or 10 mg/kg) for 28 days. Behavior tests were used to assess the neurological deficits of MCAO mice, and white matter integrity was determined by myelin basic protein (MBP) staining and black-gold staining. RESULTS AU suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release, and downregulated the NF-κB and MAPK pathways in primary microglia. In addition, AU attenuated ischemic injury and inhibited the neuro-inflammatory response in MCAO mice. Moreover, AU induced prolonged improvements in sensorimotor function and memory function following MCAO, and preserved white matter integrity in the long-term experiments. CONCLUSIONS AU protected against ischemic injury, which might be correlated with the downregulation of NF-κB and MAPK signaling pathways. Furthermore, AU alleviated cognitive impairment after stroke and restored white matter integrity. Our data indicated that AU might be a potential compound for the treatment of stroke and post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Ying Liang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Liqiu Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jing Huang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Xi Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yingao Fan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| | - Jiali Jin
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing 210008, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing 210008, China; Nanjing Neurology Medical Center, Nanjing 210008, China.
| |
Collapse
|
9
|
Zhang Y, Yang H, Hou S, Xia Y, Wang YQ. Influence of the brain‑gut axis on neuroinflammation in cerebral ischemia‑reperfusion injury (Review). Int J Mol Med 2024; 53:30. [PMID: 38299236 PMCID: PMC10852013 DOI: 10.3892/ijmm.2024.5354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
Stroke, a debilitating cerebrovascular ailment, poses significant threats to human life and health. The intricate interplay between the gut‑brain‑microbiota axis (GBMA) and cerebral ischemia‑reperfusion has increasingly become a focal point of scientific exploration, emerging as a pivotal research avenue in stroke pathophysiology. In the present review, the authors delved into the nexus between the GBMA and neuroinflammation observed post‑stroke. The analysis underscored the pivotal roles of histone deacetylase 3 and neutrophil extracellular traps subsequent to stroke incidents. The influence of gut microbial compositions and their metabolites, notably short‑chain fatty acids and trimethylamine N‑oxide, on neuroinflammatory processes, was further elucidated. The involvement of immune cells, especially regulatory T‑cells, and the intricate signaling cascades including cyclic GMP‑AMP synthase/stimulator of interferon genes/Toll‑like receptor, further emphasized the complex regulatory mechanisms of GBMA in cerebral ischemia/reperfusion injury (CI/RI). Collectively, the present review offered a comprehensive perspective on the metabolic, immune and inflammatory modulations orchestrated by GBMA, augmenting the understanding of its role in neuroinflammation following CI/RI.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hang Yang
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Shuai Hou
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Yulei Xia
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Yan-Qiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
10
|
Chen Y, Zhang C, Zhao L, Chen R, Zhang P, Li J, Zhang X, Zhang X. Eriocalyxin B alleviated ischemic cerebral injury by limiting microglia-mediated excessive neuroinflammation in mice. Exp Anim 2024; 73:124-135. [PMID: 37839867 PMCID: PMC10877152 DOI: 10.1538/expanim.23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1β, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanqiang Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Liming Zhao
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Junxia Li
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xueping Zhang
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
11
|
Qian Y, Li X, Li G, Liu H, Li Q, Liu X, Zhang Y, He Z, Zhao Y, Fan H. Astrocyte-Derived Exosomal miR-148a-3p Suppresses Neuroinflammation and Restores Neurological Function in Traumatic Brain Injury by Regulating the Microglial Phenotype. eNeuro 2024; 11:ENEURO.0336-23.2024. [PMID: 38272675 PMCID: PMC10860656 DOI: 10.1523/eneuro.0336-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/27/2024] Open
Abstract
Interactions between astrocytes and microglia play an important role in the regeneration and repair of traumatic brain injury (TBI), and exosomes are involved in cell-cell interactions. A TBI model was constructed in rats. Brain extract (Ext) was isolated 1 d after TBI. Astrocyte-derived exosomes were obtained by coculturing Ext with primary astrocytes, and the morphology of exosomes was observed by electron microscopy. The isolated exosomes were cocultured with microglia to observe phenotypic changes in M1 and M2 markers. Aberrant RNA expression was detected in necrotic brain tissue and edematous brain tissue. The role of miR-148a-3p in regulating microglial phenotype was explored by knocking down or overexpressing miR-148a-3p. Finally, the effect of miR-148a-3p on TBI was studied in a rat TBI model. Astrocyte-derived exosomes stimulated by Ext promoted the transition of microglia from the M1 phenotype to the M2 phenotype. MiR-148a-3p was highly expressed in TBI. Transfecting miR-148a-3p promoted the transition of microglia from the M1 phenotype to the M2 phenotype and inhibited the lipopolysaccharide-induced inflammatory response in pre-microglia. In a rat TBI model, miR-148a-3p significantly improved the modified neurological severity score and attenuated brain injury, which promoted the transition of microglia from the M1 phenotype to the M2 phenotype. MiR-148a-3p alleviated TBI by inhibiting the nuclear factor κB pathway. Astrocyte-derived exosomal miR-148a-3p regulates the microglial phenotype, inhibits neuroinflammation, and restores neurological function in TBI. These results provide new potential targets for the treatment of TBI.
Collapse
Affiliation(s)
- Yan Qian
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Xin Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Guiliang Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Huali Liu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Qiaofen Li
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Xia Liu
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Yang Zhang
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Zongying He
- Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan 655000, China
| | - Ying Zhao
- Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| | - Hong Fan
- Rehabilitation Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
| |
Collapse
|
12
|
Fu R, Zhao L, Guo Y, Qin X, Xu W, Cheng X, Zhang Y, Xu S. AIM2 inflammasome: A potential therapeutic target in ischemic stroke. Clin Immunol 2024; 259:109881. [PMID: 38142900 DOI: 10.1016/j.clim.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoli Qin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhe Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xueqi Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
13
|
Islam R, Ahlfors JE, Siu R, Noman H, Akbary R, Morshead CM. Inhibition of Apoptosis in a Model of Ischemic Stroke Leads to Enhanced Cell Survival, Endogenous Neural Precursor Cell Activation and Improved Functional Outcomes. Int J Mol Sci 2024; 25:1786. [PMID: 38339065 PMCID: PMC10855341 DOI: 10.3390/ijms25031786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Stroke results in neuronal cell death, which causes long-term disabilities in adults. Treatment options are limited and rely on a narrow window of opportunity. Apoptosis inhibitors demonstrate efficacy in improving neuronal cell survival in animal models of stroke. However, many inhibitors non-specifically target apoptosis pathways and high doses are needed for treatment. We explored the use of a novel caspase-3/7 inhibitor, New World Laboratories (NWL) 283, with a lower IC50 than current caspase-3/7 inhibitors. We performed in vitro and in vivo assays to determine the efficacy of NWL283 in modulating cell death in a preclinical model of stroke. In vitro and in vivo assays show that NWL283 enhances cell survival of neural precursor cells. Delivery of NWL283 following stroke enhances endogenous NPC migration and leads to increased neurogenesis in the stroke-injured cortex. Furthermore, acute NWL283 administration is neuroprotective at the stroke injury site, decreasing neuronal cell death and reducing microglia activation. Coincident with NWL283 delivery for 8 days, stroke-injured mice exhibited improved functional outcomes that persisted following cessation of the drug. Therefore, we propose that NWL283 is a promising therapeutic warranting further investigation to enhance stroke recovery.
Collapse
Affiliation(s)
- Rehnuma Islam
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Jan-Eric Ahlfors
- New World Laboratories, 275 Boul. Armand-Frappier, Laval, QC H7V 4A7, Canada
| | - Ricky Siu
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Humna Noman
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
| | - Roya Akbary
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
| | - Cindi M. Morshead
- Institute of Medical Science, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3E1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
14
|
Li XN, Shang NY, Kang YY, Sheng N, Lan JQ, Tang JS, Wu L, Zhang JL, Peng Y. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway. Acta Pharmacol Sin 2024; 45:248-267. [PMID: 37833536 PMCID: PMC10789749 DOI: 10.1038/s41401-023-01177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
There are few effective and safe neuroprotective agents for the treatment of ischemic stroke currently. Caffeic acid is a phenolic acid that widely exists in a number of plant species. Previous studies show that caffeic acid ameliorates brain injury in rats after cerebral ischemia/reperfusion. In this study we explored the protective mechanisms of caffeic acid against oxidative stress and ferroptosis in permanent cerebral ischemia. Ischemia stroke was induced on rats by permanent middle cerebral artery occlusion (pMCAO). Caffeic acid (0.4, 2, 10 mg·kg-1·d-1, i.g.) was administered to the rats for 3 consecutive days before or after the surgery. We showed that either pre-pMCAO or post-pMCAO administration of caffeic acid (2 mg·kg-1·d-1) effectively reduced the infarct volume and improved neurological outcome. The therapeutic time window could last to 2 h after pMCAO. We found that caffeic acid administration significantly reduced oxidative damage as well as neuroinflammation, and enhanced antioxidant capacity in pMCAO rat brain. We further demonstrated that caffeic acid down-regulated TFR1 and ACSL4, and up-regulated glutathione production through Nrf2 signaling pathway to resist ferroptosis in pMCAO rat brain and in oxygen glucose deprivation/reoxygenation (OGD/R)-treated SK-N-SH cells in vitro. Application of ML385, an Nrf2 inhibitor, blocked the neuroprotective effects of caffeic acid in both in vivo and in vitro models, evidenced by excessive accumulation of iron ions and inactivation of the ferroptosis defense system. In conclusion, caffeic acid inhibits oxidative stress-mediated neuronal death in pMCAO rat brain by regulating ferroptosis via Nrf2 signaling pathway. Caffeic acid might serve as a potential treatment to relieve brain injury after cerebral ischemia. Caffeic acid significantly attenuated cerebral ischemic injury and resisted ferroptosis both in vivo and in vitro. The regulation of Nrf2 by caffeic acid initiated the transcription of downstream target genes, which were shown to be anti-inflammatory, antioxidative and antiferroptotic. The effects of caffeic acid on neuroinflammation and ferroptosis in cerebral ischemia were explored in a primary microglia-neuron coculture system. Caffeic acid played a role in reducing neuroinflammation and resisting ferroptosis through the Nrf2 signaling pathway, which further suggested that caffeic acid might be a potential therapeutic method for alleviating brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Xin-Nan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Nian-Ying Shang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yu-Ying Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ning Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jia-Qi Lan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jing-Shu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Kuo HC, Chen KD, Li PC. Molecular Hydrogen: Emerging Treatment for Stroke Management. Chem Res Toxicol 2023; 36:1864-1871. [PMID: 37988743 DOI: 10.1021/acs.chemrestox.3c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Ischemic stroke is a major cause of death and disability worldwide. However, only intravenous thrombolysis using mechanical thrombectomy or tissue plasminogen activator is considered an effective and approved treatment. Molecular hydrogen is an emerging therapeutic agent and has recently become a research focus. Molecular hydrogen is involved in antioxidative, anti-inflammatory, and antiapoptotic functions in normal physical processes and may play an important role in stroke management; it has been evaluated in numerous preclinical and clinical studies in several administration formats, including inhalation of hydrogen gas, intravenous or intraperitoneal injection of hydrogen-enriched solution, or drinking of hydrogen-enriched water. In addition to investigation of the underlying mechanisms, the safety and efficacy of using molecular hydrogen have been carefully evaluated, and favorable outcomes have been achieved. All available evidence indicates that molecular hydrogen may be a promising treatment option for stroke management in the future. This review aimed to provide an overview of the role of molecular hydrogen in the management of stroke and possible further modifications of treatment conditions and procedures in terms of dose, duration, and administration route.
Collapse
Affiliation(s)
- Ho-Chang Kuo
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| | - Kuang-Den Chen
- Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Institute for Translational Research in Biomedicine, Liver Transplantation Center and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| | - Ping-Chia Li
- Department of Occupational Therapy, I-Shou University, Yanchao District, Kaohsiung 82445, Taiwan
- Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung 83302, Taiwan
| |
Collapse
|
16
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. DISCOVER NANO 2023; 18:40. [PMID: 36969494 PMCID: PMC10027986 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
17
|
Li Y, Li YJ, Zhu ZQ. To re-examine the intersection of microglial activation and neuroinflammation in neurodegenerative diseases from the perspective of pyroptosis. Front Aging Neurosci 2023; 15:1284214. [PMID: 38020781 PMCID: PMC10665880 DOI: 10.3389/fnagi.2023.1284214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and motor neuron disease, are diseases characterized by neuronal damage and dysfunction. NDs are considered to be a multifactorial disease with diverse etiologies (immune, inflammatory, aging, genetic, etc.) and complex pathophysiological processes. Previous studies have found that neuroinflammation and typical microglial activation are important mechanisms of NDs, leading to neurological dysfunction and disease progression. Pyroptosis is a new mode involved in this process. As a form of programmed cell death, pyroptosis is characterized by the expansion of cells until the cell membrane bursts, resulting in the release of cell contents that activates a strong inflammatory response that promotes NDs by accelerating neuronal dysfunction and abnormal microglial activation. In this case, abnormally activated microglia release various pro-inflammatory factors, leading to the occurrence of neuroinflammation and exacerbating both microglial and neuronal pyroptosis, thus forming a vicious cycle. The recognition of the association between pyroptosis and microglia activation, as well as neuroinflammation, is of significant importance in understanding the pathogenesis of NDs and providing new targets and strategies for their prevention and treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- College of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Lecordier S, Menet R, Allain AS, ElAli A. Non-classical monocytes promote neurovascular repair in cerebral small vessel disease associated with microinfarctions via CX3CR1. J Cereb Blood Flow Metab 2023; 43:1873-1890. [PMID: 37340860 PMCID: PMC10676133 DOI: 10.1177/0271678x231183742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Romain Menet
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Sophie Allain
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Quebec – Université Laval, Quebec City, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
19
|
Schuhmann MK, Langhauser F, Zimmermann L, Bellut M, Kleinschnitz C, Fluri F. Dimethyl Fumarate Attenuates Lymphocyte Infiltration and Reduces Infarct Size in Experimental Stroke. Int J Mol Sci 2023; 24:15540. [PMID: 37958527 PMCID: PMC10648192 DOI: 10.3390/ijms242115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ischemic stroke is associated with exacerbated tissue damage caused by the activation of immune cells and the initiation of other inflammatory processes. Dimethyl fumarate (DMF) is known to modulate the immune response, activate antioxidative pathways, and improve the blood-brain barrier (BBB) after stroke. However, the specific impact of DMF on immune cells after cerebral ischemia remains unclear. In our study, male mice underwent transient middle cerebral artery occlusion (tMCAO) for 30 min and received oral DMF (15 mg/kg) or a vehicle immediately after tMCAO, followed by twice-daily administrations for 7 days. Infarct volume was assessed on T2-weighted magnetic resonance images on days 1 and 7 after tMCAO. Brain-infiltrating immune cells (lymphocytes, monocytes) and microglia were quantified using fluorescence-activated cell sorting. DMF treatment significantly reduced infarct volumes and brain edema. On day 1 after tMCAO, DMF-treated mice showed reduced lymphocyte infiltration compared to controls, which was not observed on day 7. Monocyte and microglial cell counts did not differ between groups on either day. In the acute phase of stroke, DMF administration attenuated lymphocyte infiltration, probably due to its stabilizing effect on the BBB. This highlights the potential of DMF as a therapeutic candidate for mitigating immune cell-driven damage in stroke.
Collapse
Affiliation(s)
- Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Friederike Langhauser
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Lena Zimmermann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Maximilian Bellut
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, 45147 Essen, Germany; (F.L.); (C.K.)
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany; (M.K.S.); (L.Z.); (M.B.)
| |
Collapse
|
20
|
Fan PL, Wang SS, Chu SF, Chen NH. Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int 2023; 169:105584. [PMID: 37454817 DOI: 10.1016/j.neuint.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Ping-Long Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
21
|
Saceleanu VM, Toader C, Ples H, Covache-Busuioc RA, Costin HP, Bratu BG, Dumitrascu DI, Bordeianu A, Corlatescu AD, Ciurea AV. Integrative Approaches in Acute Ischemic Stroke: From Symptom Recognition to Future Innovations. Biomedicines 2023; 11:2617. [PMID: 37892991 PMCID: PMC10604797 DOI: 10.3390/biomedicines11102617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Among the high prevalence of cerebrovascular diseases nowadays, acute ischemic stroke stands out, representing a significant worldwide health issue with important socio-economic implications. Prompt diagnosis and intervention are important milestones for the management of this multifaceted pathology, making understanding the various stroke-onset symptoms crucial. A key role in acute ischemic stroke management is emphasizing the essential role of a multi-disciplinary team, therefore, increasing the efficiency of recognition and treatment. Neuroimaging and neuroradiology have evolved dramatically over the years, with multiple approaches that provide a higher understanding of the morphological aspects as well as timely recognition of cerebral artery occlusions for effective therapy planning. Regarding the treatment matter, the pharmacological approach, particularly fibrinolytic therapy, has its merits and challenges. Endovascular thrombectomy, a game-changer in stroke management, has witnessed significant advances, with technologies like stent retrievers and aspiration catheters playing pivotal roles. For select patients, combining pharmacological and endovascular strategies offers evidence-backed benefits. The aim of our comprehensive study on acute ischemic stroke is to efficiently compare the current therapies, recognize novel possibilities from the literature, and describe the state of the art in the interdisciplinary approach to acute ischemic stroke. As we aspire for holistic patient management, the emphasis is not just on medical intervention but also on physical therapy, mental health, and community engagement. The future holds promising innovations, with artificial intelligence poised to reshape stroke diagnostics and treatments. Bridging the gap between groundbreaking research and clinical practice remains a challenge, urging continuous collaboration and research.
Collapse
Affiliation(s)
- Vicentiu Mircea Saceleanu
- Neurosurgery Department, Sibiu County Emergency Hospital, 550245 Sibiu, Romania;
- Neurosurgery Department, “Lucian Blaga” University of Medicine, 550024 Sibiu, Romania
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 020022 Bucharest, Romania
| | - Horia Ples
- Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babes” University of Medicine and Pharmacy, 300736 Timisoara, Romania
- Department of Neurosurgery, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (H.P.C.); (B.-G.B.); (D.-I.D.); (A.B.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
22
|
Marquez-Ortiz RA, Tesic V, Hernandez DR, Akhter B, Aich N, Boudreaux PM, Clemons GA, Wu CYC, Lin HW, Rodgers KM. Neuroimmune Support of Neuronal Regeneration and Neuroplasticity following Cerebral Ischemia in Juvenile Mice. Brain Sci 2023; 13:1337. [PMID: 37759938 PMCID: PMC10526826 DOI: 10.3390/brainsci13091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Ischemic damage to the brain and loss of neurons contribute to functional disabilities in many stroke survivors. Recovery of neuroplasticity is critical to restoration of function and improved quality of life. Stroke and neurological deficits occur in both adults and children, and yet it is well documented that the developing brain has remarkable plasticity which promotes increased post-ischemic functional recovery compared with adults. However, the mechanisms underlying post-stroke recovery in the young brain have not been fully explored. We observed opposing responses to experimental cerebral ischemia in juvenile and adult mice, with substantial neural regeneration and enhanced neuroplasticity detected in the juvenile brain that was not found in adults. We demonstrate strikingly different stroke-induced neuroimmune responses that are deleterious in adults and protective in juveniles, supporting neural regeneration and plasticity. Understanding age-related differences in neuronal repair and regeneration, restoration of neural network function, and neuroimmune signaling in the stroke-injured brain may offer new insights for the development of novel therapeutic strategies for stroke rehabilitation.
Collapse
Affiliation(s)
- Ricaurte A. Marquez-Ortiz
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Vesna Tesic
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Daniel R. Hernandez
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Bilkis Akhter
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Nibedita Aich
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Porter M. Boudreaux
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Garrett A. Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Hung Wen Lin
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| | - Krista M. Rodgers
- Department of Cellular Biology and Anatomy, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA (B.A.)
- Department of Neurology, Louisiana State University, Health Sciences Center, Shreveport, LA 70803, USA
| |
Collapse
|
23
|
Koopman I, van Dijk BJ, Zuithoff NPA, Sluijs JA, van der Kamp MJ, Baldew ZAV, Frijns CJM, Rinkel GJE, Hol EM, Vergouwen MDI. Glial cell response and microthrombosis in aneurysmal subarachnoid hemorrhage patients: An autopsy study. J Neuropathol Exp Neurol 2023; 82:798-805. [PMID: 37478478 PMCID: PMC10440719 DOI: 10.1093/jnen/nlad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023] Open
Abstract
Neuroinflammation and microthrombosis may be underlying mechanisms of brain injury after aneurysmal subarachnoid hemorrhage (aSAH), but they have not been studied in relation to each other. In postmortem brain tissue, we investigated neuroinflammation by studying the microglial and astrocyte response in the frontal cortex of 11 aSAH and 10 control patients. In a second study, we investigated the correlation between microthrombosis and microglia by studying the microglial surface area around vessels with and without microthrombosis in the frontal cortex and hippocampus of 8 other aSAH patients. In comparison with controls, we found increased numbers of microglia (mean ± SEM 50 ± 8 vs 20 ± 5 per 0.0026 mm³, p < 0.01), an increased surface area (%) of microglia (mean ± SEM 4.2 ± 0.6 vs 2.2 ± 0.4, p < 0.05), a higher intensity of the astrocytic intermediate filament protein glial fibrillary acidic protein (GFAP) (mean ± SEM 184 ± 28 vs 92 ± 23 arbitrary units, p < 0.05), and an increased GFAP surface area (%) (mean ± SEM 21.2 ± 2.6 vs 10.7 ± 2.1, p < 0.01) in aSAH tissue. Microglia surface area was approximately 40% larger around vessels with microthrombosis than those without microthrombosis (estimated marginal means [95% CI]; 6.1 [5.4-6.9] vs 4.3 [3.6-5.0], p < 0.001). Our results show that the microglial and astrocyte surface areas increased after aSAH and that microthrombosis and microglia are interrelated.
Collapse
Affiliation(s)
- Inez Koopman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Bart J van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Nicolaas P A Zuithoff
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marije J van der Kamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Zelonna A V Baldew
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Catharina J M Frijns
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mervyn D I Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
24
|
Mu Q, Yao K, Syeda MZ, Zhang M, Cheng Q, Zhang Y, Sun R, Lu Y, Zhang H, Luo Z, Huang H, Liu X, Luo C, Zhu X, Wu S, Cui L, Huang C, Chen X, Tang L. Ligustrazine Nanoparticle Hitchhiking on Neutrophils for Enhanced Therapy of Cerebral Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301348. [PMID: 37078794 PMCID: PMC10323616 DOI: 10.1002/advs.202301348] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Ischemic stroke is a refractory disease that endangers human health and safety owing to cerebral ischemia. Brain ischemia induces a series of inflammatory reactions. Neutrophils migrate from the circulatory system to the site of cerebral ischemia and accumulate in large numbers at the site of inflammation across the blood-brain barrier. Therefore, hitchhiking on neutrophils to deliver drugs to ischemic brain sites could be an optimal strategy. Since the surface of neutrophils has a formyl peptide receptor (FPR), this work modifies a nanoplatform surface by the peptide cinnamyl-F-(D)L-F-(D)L-F (CFLFLF), which can specifically bind to the FPR receptor. After intravenous injection, the fabricated nanoparticles effectively adhered to the surface of neutrophils in peripheral blood mediated by FPR, thereby hitchhiking with neutrophils to achieve higher accumulation at the inflammatory site of cerebral ischemia. In addition, the nanoparticle shell is composed of a polymer with reactive oxygen species (ROS)-responsive bond breaking and is encased in ligustrazine, a natural product with neuroprotective properties. In conclusion, the strategy of hitching the delivered drugs to neutrophils in this study could improve drug enrichment in the brain, thereby providing a general delivery platform for ischemic stroke or other inflammation-related diseases.
Collapse
Affiliation(s)
- Qingchun Mu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Kai Yao
- Department of NeurosurgeryFirst Affiliated Hospital of Harbin Medical UniversityHarbin150001China
| | - Madiha Zahra Syeda
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Min Zhang
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Qian Cheng
- Basic Medical CollegeGuilin Medical UniversityGuilin541199China
| | - Yufei Zhang
- Basic Medical CollegeGuilin Medical UniversityGuilin541199China
| | - Rui Sun
- School of Pharmaceutical SciencesGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical UniversityGuangzhou510515China
| | - Yuting Lu
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Huamiao Zhang
- International Institutes of MedicineThe Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
| | - Zhicheng Luo
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Hanning Huang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiaojing Liu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Chunmei Luo
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiulong Zhu
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Shuyu Wu
- Department of NeurosurgeryHainan General HospicalHainan Affiliated Hospital of Hainan Medical UniversityHaikou570311China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of PharmacyGuangdong Medical UniversityDongguan523808China
| | - Chunming Huang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiologyand SurgeryClinical Imaging Research CentreCentre for Translational MedicineNanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineDepartments of Chemical and Biomolecular Engineeringand Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117597Singapore
| | - Longguang Tang
- The People's Hospital of GaozhouGuangdong Medical UniversityMaoming525200China
| |
Collapse
|
25
|
Cao Y, Yue X, Jia M, Wang J. Neuroinflammation and anti-inflammatory therapy for ischemic stroke. Heliyon 2023; 9:e17986. [PMID: 37519706 PMCID: PMC10372247 DOI: 10.1016/j.heliyon.2023.e17986] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/25/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Stroke remains one of the most devastating and challenging neurological diseases worldwide. Inflammation, as well as oxidative stress is one of the main contributors to post-stroke injuries, and oxidative stress can further induce inflammation. Moreover, the inflammatory response is closely related to immune modulation in ischemic stroke progression. Hence, major ischemic stroke treatment strategies include targeting inflammatory responses, immune modulation (especially immune cells), and inflammatory response to suppress stroke progression. To date, several drugs have demonstrated clinical efficacy, such as Etanercept and Fingolimod. However, only edaravone dexborneol has successfully passed the phase III clinical trial and been approved by the National Medical Products Administration (NMPA) to treat ischemic stroke in China, which can restore redox balance and regulate inflammatory immune responses, thus providing neuroprotection in ischemic stroke. In this review, we will comprehensively summarize the current advances in the application of inflammatory biomarkers, neuroinflammation and neuro-immunotherapeutic scenarios for ischemic stroke, thus aiming to provide a theoretical basis and new prospects and frontiers for clinical applications.
Collapse
Affiliation(s)
- Yangyue Cao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xuanye Yue
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Jia
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Kuo PC, Weng WT, Scofield BA, Paraiso HC, Bojrab P, Kimes B, Yu ICI, Yen JHJ. Interferon-β modulates microglial polarization to ameliorate delayed tPA-exacerbated brain injury in ischemic stroke. Front Immunol 2023; 14:1148069. [PMID: 37063896 PMCID: PMC10104603 DOI: 10.3389/fimmu.2023.1148069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.
Collapse
Affiliation(s)
- Ping-Chang Kuo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Wen-Tsan Weng
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Barbara A. Scofield
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Hallel C. Paraiso
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Paul Bojrab
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Brandon Kimes
- Doctor of Medicine Program, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - I-Chen Ivorine Yu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Fort Wayne, IN, United States
| | - Jui-Hung Jimmy Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, IN, United States
- *Correspondence: Jui-Hung Jimmy Yen,
| |
Collapse
|
27
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
28
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
29
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
30
|
Tan N, Xin W, Huang M, Mao Y. Mesenchymal stem cell therapy for ischemic stroke: Novel insight into the crosstalk with immune cells. Front Neurol 2022; 13:1048113. [PMID: 36425795 PMCID: PMC9679024 DOI: 10.3389/fneur.2022.1048113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 09/29/2023] Open
Abstract
Stroke, a cerebrovascular accident, is prevalent and the second highest cause of death globally across patient populations; it is as a significant cause of morbidity and mortality. Mesenchymal stem cell (MSC) transplantation is emerging as a promising treatment for alleviating neurological deficits, as indicated by a great number of animal and clinical studies. The potential of regulating the immune system is currently being explored as a therapeutic target after ischemic stroke. This study will discuss recent evidence that MSCs can harness the immune system by interacting with immune cells to boost neurologic recovery effectively. Moreover, a notion will be given to MSCs participating in multiple pathological processes, such as increasing cell survival angiogenesis and suppressing cell apoptosis and autophagy in several phases of ischemic stroke, consequently promoting neurological function recovery. We will conclude the review by highlighting the clinical opportunities for MSCs by reviewing the safety, feasibility, and efficacy of MSCs therapy.
Collapse
Affiliation(s)
- Nana Tan
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Huang
- Department of Health Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Xu H, You M, Xiang X, Zhao J, Yuan P, Chu L, Xie C. Molecular Mechanism of Epimedium Extract against Ischemic Stroke Based on Network Pharmacology and Experimental Validation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3858314. [PMID: 36338345 PMCID: PMC9633197 DOI: 10.1155/2022/3858314] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2022] [Indexed: 02/05/2024]
Abstract
Ischemic stroke exhibits high morbidity, disability, and mortality, and treatments for ischemic stroke are limited despite intensive research. The potent neuroprotective benefits of Epimedium against ischemic stroke have gained lots of interest. Nevertheless, systematic research on the direct role and mechanisms of Epimedium in ischemic stroke is still lacking. Network pharmacology analysis coupled with experimental verification was utilized to systematically evaluate the potential pharmacological mechanism of Epimedium against ischemic stroke. The TCMSP database was used to mine the bioactive ingredients and Epimedium's targets. The DrugBank, OMIM, and GeneCards databases were employed to identify potential targets of ischemic stroke. GO and KEGG pathway analyses were also carried out. The interaction between active components and hub targets was confirmed via molecular docking. An experimental ischemic stroke model was used to evaluate the possible therapeutic mechanism of Epimedium. As a result, 23 bioactive compounds of Epimedium were selected, and 30 hub targets of Epimedium in its function against ischemic stroke were identified, and molecular docking results demonstrated good binding. The IL-17 signaling pathway was revealed as a potentially significant pathway, with the NF-κB and MAPK/ERK signaling pathways being involved. Furthermore, in vivo experiments demonstrated that Epimedium treatment could improve neurological function and reduce infarct volume. Additionally, Epimedium reduced the activation of microglia and astrocytes in both the ischemic penumbra of the hippocampus and cerebral cortex following ischemic stroke. Western blot and RT-qPCR analyses demonstrated that Epimedium not only depressed the expression of IL-1β, TNF-α, IL-6, and IL-4 but also inhibited the NF-κB and MAPK/ERK signaling pathways. This study applied network pharmacology and in vivo experiment to explore possible mechanism of Epimedium's role against ischemic stroke, which provides insight into the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongbei Xu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Mingyao You
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Xiang Xiang
- Neurosurgery Department of Chongqing University, Three Gorges Hospital, Chongqing 400010, China
| | - Jun Zhao
- Department of Neurosurgery, Dazhou Hospital of Integrated Traditional and Western Medicine, 635000, China
| | - Ping Yuan
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guizhou 550004, China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
32
|
Zhang Y, Miao L, Peng Q, Fan X, Song W, Yang B, Zhang P, Liu G, Liu J. Parthenolide modulates cerebral ischemia-induced microglial polarization and alleviates neuroinflammatory injury via the RhoA/ROCK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154373. [PMID: 35947899 DOI: 10.1016/j.phymed.2022.154373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/12/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Microglia can be activated as proinflammatory (M1) phenotypes and anti-inflammatory (M2) phenotypes after stroke. Parthenolide (PTL) has anti-inflammatory and protective effects on neurological diseases, but until now, the exact mechanisms of these processes after stroke have been unclear. The purpose of this study was to determine the effect of PTL on microglial polarization after stroke and its target for inducing microglial polarization. METHODS Triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and neurological evaluation were performed in a focal transient cerebral ischemia rat model. The human microglia exposed to lipopolysaccharide (LPS) was used for in vitro experiments. Microglial polarization was assessed by RT-PCR and immunostaining. Inflammatory cytokine assays and western blotting were used to investigate the molecular mechanisms underlying PTL-mediated microglial polarization in vivo and in vitro. RESULTS PTL significantly reduced cerebral infarction and neuronal apoptosis in rats with cerebral ischemia, reduced the level of inflammatory factors and alleviated neurological deficits. PTL treatment decreased the expression of microglia/macrophage markers in M1 macrophages and increased the expression of microglia/macrophage markers in M2 macrophages after stroke, which induced the transformation of microglia cells from the M1 phenotype to the M2 phenotype. Furthermore, PTL significantly reduced RhoA/ROCK-NF-κB pathway activity and downregulated the effects of pentanoic acid (ROCK agonist). CONCLUSIONS PTL has been shown to mediate neuroinflammation and protect against ischemic brain injury by regulating microglial polarization via the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Yehao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Lan Miao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Qing Peng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Bin Yang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Peng Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China
| | - Guangyu Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China.
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing key Laboratory of pharmacology of Chinese Materia Region, Beijing 100091, PR China; NICM, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
33
|
Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. BIOLOGY 2022; 11:biology11081231. [PMID: 36009857 PMCID: PMC9405035 DOI: 10.3390/biology11081231] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary A stroke occurs when there is a lack of blood flow to the brain. Stroke injures the brain and can have devastating outcomes depending on the size and location of the brain tissue affected. Currently, there are only a limited number of treatment options for stroke. Extracellular vesicles are small vesicles secreted by cells. Importantly, extracellular vesicles have specific markers indicating the cell they were released from and can pass from the brain into the blood. For these reasons, assessing extracellular vesicles in the blood may create a window into changes occurring in the brain. Assessing changes in extracellular vesicles in the blood during stroke may produce new insight into the cellular changes in the brain causing injury during stroke. This in turn may generate potential targets for the development of future treatments. We summarize what is known about changes in brain-cell-specific extracellular vesicles during stroke and stress the importance of continuing to study these changes. Abstract Stoke is a prevalent and devastating neurologic condition with limited options for therapeutic management. Since brain tissue is rarely accessible clinically, peripheral biomarkers for the central nervous system’s (CNS’s) cellular response to stroke may prove critical for increasing our understanding of stroke pathology and elucidating novel therapeutic targets. Extracellular vesicles (EVs) are cell-derived, membrane-enclosed vesicles secreted by all cell types within the CNS that can freely pass the blood-brain barrier (BBB) and contain unique markers and content linked to their cell of origin. These unique qualities make brain-derived EVs novel candidates for non-invasive blood-based biomarkers of both cell specificity and cell physiological state during the progression of stroke and recovery. While studies are continuously emerging that are assessing the therapeutic potential of EVs and profiling EV cargo, a vast minority of these studies link EV content to specific cell types. A better understanding of cell-specific EV release during the acute, subacute, and chronic stages of stroke is needed to further elucidate the cellular processes responsible for stroke pathophysiology. Herein, we outline what is known about EV release from distinct cell types of the CNS during stroke and the potential of these EVs as peripheral biomarkers for cellular function in the CNS during stroke.
Collapse
|
34
|
Kochetov AG, Lyang OV, Zhirova IA, Ivoylov OO. Biochemical markers of thrombotic complications in the acute period of ischemic stroke. TERAPEVT ARKH 2022; 94:803-809. [DOI: 10.26442/00403660.2022.07.201738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Aim. To study the profile of biochemical markers of the hemostasis system, to clarify their role and relationships in the pathogenesis of the development of thrombotic complications (TC) of ischemic stroke (IS) and the associated assessment of the possibilities of their diagnostic application.
Materials and methods. The study group included 302 patients (164 men, 138 women) who were admitted to the hospital with a diagnosis of IS within 24 hours of the onset of the disease. The diagnosis was confirmed by computed tomography. The average age of patients was 69 (5088) years. Blood was taken from all patients on the 1st day of the disease to determine the profile of analytes presumably associated with the pathogenesis of TC. Levels of homocysteine, protein C inhibitor, thrombomodulin, plasminogen, tissue plasminogen activator, urokinase, plasminogen activator type 1 inhibitor, t-PA/PAI-1 complex, vitronectin, plasmin-2-antiplasmin complex, D-dimer, fibronectin were determined in blood serum by ELISA.
Results. TC in the acute period of IS (up to 21 days) were recorded in 32 (10.6%, 95% CI 7.3714.3) patients, of which pulmonary embolism was observed in 27 (8.94%, 95% CI 5.9812.4) patients, deep vein thrombosis in 5 (1.66%, 95% CI 0.473.47) patients. The results of the study of a panel of specific proteins involved in pathogenetic processes accompanying necrosis of brain tissue in IS demonstrated that of the entire list of markers of the hemostasis system activation selected for the study, the most significant are: the concentration of fibronectin in the prognosis of the absence of TC with a threshold value of more than 61 mkg/ml and OR 4.4 (95% CI 1.512.9, p=0.011), and the concentration of the t-PA/PAI-1 complex in the prognosis of the development of TC with a threshold value of more than 14 ng/ml and OR 11.3 (95% CI 1.18109.3, p=0.03).
Conclusion. The significance of the t-PA/PAI-1 complex and fibronectin as markers of TC in IS may be due to a violation of the activation processes of the fibrinolytic link of hemostasis and the accumulation of non-deposited compounds that damage the vascular wall.
Collapse
|
35
|
Transferrin-Enabled Blood–Brain Barrier Crossing Manganese-Based Nanozyme for Rebalancing the Reactive Oxygen Species Level in Ischemic Stroke. Pharmaceutics 2022; 14:pharmaceutics14061122. [PMID: 35745695 PMCID: PMC9231148 DOI: 10.3390/pharmaceutics14061122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Acute ischemic stroke (IS) is one of the main causes of human disability and death. Therefore, multifunctional nanosystems that effectively cross the blood–brain barrier (BBB) and efficiently eliminate reactive oxygen species (ROS) are urgently needed for comprehensive neuroprotective effects. (2) Methods: We designed a targeted transferrin (Tf)-based manganese dioxide nanozyme (MnO2@Tf, MT) using a mild biomimetic mineralization method for rebalancing ROS levels. Furthermore, MT can be efficiently loaded with edaravone (Eda), a clinical neuroprotective agent, to obtain the Eda-MnO2@Tf (EMT) nanozyme. (3) Results: The EMT nanozyme not only accumulates in a lesion area and crosses the BBB but also possesses satisfactory biocompatibility and biosafety based on the functional inheritance of Tf. Meanwhile, EMT has intrinsic hydroxyl radical-scavenging ability and superoxide-dismutase-like and catalase-like nanozyme abilities, allowing it to ameliorate ROS-mediated damage and decrease inflammatory factor levels in vivo. Moreover, the released Mn2+ ions in the weak acid environment of the lesion area can be used for magnetic resonance imaging (MRI) to monitor the treatment process. (4) Conclusions: Our study not only paves a way to engineer alternative targeted ROS scavengers for intensive reperfusion-induced injury in ischemic stroke but also provides new insights into the construction of bioinspired Mn-based nanozymes.
Collapse
|
36
|
Xu Y, Zhi F, Peng Y, Mao J, Balboni G, Yang Y, Xia Y. A Critical Role of δ-Opioid Receptor in Anti-microglial Activation Under Stress. Front Aging Neurosci 2022; 14:847386. [PMID: 35663569 PMCID: PMC9160527 DOI: 10.3389/fnagi.2022.847386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/22/2022] [Indexed: 12/23/2022] Open
Abstract
Microglia are involved in the regulation of cerebral homeostasis and pathogen confrontation. There is, however, evidence showing that excessive microglia activation is implicated in various age-related cerebral diseases. On the other hand, microglia may experience complex changes of polarization in pathological insults, i.e., from a proinflammatory M1 to an anti-inflammatory M2 phenotype, which differentially contribute to the exacerbation or alleviation of cellular injury. Remolding the phenotype of microglia or inhibiting the excessive activation of microglia seems to be a promising approach against neurodegenerative pathologies. Since δ-opioid receptor (DOR) activation exhibits a strong protective capacity against various neuronal injuries, especially the hypoxic/ischemic injury, we asked if the DOR-induced neuroprotection is associated with its effect on microglia. We explored this fundamental issue by using pharmacological and genetic approaches in the BV2 cell line, a general type of microglial cells. The results showed that DOR expression significantly increased in the activated microglial M2 phenotype, but slightly decreased in the microglial M1 phenotype. Hypoxia induced dual polarizations of BV2 cells with an increase in DOR expression. Administration of a specific DOR agonist, UFP-512, largely inhibited lipopolysaccharide (LPS) or hypoxia-induced microglial M1 activation and inflammatory activity with high concentrations of UFP-512 being effective to reverse the interleukin-4 (IL4)-induced microglial activation. Consistent with these observations, inhibiting DOR or knocking-down DOR promoted the excessive activation of BV2 cells in both M1 and M2 directions, while DOR overexpression did the opposite. Furthermore, the PC12 cells exposed to the conditioned medium of BV2 cells treated by UFP-512 grew better than those treated directly with UFP-512 under LPS or hypoxic insults. DOR inhibitor naltrindole could block all the effects of DOR activation. The medium from the BV2 cells with DOR knock-down decreased the viability of PC12 cell, while the medium from the BV2 cells with DOR overexpression largely attenuated LPS or hypoxic injury in the PC12 cells. These first data suggest a close linkage between DOR expression/function and microglial polarization and a critical role of DOR in negative controlling microglial activation. Our work provides a novel clue for new protective strategies against neurodegenerative pathophysiology through DOR-mediated regulation of microglia.
Collapse
|
37
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
38
|
Microglia Modulate Cortical Spreading Depolarizations After Ischemic Stroke: A Narrative Review. Neurocrit Care 2022; 37:133-138. [PMID: 35288861 PMCID: PMC9259539 DOI: 10.1007/s12028-022-01469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/08/2022] [Indexed: 01/06/2023]
Abstract
Cortical spreading depolarizations (CSDs) are characterized by waves of diminished electroencephalography activity that propagate across the cortex with subsequent loss of ionic homeostasis. CSDs have been found in many pathological conditions, including migraine, traumatic brain injury, and ischemic stroke. Because of CSD-associated ionic and metabolic disturbances at the peri-infarct area after ischemic stroke, it is thought that CSDs exacerbate tissue infarction and worsen clinical outcomes. Microglia, the main innate immune cells in the brain, are among the first responders to brain tissue damage. Recent studies demonstrated that microglia play a critical role in CSD initiation and propagation. In this article, we discuss the significance of CSD in the setting of ischemic stroke and how microglia may modulate peri-infarct CSDs, also known as iso-electric depolarizations. Finally, we discuss the significance of microglial Ca2+ and how it might be used as a potential therapeutic target for patients with ischemic stroke.
Collapse
|
39
|
Neuroinflammation and Neuropathology. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2022; 52:196-201. [PMID: 35317271 PMCID: PMC8930459 DOI: 10.1007/s11055-022-01223-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
This review addresses the current understanding of the role of autoimmune neuroinflammation in the pathogenesis of vascular, neurodegenerative, and other diseases of the nervous system. The mechanisms of responses of resident CNS cells (glial cells, astrocytes) and peripheral immune system cells are presented. The therapeutic potentials of phosphodiesterase inhibitors, which have antiaggregant properties and can suppress autoimmune inflammation, are discussed. The phosphodiesterase inhibitor dipyridamole is regarded as a potential drug for this purpose.
Collapse
|
40
|
Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022; 11:491. [PMID: 35159300 PMCID: PMC8834171 DOI: 10.3390/cells11030491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA;
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| |
Collapse
|
41
|
Xu Y, Chen R, Zhi F, Sheng S, Khiati L, Yang Y, Peng Y, Xia Y. δ-opioid Receptor, Microglia and Neuroinflammation. Aging Dis 2022; 14:778-793. [PMID: 37191426 DOI: 10.14336/ad.2022.0912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation underlies the pathophysiology of multiple age-related neurological disorders. Microglia, the resident immune cells of the central nervous system, are critically involved in neuroinflammatory regulation and neural survival. Modulating microglial activation is thus a promising approach to alleviate neuronal injury. Our serial studies have revealed a neuroprotective role of the δ-opioid receptor (DOR) in several acute and chronic cerebral injuries by regulating neuroinflammation and cellular oxidative stress. More recently, we found an endogenous mechanism for the inhibition of neuroinflammation is closely related to DOR's modulation of microglia. Our recent studies showed that DOR activation could strongly protect neurons from hypoxia- and lipopolysaccharide (LPS)-induced injury by inhibiting microglial pro-inflammatory transformation, while knocking-down DOR or restraining DOR activity promoted microglia activation and the relevant inflammatory events with an aggravation of cell injury. This novel finding highlights a therapeutic potential of DOR in numerous age-related neurological disorders through the modulation of neuroinflammation by targeting microglia. This review summarized the current data regarding the role of microglia in neuroinflammation, oxidative stress, and age-related neurological diseases focusing on the pharmacological effects and signaling transduction of DOR in microglia.
Collapse
|
42
|
Yongyue Z, Yang S, Li Z, Rongjin Z, Shumin W. Functional Brain Imaging Based on the Neurovascular Unit for Evaluating Neural Networks after Strok. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2022. [DOI: 10.37015/audt.2022.210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
44
|
Zhu X, Guo D, Chen M, An X, Wang B, Yu W. Application value and challenge of traditional Chinese medicine carried by ZIF-8 in the therapy of ischemic stroke. IBRAIN 2021; 7:337-350. [PMID: 37786560 PMCID: PMC10529174 DOI: 10.1002/ibra.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 10/04/2023]
Abstract
Stroke is a group of major diseases that cause death or disability in adults, with high incidence and lack of available therapeutic strategies. Although traditional Chinese medicine (TCM) has continuously achieved good effects in the therapy of stroke while there is still not convincing due to the limitation of blood-brain permeability, as well as the individual differences in usage and dosage. With the improvement of nanotechnology, TCM nanopreparation has gradually become a research hotspot in various fields due to its advantages in permeating the blood-brain barrier, targeting delivery, enhancing sustained-release drug delivery, changing the distribution in the body, and improving bioavailability. Zeolitic imidazolate framework-8 (ZIF-8) is an ideal nano-drug delivery system for adsorption, catalysis, and drug loading, which is a biocompatible metal-organic framework framed by 2-methylimidazole and zinc ions. At present, ZIF-8 was wildly used in the treatment of ischemic stroke. However, challenges remain persists for its clinical application, such as preparation technology, detection technology in vivo, targeting specificity, safety and stability, and so forth. Therefore, more efforts need to overcome the above problems to develop the application of TCM nanopreparations in the therapy of ischemia/reperfusion in the future.
Collapse
Affiliation(s)
- Xiao‐Xi Zhu
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Dong‐Fen Guo
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ming Chen
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xiao‐Qiong An
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Bi Wang
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Wen‐Feng Yu
- Key Laboratory of Molecular BiologyGuizhou Medical UniversityGuiyangGuizhouChina
- Key Laboratory of Endemic and Minority Diseases, Education MinistryGuizhou Medical UniversityGuiyangGuizhouChina
- School of Basic Medical ScienceGuizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
45
|
Zhao Q, Shao X, Ding X, Lin S, Zhang D, Qin J, Wang W, Yu W, Zhang R, Tao L, Zhao W, Zhang H. PDPOB Exerts Multiaspect Anti-Ischemic Effects Associated with the Regulation of PI3K/AKT and MAPK Signaling Pathways. ACS Chem Neurosci 2021; 12:4416-4427. [PMID: 34755509 DOI: 10.1021/acschemneuro.1c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The discovery of new therapeutic agents for ischemic stroke remains an urgent need. Here, we identified a novel phenyl carboxylic acid derivative, n-pentyl 4-(3,4-dihydroxyphenyl)-4-oxobutanoate (PDPOB), with anti-ischemic activities. The in vitro anti-ischemic neuroprotective and anti-inflammatory capacities of PDPOB were investigated using neuronal cells suffering from oxygen-glucose deprivation/reperfusion (OGD/R) and microglial cells stimulated by lipopolysaccharide (LPS). PDPOB attenuated the OGD/R-evoked cellular damage of SH-SY5Y cells and primary cortical neurons in a concentration-dependent manner. Likewise, PDPOB displayed protective roles against OGD/R-evoked multiaspect neuronal deterioration in SH-SY5Y cells, as evidenced by alleviated mitochondrial dysfunction, oxidative stress, and apoptosis. A further study unveiled the accelerated phosphorylation of protein kinase B (AKT) by PDPOB treatment, while blockade of phosphoinositide 3-kinase (PI3K)/AKT signaling substantially diminished the neuroprotective capacities of PDPOB. Additionally, the PDPOB pretreatment dampened the LPS-evoked neuroinflammation in BV2 cells, characterized by the suppressed secretion of nitric oxide (NO) and proinflammatory cytokines, as well as normalized expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Western blotting further revealed that PDPOB abated the overabundant phosphorylation of the extracellular signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK), and p38 in LPS-exposed BV2 cells. The intravenous application of PDPOB (30 mg/kg, single dose) attenuated ipsilateral cerebral infarction in middle cerebral artery occlusion (MCAO) rats, accompanied by recovered neurological behaviors. Collectively, the above observations provided substantial evidence for the favorable properties and mechanistic explanations of PDPOB in the regulation of ischemia-associated neuronal injury and microglial inflammation, which may furnish ideas for the discovery of new therapeutic strategies against cerebral ischemia.
Collapse
Affiliation(s)
- Qinyuan Zhao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingcheng Shao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xun Ding
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Sijin Lin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Junjun Qin
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weichen Yu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Rujun Zhang
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
| | - Lingxue Tao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Weimin Zhao
- Department of Natural Product Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang
Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
46
|
Palomino-Antolin A, Narros-Fernández P, Farré-Alins V, Sevilla-Montero J, Decouty-Pérez C, Lopez-Rodriguez AB, Fernández N, Monge L, Casas AI, Calzada MJ, Egea J. Time-dependent dual effect of NLRP3 inflammasome in brain ischemia. Br J Pharmacol 2021; 179:1395-1410. [PMID: 34773639 DOI: 10.1111/bph.15732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Post-ischemic inflammation contributes to worsening of ischemic brain injury and in this process, the inflammasomes play a key role. Inflammasomes are cytosolic multiprotein complexes which upon assembly activate the maturation and secretion of the inflammatory cytokines IL-1β and IL-18. However, participation of the NLRP3 inflammasome in ischemic stroke remains controversial. Our aims were to determine the role of NLRP3 in ischemia and to explore the mechanism involved in the potential protective effect of the neurovascular unit. METHODS WT and NLRP3 knock-out mice were subjected to ischemia by middle cerebral artery occlusion (60 minutes) with or without treatment with MCC950 at different time points post-stroke. Brain injury was measured histologically with 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS We identified a time-dependent dual effect of NLRP3. While neither the pre-treatment with MCC950 nor the genetic approach (NLRP3 KO) proved to be neuroprotective, post-reperfusion treatment with MCC950 significantly reduced the infarct volume in a dose-dependent manner. Importantly, MCC950 improved the neuro-motor function and reduced the expression of different pro-inflammatory cytokines (IL-1β, TNF-α), NLRP3 inflammasome components (NLRP3, pro-caspase-1), protease expression (MMP9) and endothelial adhesion molecules (ICAM, VCAM). We observed a marked protection of the blood-brain barrier (BBB), which was also reflected in the recovery of the tight junctions proteins (ZO-1, Claudin-5). Additionally, MCC950 produced a reduction of the CCL2 chemokine in blood serum and in brain tissue, which lead to a reduction in the immune cell infiltration. CONCLUSIONS These findings suggest that post-reperfusion NLRP3 inhibition may be an effective acute therapy for protecting the blood-brain barrier in cerebral ischemia with potential clinical translation.
Collapse
Affiliation(s)
- Alejandra Palomino-Antolin
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Paloma Narros-Fernández
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Víctor Farré-Alins
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Javier Sevilla-Montero
- Instituto de Investigacion Sanitaria Princesa (IIS-IP), Department of Medicine, School of Medicine, Universidad Autonoma of Madrid, Spain
| | - Celine Decouty-Pérez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Ana Belen Lopez-Rodriguez
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| | - Nuria Fernández
- Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Monge
- Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana I Casas
- Department of Pharmacology and Personalised Medicine, MHeNs, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, University Clinics Essen, Essen, Germany
| | - María José Calzada
- Instituto de Investigacion Sanitaria Princesa (IIS-IP), Department of Medicine, School of Medicine, Universidad Autonoma of Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, UAM, Madrid, Spain
| |
Collapse
|
47
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
48
|
Moya Gómez A, Font LP, Brône B, Bronckaers A. Electromagnetic Field as a Treatment for Cerebral Ischemic Stroke. Front Mol Biosci 2021; 8:742596. [PMID: 34557522 PMCID: PMC8453690 DOI: 10.3389/fmolb.2021.742596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Cerebral stroke is a leading cause of death and adult-acquired disability worldwide. To this date, treatment options are limited; hence, the search for new therapeutic approaches continues. Electromagnetic fields (EMFs) affect a wide variety of biological processes and accumulating evidence shows their potential as a treatment for ischemic stroke. Based on their characteristics, they can be divided into stationary, pulsed, and sinusoidal EMF. The aim of this review is to provide an extensive literature overview ranging from in vitro to even clinical studies within the field of ischemic stroke of all EMF types. A thorough comparison between EMF types and their effects is provided, as well as an overview of the signal pathways activated in cell types relevant for ischemic stroke such as neurons, microglia, astrocytes, and endothelial cells. We also discuss which steps have to be taken to improve their therapeutic efficacy in the frame of the clinical translation of this promising therapy.
Collapse
Affiliation(s)
- Amanda Moya Gómez
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium.,Department of Biomedical Engineering, Faculty of Telecommunications, Informatics and Biomedical Engineering, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Lena Pérez Font
- Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Bert Brône
- UHasselt Hasselt University, BIOMED, Diepenbeek, Belgium
| | | |
Collapse
|
49
|
Li T, Zhu G. Research progress of stem cell therapy for ischemic stroke. IBRAIN 2021; 7:245-256. [PMID: 37786797 PMCID: PMC10528988 DOI: 10.1002/j.2769-2795.2021.tb00088.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 10/04/2023]
Abstract
Ischemic stroke is a serious cerebrovascular disease with high morbidity, disability and mortality. There is no doubt that the disease has a severe impact on the physical and mental health and quality of life of patients, as well as impose a heavy burden on families and societies. Unfortunately, there has been a lack of effective treatment. This overview reviews the pathophysiology of stem cell therapy in Ischemic stroke, and discuss its effects on neurogenesis, the latest clinical trials, and advances in tracking and monitoring of endogenous and exogenous stem cells.
Collapse
Affiliation(s)
- Ting Li
- Department of Nuclear MedicineFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | | |
Collapse
|
50
|
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6:2854-2869. [PMID: 33718667 PMCID: PMC7905263 DOI: 10.1016/j.bioactmat.2021.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is still a serious threat to human life and health, but there are few therapeutic options available to treat stroke because of limited blood-brain penetration. The development of nanotechnology may overcome some of the problems related to traditional drug development. In this review, we focus on the potential applications of nanotechnology in stroke. First, we will discuss the main molecular pathological mechanisms of ischemic stroke to develop a targeted strategy. Second, considering the important role of the blood-brain barrier in stroke treatment, we also delve mechanisms by which the blood-brain barrier protects the brain, and the reasons why the therapeutics must pass through the blood-brain barrier to achieve efficacy. Lastly, we provide a comprehensive review related to the application of nanomaterials to treat stroke, including liposomes, polymers, metal nanoparticles, carbon nanotubes, graphene, black phosphorus, hydrogels and dendrimers. To conclude, we will summarize the challenges and future prospects of nanomedicine-based stroke treatments.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wentian Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Nan Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Ning Liu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, 518116, Shenzhen, Guangdong, China
| |
Collapse
|