1
|
Carvalho JDS, Ramadan D, de Carvalho GG, de Paiva Gonçalves V, Pelegrin ÁF, de Assis RP, Brunetti IL, Muscara MN, Spolidorio DM, Spolidorio LC. Repercussions of Long-Term Naproxen Administration on LPS-Induced Periodontitis in Male Mice. J Periodontal Res 2024. [PMID: 39609079 DOI: 10.1111/jre.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
AIMS Chronic periodontitis is the sixth most prevalent disease worldwide and the leading cause of tooth loss in adults. With growing attention on the role of inflammatory and immune responses in its pathogenesis, there is an urgent need to evaluate host-modulatory agents. Non-steroidal anti-inflammatory drugs (NSAIDs) drugs play a crucial role in managing inflammatory conditions. This study examined the repercussions of long-term naproxen use in a periodontal inflammation model known for causing significant inflammation, disrupting epithelial and connective tissue attachment and leading to alveolar bone destruction. METHODS Thirty BALB/c mice were treated with naproxen for 60 days or left untreated. From Day 30, an LPS solution was injected into gingival tissues three times per week for four weeks. This model enables LPS control over the inflammatory stimulus intensity throughout the experimental period, leading to chronic inflammation development involving both innate and adaptive immunity. The liver, stomach and maxillae were submitted to histological analysis. The oxidative damage was determined by measuring lipid peroxidation (LPO) in plasma and gingiva. The activities of myeloperoxidase (MPO), eosinophil peroxidase (EPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and levels of leukotriene B4, the interleukin (IL)-1β, TNF-α, IL-4, IL-5, IL-10, the chemokine CCL11 were also assessed in the gingival tissues. RESULTS The results indicated that none of the groups displayed any indications of liver damage or alterations; however, the NPx treatment led to severe gastric damage. In contrast, the treatment alleviated periodontal inflammation, resulting in a reduction of chronic and acute inflammatory cell infiltration and prevention of connective tissue loss in the gingival tissue. Additionally, the treatment increased the activities of endogenous antioxidant enzymes SOD, CAT and GPx, as well as the IL-10 cytokine, while decreasing the levels of leukotriene B4, TNF-α, IL-4 and IL-5. Furthermore, the activities of MPO, EPO and LPO were reduced in the treated groups. CONCLUSION These results suggest that NPx effectively inhibits periodontal inflammation in an inflammatory periodontal model. However, the harmful gastric effects dramatically limit its long-term use.
Collapse
Affiliation(s)
- Jhonatan de Souza Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Dania Ramadan
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Álvaro Formoso Pelegrin
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Renata Pires de Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Marcelo Nicolas Muscara
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Denise Madalena Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Luís Carlos Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
2
|
Han J, Wang R, Bai L, Liu Y, Liao M, Zhang L, Liu L, Qi B. Impact of serum carotenoids on cardiovascular mortality risk in middle-aged and elderly adults with metabolic syndrome. Front Nutr 2024; 11:1465972. [PMID: 39606575 PMCID: PMC11598320 DOI: 10.3389/fnut.2024.1465972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background Metabolic syndrome (MetS), characterized by abdominal adiposity, hypertension, hyperglycemia, and dyslipidemia, is associated with dysregulated immune function, elevated oxidative stress, and chronic low-grade inflammation. Aging exacerbates insulin resistance and the prevalence of MetS. Dietary antioxidants, such as carotenoids, may play a role in preventing cardiovascular disease (CVD) mortality, but evidence remains mixed, particularly among middle-aged and elderly individuals with MetS. Methods We analyzed data from 6,601 participants aged 40 years and above with MetS from the National Health and Nutrition Examination Survey (NHANES) III (1988-1994) and NHANES 2001-2006 cycles. Serum concentrations of α-carotene, β-carotene, lycopene, β-cryptoxanthin, and combined lutein/zeaxanthin were quantified. Participants were followed for a median of 16.8 years. Cox proportional-hazards models were used to assess the association between serum carotenoid concentrations and CVD mortality risk, with adjustment for potential confounders. Results During the follow-up period, 1,237 CVD deaths were identified. Analysis revealed an inverse dose-response relationship between serum lycopene levels and cardiovascular mortality risk. Compared to the lowest quartile, the multivariable-adjusted hazard ratios (95% confidence intervals) for ascending quartiles of serum lycopene were 0.84 (0.71, 1.00), 0.87 (0.74, 1.03), and 0.77 (0.61, 0.97), with a significant trend (p = 0.039). No significant associations were observed for other carotenoids. Conclusion In this prospective cohort study of 40-year-old and older individuals with MetS, we observed an inverse association between serum lycopene levels and CVD mortality risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | |
Collapse
|
3
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
4
|
Hamedi-Kalajahi F, Alizadeh M, Kheirouri S, Molani-Gol R. The effect of curcumin on paraoxonase 1 protein levels, gene expression, and enzyme activity: A systematic review of animal interventional studies. Prostaglandins Other Lipid Mediat 2024; 174:106849. [PMID: 38830400 DOI: 10.1016/j.prostaglandins.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND AND AIMS Paraoxonase (PON) proteins have various hydrolytic activities. The PON family is able to detoxify oxidized low-density lipoprotein. Additionally, differentiation of monocytes into macrophages, as the first stage in the development of atherosclerosis, is suppressed by PON 1. The effects of polyphenols including curcumin on PON1 have been investigated in studies. In this study, our main goal is to investigate curcumin's effect on PON1 protein levels, gene expression, and enzyme activity in animal interventional studies. METHODS The literature was searched through the online databases including PubMed, SCOPUS, Embase, and Google Scholar until May 2022. RESULTS Curcumin administration can increase the PON1 enzyme activity. Also, it probably has a positive role in increasing the PON1 gene expression. However, concerning the PON1 protein values, results are contradictory. CONCLUSIONS The findings of this study suggested positive role of curcumin in increasing PON1 enzyme activities, gene expression, and protein levels. DATA AVAILABILITY Data are available from the corresponding author (Kheirouris@tbzmed.ac.ir).
Collapse
Affiliation(s)
- Fatemeh Hamedi-Kalajahi
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Roghayeh Molani-Gol
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Pinheiro CG, Motta BP, Oliveira JO, Cardoso FN, Figueiredo ID, Machado RTA, da Silva PB, Chorilli M, Brunetti IL, Baviera AM. Bixin Combined with Metformin Ameliorates Insulin Resistance and Antioxidant Defenses in Obese Mice. Pharmaceuticals (Basel) 2024; 17:1202. [PMID: 39338363 PMCID: PMC11434661 DOI: 10.3390/ph17091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bixin (C25H30O4; 394.51 g/mol) is the main apocarotenoid found in annatto seeds. It has a 25-carbon open chain structure with a methyl ester group and carboxylic acid. Bixin increases the expression of antioxidant enzymes, which may be interesting for counteracting oxidative stress. This study investigated whether bixin-rich annatto extract combined with metformin was able to improve the disturbances observed in high-fat diet (HFD)-induced obesity in mice, with an emphasis on markers of oxidative damage and antioxidant defenses. HFD-fed mice were treated for 8 weeks with metformin (50 mg/kg) plus bixin-rich annatto extract (5.5 and 11 mg/kg). This study assessed glucose tolerance, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma, fluorescent AGEs (advanced glycation end products), TBARSs (thiobarbituric acid-reactive substances), and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in the liver and kidneys. Treatment with bixin plus metformin decreased body weight gain, improved insulin sensitivity, and decreased AGEs and TBARSs in the plasma, liver, and kidneys. Bixin plus metformin increased the activities of PON-1, SOD, CAT, and GSH-Px. Bixin combined with metformin improved the endogenous antioxidant defenses in the obese mice, showing that this combined therapy may have the potential to contrast the metabolic complications resulting from oxidative stress.
Collapse
Affiliation(s)
- Camila Graça Pinheiro
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Bruno Pereira Motta
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Juliana Oriel Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Felipe Nunes Cardoso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Rachel Temperani Amaral Machado
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Patrícia Bento da Silva
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (R.T.A.M.); (P.B.d.S.); (M.C.)
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (C.G.P.); (B.P.M.); (J.O.O.); (F.N.C.); (I.D.F.); (I.L.B.)
| |
Collapse
|
6
|
Dong Q, Dai G, Quan N, Tong Q. Role of natural products in cardiovascular disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/09/2024] [Indexed: 01/03/2025]
|
7
|
Figueiredo ID, Lima TFO, Carlstrom PF, Assis RP, Brunetti IL, Baviera AM. Lycopene in Combination with Insulin Triggers Antioxidant Defenses and Increases the Expression of Components That Detoxify Advanced Glycation Products in Kidneys of Diabetic Rats. Nutrients 2024; 16:1580. [PMID: 38892513 PMCID: PMC11173891 DOI: 10.3390/nu16111580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.
Collapse
Affiliation(s)
- Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Paulo Fernando Carlstrom
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
- Institute of Health Sciences, Paulista University (Unip), Araraquara 14804-300, SP, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, SP, Brazil; (I.D.F.); (T.F.O.L.); (P.F.C.); (R.P.A.); (I.L.B.)
| |
Collapse
|
8
|
Mazani M, Mahdavifard S, Koohi A. Crocetin ameliorative effect on diabetic nephropathy in rats through a decrease in transforming growth factor-β and an increase in glyoxalase-I activity. Clin Nutr ESPEN 2023; 58:61-66. [PMID: 38057037 DOI: 10.1016/j.clnesp.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Glycation, oxidative stress, and inflammation due to the elevation of transforming growth factor-β1 (TGF-β1) participate in diabetic nephropathy (DN). Thus, we investigated for the first time the effect of crocetin (Crt) on the renal histopathological parameters, TGF-β1 and glycation, oxidative stress, as well as inflammatory markers in the DN rat model. METHODS Forty male Wistar rats were randomly divided into 4 equal groups: normal (N), N + Crt, DN, and DN + Crt. DN was induced in rats with a combination of nephrectomy and streptozotocin. Treated groups received 100 mg/kg of Crt via intraperitoneal injection monthly for 3 months. Different glycation (glycated albumin, glycated LDL, Methylglyoxal, and pentosidine), oxidative stress (advanced oxidation protein products, malondialdehyde, glutathione, and paraoxonase-I (PON-1)), and inflammatory markers (tumor necrosis factor-α, myeloperoxidase, and TGF-β1), blood glucose, insulin, lipid profile, creatinine in the serum, and proteinuria, as well as the glyoxalase-1 (GLO-1) activity, was determined. RESULTS Crt decreased renal biochemical (Cre and PU) and histopathological (glomerulosclerosis) renal dysfunction parameters, diverse glycation, oxidative stress, and inflammatory markers in the DN rats. Furthermore, the treatment corrected glycemia, insulin resistance, and dyslipidemia as well as induced the activities of GLO-1 and PON-1. Over and above, the treatment decreased TGF-β1 in their serum (p > 0.001). CONCLUSIONS Crocetin improved DN owing to an advantageous effect on metabolic profile. Further, the treatment with a reducing effect on TGF-β1, oxidative stress, glycation, and inflammation markers along with an increase in Glo-1 activity showed multiple protective effects on kidney tissue.
Collapse
Affiliation(s)
- Mohammad Mazani
- Professor of the Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sina Mahdavifard
- Associate Professor of the Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Alireza Koohi
- Medicine Student of Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Kulawik A, Cielecka-Piontek J, Zalewski P. The Importance of Antioxidant Activity for the Health-Promoting Effect of Lycopene. Nutrients 2023; 15:3821. [PMID: 37686853 PMCID: PMC10490373 DOI: 10.3390/nu15173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Lycopene is a compound of colored origin that shows strong antioxidant activity. The positive effect of lycopene is the result of its pleiotropic effect. The ability to neutralize free radicals via lycopene is one of the foundations of its pro-health effect, including the ability to inhibit the development of many civilization diseases. Therefore, this study focuses on the importance of the antioxidant effect of lycopene in inhibiting the development of diseases such as cardiovascular diseases, diseases within the nervous system, diabetes, liver diseases, and ulcerative colitis. According to the research mentioned, lycopene supplementation has significant promise for the treatment of illnesses marked by chronic inflammation and oxidative stress. However, the majority of the supporting data for lycopene's health benefits comes from experimental research, whereas the evidence from clinical studies is both scarcer and less certain of any health benefits. Research on humans is still required to establish its effectiveness.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
10
|
Enayati A, Rezaei A, Falsafi SR, Rostamabadi H, Malekjani N, Akhavan-Mahdavi S, Kharazmi MS, Jafari SM. Bixin-loaded colloidal nanodelivery systems, techniques and applications. Food Chem 2023; 412:135479. [PMID: 36709686 DOI: 10.1016/j.foodchem.2023.135479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Sahar Akhavan-Mahdavi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
11
|
İnceören N, Akay F, Nas C, Deveci E, Kızıl G, Kızıl M. Antiglycative Effect of Combination of Extracts of Capsicum annuum (chilli) and Pyridoxamine Against Glycation in Streptozotocin-induced Experimental Diabetes in Rats. REVISTA BRASILEIRA DE FARMACOGNOSIA 2023; 33:831-846. [DOI: 10.1007/s43450-023-00414-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 06/02/2023] [Indexed: 01/03/2025]
|
12
|
Ennab W, Ye N, Wu H, Ullah S, Hadi T, Bassey AP, Mustafa S, Jiang J, Wei Q, Shi F. The Synergistic Effects of the Combination of L-Carnitine and Lycopene on the Lycopene Bioavailability and Duodenal Health of Roosters. Animals (Basel) 2023; 13:ani13081274. [PMID: 37106837 PMCID: PMC10134981 DOI: 10.3390/ani13081274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
The objective of this study was to investigate the impact of Lycopene and L-Carnitine, individually or in combination, on various physiological and molecular factors related to intestinal health and absorption ability in Roosters, such as intestinal morphology, serum biochemical parameters, genes involved in Lycopene uptake, nutritional transport genes, and tight junction genes. The findings of the study revealed that the combination of L-Carnitine and Lycopene supplementation had been found to increase the serum concentration levels of TP and ALB. Interestingly, the relative mRNA expression of genes responsible for Lycopene uptakes, such as SR-BI and BCO2, was higher in the LC group compared to other groups. Additionally, the expression of specific nutritional transport genes in the duodenum was significantly affected by both CAR and LC supplementation groups. The tight junction gene OCLN showed a significant increase in expression in the combination group compared to using either Lycopene or L-Carnitine alone. This study concludes that using Lycopene and L-carnitine in combination in poultry feed can potentially improve intestinal morphology and serum biochemical parameters, increase Lycopene bioavailability, improve nutrients uptake, and enhance the integrity of duodenal tight junctions in Roosters.
Collapse
Affiliation(s)
- Wael Ennab
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Nanwei Ye
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoze Wu
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Saif Ullah
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tavakolikazerooni Hadi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony Pius Bassey
- National Center of Meat Quality and Safety Control, Synergistic Innovation Center of Food Safety and Nutrition, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheeraz Mustafa
- Faculty of Veterinary Animal Sciences, Ziauddin University (ZUFVAS), Karachi 75600, Pakistan
| | - Jingle Jiang
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Quanwei Wei
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fangxiong Shi
- National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Combined Effects of Lycopene and Metformin on Decreasing Oxidative Stress by Triggering Endogenous Antioxidant Defenses in Diet-Induced Obese Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238503. [PMID: 36500596 PMCID: PMC9737677 DOI: 10.3390/molecules27238503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022]
Abstract
Since lycopene has antioxidant activity, its combination with metformin may be useful to contrast diabetic complications related to oxidative stress. This study aimed to investigate the effects of metformin combined with lycopene on high-fat diet (HFD)-induced obese mice. Seventy-two C57BL-6J mice were divided into six groups: C (control diet-fed mice), H (HFD-fed mice for 17 weeks), H-V (HFD-fed mice treated with vehicle), H-M (HFD-fed mice treated with 50 mg/kg metformin), H-L (HFD-fed mice treated with 45 mg/kg lycopene), and H-ML (HFD-fed mice treated with 50 mg/kg metformin + 45 mg/kg lycopene). Treatments were administered for 8 weeks. Glucose tolerance, insulin sensitivity, fluorescent AGEs (advanced glycation end products), TBARS (thiobarbituric acid-reactive substances), and activities of antioxidant enzymes paraoxonase-1 (PON-1; plasma), superoxide dismutase, catalase and glutathione peroxidase (liver and kidneys) were determined. Metformin plus lycopene reduced body weight; improved insulin sensitivity and glucose tolerance; and decreased AGEs and TBARS in plasma, liver and kidneys. Combined therapy significantly increased the activities of antioxidant enzymes, mainly PON-1. Lycopene combined with metformin improved insulin resistance and glucose tolerance, and caused further increases in endogenous antioxidant defenses, arising as a promising therapeutic strategy for combating diabetic complications resulting from glycoxidative stress.
Collapse
|
14
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
15
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
16
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|
17
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
18
|
El Shahawy M, El Deeb M. Assessment of the possible ameliorative effect of curcumin nanoformulation on the submandibular salivary gland of alloxan-induced diabetes in a rat model (Light microscopic and ultrastructural study). Saudi Dent J 2022; 34:375-384. [PMID: 35814842 PMCID: PMC9263756 DOI: 10.1016/j.sdentj.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background Nowadays, attention is directed to herbal treatments in an attempt to lessen the adverse effects of diabetes. Nanoformulation of curcumin (NC) was shown to enhance stability and water solubility compared to native curcumin. Objective To examine the effect of different NC concentrations on the histopathological structure of the submandibular salivary gland of diabetic rats. Methods 28 rats were divided equally into 4 groups. Group I: Control group, Group II (diabetic), III (diabetic + nanocurcumin low dose), and IV (diabetic + nanocurcumin high dose): Rats of groups II, III and IV were injected with a single dose of alloxan (140 mg/kg) to induce diabetes. After 7 days, groups III and IV were treated for 6 weeks with NC (100 mg/kg/day) for group III, and (200 mg/kg/day) for group IV. Submandibular salivary glands were assessed histologically, immunohistochemically using α smooth muscle actin (α SMA) and ultrastructurally. Results Diabetic samples showed destruction of parenchymal elements of the gland, with thick fiber bundles encircling the excretory ducts and minimal reaction for α SMA. Amelioration of the gland's architecture was detected in groups III and IV with reduction of collagen deposition and elevation of positive immunoreactivity to α SMA. Conclusion NC profoundly repaired the induced diabetic histopathological and ultrastructural alterations of the gland in a dose dependent manner.
Collapse
Key Words
- DM, diabetes mellitus
- Diabetes
- H&E, Hematoxylin and Eosin
- Masson trichrome
- NC, nanocurcumin
- NHD, nanocurcumin high dose
- NLD, nanocurcumin low dose
- Nanocurcumin
- RER, rough endoplasmic reticulum
- ROS, reactive oxygen species
- SD, standard deviation
- Submandibular salivary glands
- TEM, transmission electron microscope
- α SMA
- α SMA, α Smooth Muscle Actin
Collapse
Affiliation(s)
- Maha El Shahawy
- Associate Professor, Oral Biology Department, Faculty of Dentistry, Minia University, Egypt
| | - Mona El Deeb
- Professor, Oral Biology Department, Faculty of Oral & Dental Medicine, Future University in Egypt (FUE), Egypt
| |
Collapse
|
19
|
Oxidative Stress in Calcific Aortic Valve Stenosis: Protective Role of Natural Antioxidants. Antioxidants (Basel) 2022; 11:antiox11061169. [PMID: 35740065 PMCID: PMC9219756 DOI: 10.3390/antiox11061169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/01/2023] Open
Abstract
Calcific aortic valve stenosis (CAVS) is the most prevalent heart valvular disease worldwide and a slowly progressive disorder characterized by thickening of the aortic valve, calcification, and subsequent heart failure. Valvular calcification is an active cell regulation process in which valvular interstitial cells involve phenotypic conversion into osteoblasts/chondrocytes-like cells. The underlying pathophysiology is complicated, and there have been no pharmacological treatments for CAVS to date. Recent studies have suggested that an increase in oxidative stress is the major trigger of CAVS, and natural antioxidants could ameliorate the detrimental effects of reactive oxygen species in the pathogenesis of CAVS. It is imperative to review the current findings regarding the role of natural antioxidants in CAVS, as they can be a promising therapeutic approach for managing CAVS, a disorder currently without effective treatment. This review summarizes the current findings on molecular mechanisms associated with oxidative stress in the development of valvular calcification and discusses the protective roles of natural antioxidants in the prevention and treatment of CAVS.
Collapse
|
20
|
Edible Bioactive Film with Curcumin: A Potential "Functional" Packaging? Int J Mol Sci 2022; 23:ijms23105638. [PMID: 35628450 PMCID: PMC9147907 DOI: 10.3390/ijms23105638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Edible packaging has been developed as a biodegradable and non-toxic alternative to traditional petroleum-based food packaging. Biopolymeric edible films, in addition to their passive protective function, may also play a bioactive role as vehicles for bioactive compounds of importance to human health. In recent years, a new generation of edible food packaging has been developed to incorporate ingredients with functional potential that have beneficial effects on consumer health. Curcumin, a bioactive compound widely used as a natural dye obtained from turmeric rhizomes (Curcuma longa L.), has a broad spectrum of beneficial properties for human health, such as anti-inflammatory, anti-hypertensive, antioxidant, anti-cancer, and other activities. To demonstrate these properties, curcumin has been explored as a bioactive agent for the development of bioactive packaging, which can be referred to as functional packaging and used in food. The aim of this review was to describe the current and potential research on the development of functional-edible-films incorporating curcumin for applications such as food packaging.
Collapse
|
21
|
Lycopene: A Potent Antioxidant for the Amelioration of Type II Diabetes Mellitus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072335. [PMID: 35408734 PMCID: PMC9000630 DOI: 10.3390/molecules27072335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Nutrition is of utmost importance in chronic disease management and has often been described as the cornerstone of a variety of non-communicable diseases. In particular, type II diabetes mellitus (T2DM) represents a prevalent and global public health crisis. Lycopene, a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables, has been extensively studied for its biological activities and treatment efficiency in diabetes care. Epidemiological investigations indicate that lycopene has potential antioxidant properties, is capable of scavenging reactive species, and alleviates oxidative stress in T2DM patients. This review aims to summarize the characteristics and mechanisms of action of lycopene as a potent antioxidant for T2DM. In addition, the evidence demonstrating the effects of lycopene on glycemic control and oxidative stress biomarkers in T2DM are also highlighted using animal and human studies as literature approach.
Collapse
|
22
|
Talpo TC, Motta BP, Oliveira JOD, Figueiredo ID, Pinheiro CG, dos Santos CHC, Carvalho MGD, Brunetti IL, Baviera AM. Siolmatra brasiliensis stem extract ameliorates antioxidant defenses and mitigates glycoxidative stress in mice with high-fat diet-induced obesity. Obes Res Clin Pract 2022; 16:130-137. [DOI: 10.1016/j.orcp.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
|
23
|
Abo El-Magd NF, Ramadan NM, Eraky SM. The ameliorative effect of bromelain on STZ-induced type 1 diabetes in rats through Oxi-LDL/LPA/LPAR1 pathway. Life Sci 2021; 285:119982. [PMID: 34592232 DOI: 10.1016/j.lfs.2021.119982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/04/2023]
Abstract
AIMS Diabetes, a serious worldwide problem, is modulated via inflammation and oxidative stress. Bromelain, a natural compound, recently attracts interest due to its anti-inflammatory effects, while its mode of action remains not properly understood. Thus, investigating the antidiabetic effect of bromelain is promising. MATERIALS AND METHODS Rats were randomized into normal group, STZ group (were administrated single intraperitoneal (i.p) injection of 55 mg/kg streptozotocin (STZ)) and STZ + Bro group (were administrated single i.p injection of STZ, 72 h later were i.p administrated 10 mg/kg/day bromelain for 15 days). Wound healing ability was investigated for different groups. Spectrophotometry, ELISA, histopathological and immunohistochemical techniques were applied. KEY FINDINGS Bromelain significantly decreased fasting blood glucose, serum triglycerides and cholesterol and hepatic malondialdehyde levels compared with STZ group. Moreover, Bromelain significantly increased serum albumin and total protein levels and percentage of wound healing compared with STZ group. These results were confirmed through the histopathological examination of liver, pancreas, and skin tissues. Investigating the molecular mechanism underlying these effects, STZ injection caused significant increase in hepatic oxidized-LDL (Oxi-LDL) and lysophosphatidic acid (LPA) levels and hepatic lysophosphatidic acid receptor 1 (LPAR1), and beta secretase (BACE1) protein tissue expressions, while bromelain significantly aborted these effects. Thus, STZ caused upregulation of Oxi-LDL/LPA/LPAR1/BACE1 pathway, while bromelain significantly ameliorated these effects. SIGNIFICANCE To our best knowledge, this study represents the 1st study investigating Oxi-LDL/LPA/LPAR1/BACE1 pathway in STZ-induced diabetes in rats, in addition to the promising ameliorative effect of bromelain in STZ-induced diabetes in rats.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
24
|
Martínez-Galán JP, Ontibón-Echeverri CM, Campos Costa M, Batista-Duharte A, Guerso Batista V, Mesa V, Monti R, Veloso de Paula A, Martins Baviera A. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res Int 2021; 148:110602. [PMID: 34507747 DOI: 10.1016/j.foodres.2021.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The objective of this study was to produce structured lipids (SLs) by enzymatic acidolysis using Rhizopus oryzae lipase covalently immobilized in a low-cost material. Grape seed oil was used to synthesize SLs containing the medium-chain fatty acid (C10:0) capric acid. SL synthesis led to 38.8% medium-chain fatty acid incorporation with 5 reuses of the enzymatic derivative. The reaction conditions for the synthesis of MLM-TAGs (triacylglycerols with one long- and two medium-chain acyl residues) were at a molar ratio of fatty acid:oil of 3:1, performed at 40 °C and lipase immobilized load of 5% (w/w). The in vivo effects of SLs were studied in Swiss mice fed premade diets: control (C) diet, high-fat diet (HFD) with 100% lipid content as lard, HFD with 50% lipid content as grape seed oil (HG) or HFD with 50% lipid content as capric acid-containing SLs produced from grape seed oil (HG-MCT). Mice from HG and HG-MCT groups had decreases in body weight gain and reductions in the weights of white adipose tissues. In addition, HG and HG-MCT mice had low plasma levels of glucose and total cholesterol, and improvements in the glucose tolerance. HG and HG-MCT diets have remarkable antioxidant properties, since low plasma levels of TBARS (thiobarbituric acid reactive substances, biomarkers of lipid peroxidation) were found in mice fed these diets. Interestingly, TBARS levels in HG-MCT mice were further decreased than values of HG mice. Mice fed HG and HG-MCT diets also showed preservation in the activity of the antioxidant enzyme paraoxonase 1. Both HG and HG-MCT diets promoted reduction of IL-6 and IL-10 production by splenocytes. The capric acid-containing SLs produced from grape seed oil emerges as a functional oil capable to mitigate obesity complications resulting from oxidative stress and inflammation.
Collapse
Affiliation(s)
- Julián Paul Martínez-Galán
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | | | - Mariana Campos Costa
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Alexander Batista-Duharte
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Vinicius Guerso Batista
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Victoria Mesa
- School of Nutrition and Dietetic, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia
| | - Rubens Monti
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| | - Amanda Martins Baviera
- School of Pharmaceutical Sciences, Department of Clinical Analysis, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil.
| |
Collapse
|
25
|
Khalil NA, Eltahan NR, Elaktash HM, Aly S, Sarbini SR. Prospective evaluation of probiotic and prebiotic supplementation on diabetic health associated with gut microbiota. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Gasparin AT, Rosa ES, Jesus CHA, Guiloski IC, da Silva de Assis HC, Beltrame OC, Dittrich RL, Pacheco SDG, Zanoveli JM, da Cunha JM. Bixin attenuates mechanical allodynia, anxious and depressive-like behaviors associated with experimental diabetes counteracting oxidative stress and glycated hemoglobin. Brain Res 2021; 1767:147557. [PMID: 34107278 DOI: 10.1016/j.brainres.2021.147557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, depression, and anxiety are common comorbidities in diabetic patients, whose pathophysiology involves hyperglycemia-induced increased oxidative stress. Bixin (BIX), an apocarotenoid extracted from the seeds of Bixa orellana, has been used in traditional medicine to treat diabetes and has been recognized by its antioxidant profile. We aimed to investigate the effect of the BIX over the mechanical allodynia, depressive, and anxious-like behaviors associated with experimental diabetes, along with its involved mechanisms. Streptozotocin-induced diabetic rats were treated for 17 days (starting 14 days after diabetes induction) with the corresponding vehicle, BIX (10, 30 or 90 mg/kg; p.o), or INS (6 IU; s.c.). Mechanical allodynia, depressive, and anxious-like behavior were assessed by electronic Von Frey, forced swimming, and elevated plus-maze tests, respectively. Locomotor activity was assessed by the open field test. Blood glycated hemoglobin (HbA1) and the levels of lipid peroxidation (LPO) and reduced glutathione (GSH) were evaluated on the hippocampus, pre-frontal cortex, lumbar spinal cord, and sciatic nerve. Diabetic animals developed mechanical allodynia, depressive and anxious-like behavior, increased plasma HbA1, increased LPO, and decreased GSH levels in tissues analyzed. Repeated BIX-treatment (at all tested doses) significantly attenuated mechanical allodynia, the depressive (30 and 90 mg/kg) and, anxious-like behaviors (all doses) in diabetic rats, without changing the locomotor performance. BIX (at all tested doses) restored the oxidative parameters in tissues analyzed and reduced the plasma HbA1. Thereby, bixin may represent an alternative for the treatment of comorbidities associated with diabetes, counteracting oxidative stress and plasma HbA1.
Collapse
Affiliation(s)
- Alexia Thamara Gasparin
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Evelize Stacoviaki Rosa
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Carlos Henrique Alves Jesus
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Izonete Cristina Guiloski
- Laboratory of Toxicology, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | | | - Olair Carlos Beltrame
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | - Rosângela Locatelli Dittrich
- Laboratory of Veterinary Clinical Pathology, Department of Veterinary Medicine, Federal University of Paraná, 80035-050 Curitiba, PR, Brazil
| | | | - Janaina Menezes Zanoveli
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil
| | - Joice Maria da Cunha
- Laboratory of Pharmacology of Pain, Department of Pharmacology, Federal University of Paraná, 81531-170 Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Leena MM, Silvia MG, Vinitha K, Moses JA, Anandharamakrishnan C. Synergistic potential of nutraceuticals: mechanisms and prospects for futuristic medicine. Food Funct 2021; 11:9317-9337. [PMID: 33211054 DOI: 10.1039/d0fo02041a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nutraceuticals are valued for their therapeutic effects and numerous health benefits. In recent years, several studies have demonstrated their superior performances when co-delivered; the concept of synergism has been established for various bioactives. Apart from improvements in the bioavailability of partnering compounds, this approach can protect the radical scavenging potential and biological effects of individual compounds. In this review, the intricate mechanisms that promote synergistic effects when bioactive compounds are co-delivered are detailed. Importantly, a range of potential medical applications that have been established through such synergistic effects is presented, emphasizing recent developments in this field. Also, a section has been devoted to highlighting perspectives on co-encapsulation at the nanoscale for improved synergistic benefits. While prospects for the treatment of chronic diseases are well-demonstrated, several challenges and safety concerns remain, and these have been discussed, providing recommendations for future research.
Collapse
Affiliation(s)
- M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur - 613005, Tamil Nadu, India.
| | | | | | | | | |
Collapse
|
28
|
Santana MS, Lopes R, Peron IH, Cruz CR, Gaspar AM, Costa PI. Natural Bioactive Compounds as Adjuvant Therapy for Hepatitis C Infection. CURRENT NUTRITION & FOOD SCIENCE 2021. [DOI: 10.2174/1573401316999201009152726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Hepatitis C virus infection is a significant global health burden, which
causes acute or chronic hepatitis. Acute hepatitis C is generally asymptomatic and progresses to
cure, while persistent infection can progress to chronic liver disease and extrahepatic manifestations.
Standard treatment is expensive, poorly tolerated, and has variable sustained virologic responses
amongst the different viral genotypes. New therapies involve direct acting antivirals; however,
it is also very expensive and may not be accessible for all patients worldwide. In order to provide
a complementary approach to the already existing therapies, natural bioactive compounds are
investigated as to their several biologic activities, such as direct antiviral properties against hepatitis
C, and effects on mitigating chronic progression of the disease, which include hepatoprotective,
antioxidant, anticarcinogenic and anti-inflammatory activities; additionally, these compounds present
advantages, as chemical diversity, low cost of production and milder or inexistent side effects.
Objective:
To present a broad perspective on hepatitis C infection, the chronic disease, and natural
compounds with promising anti-HCV activity. Methods: This review consists of a systematic review
study about the natural bioactive compounds as a potential therapy for hepatitis C infection.
Results:
The quest for natural products has yielded compounds with biologic activity, including viral
replication inhibition in vitro, demonstrating antiviral activity against hepatitis C.
Conclusion:
One of the greatest advantages of using natural molecules from plant extracts is the
low cost of production, not requiring chemical synthesis, which can lead to less expensive therapies
available to low and middle-income countries.
Collapse
Affiliation(s)
- Moema S. Santana
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Rute Lopes
- Department of Biotechnology, Institute of Chemistry, Sao Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Isabela H. Peron
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Carla R. Cruz
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Ana M.M. Gaspar
- Department of Biotechnology, Institute of Chemistry, São Paulo State University (UNESP), Araraquara-SP, Brazil
| | - Paulo I. Costa
- Food and Nutrition Department, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara-SP, Brazil
| |
Collapse
|
29
|
Nery M, Ferreira PS, Gonçalves DR, Spolidorio LC, Manthey JA, Cesar TB. Physiological effects of tangeretin and heptamethoxyflavone on obese C57BL/6J mice fed a high-fat diet and analyses of the metabolites originating from these two polymethoxylated flavones. Food Sci Nutr 2021; 9:1997-2009. [PMID: 33841818 PMCID: PMC8020949 DOI: 10.1002/fsn3.2167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 01/17/2021] [Indexed: 12/29/2022] Open
Abstract
Two compounds from citrus peel, tangeretin (TAN) and 3',4',3,5,6,7,8-heptamethoxyflavone (HMF), were investigated for their abilities to repair metabolic damages caused by an high-fat diet (HFD) in C57BL/6J mice. In the first 4 weeks, mice were fed either a standard diet (11% kcal from fat) for the control group, or a HFD (45% kcal from fat) to establish obesity in three experimental groups. In the following 4 weeks, two groups receiving the HFD were supplemented with either TAN or HMF at daily doses of 100 mg/kg body weight, while the two remaining groups continued to receive the standard healthy diet or the nonsupplemented HFD. Four weeks of supplementation with TAN and HMF resulted in intermediate levels of blood serum glucose, leptin, resistin, and insulin resistance compared with the healthy control and the nonsupplemented HFD groups. Blood serum peroxidation (TBARS) levels were significantly lower in the TAN and HMF groups compared with the nonsupplemented HFD group. Several differences occurred in the physiological effects of HMF versus TAN. TAN, but not HMF, reduced adipocyte size in the mice with pre-existent obesity, while HMF, but not TAN, decreased fat accumulation in the liver and also significantly increased the levels of an anti-inflammatory cytokine, IL-10. In an analysis of the metabolites of TAN and HMF, several main classes occurred, including a new set of methylglucuronide conjugates. It is suggested that contrasts between the observed physiological effects of TAN and HMF may be attributable to the differences in numbers and chemical structures of TAN and HMF metabolites.
Collapse
Affiliation(s)
- Marina Nery
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| | - Paula S. Ferreira
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Danielle R. Gonçalves
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Luis C. Spolidorio
- Department of Physiology and PathologySchool of DentistrySão Paulo State University (UNESP)AraraquaraBrazil
| | - John A. Manthey
- U.S. Horticultural Research LaboratoryAgricultural Research ServiceUSDAFort PierceFLUSA
| | - Thais B. Cesar
- Department of Food and NutritionLaboratory of NutritionFaculty of Pharmaceutical SciencesSão Paulo State University (UNESP)AraraquaraBrazil
| |
Collapse
|
30
|
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL, Su GF. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47:75. [PMID: 33693955 PMCID: PMC7949626 DOI: 10.3892/ijmm.2021.4908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a type of retinal microangiopathy caused by diabetes mellitus. It has become the leading cause of blindness among working individuals worldwide. DR is becoming increasingly common among younger diabetic patients and there is a need for lifelong treatment. The pathogenic mechanisms of DR are influenced by a number of factors, such as hyperglycemia, hyperlipidemia, inflammatory response and oxidative stress, among others. Currently, the treatment methods for DR mainly include retinal photocoagulation, vitrectomy, or anti‑vascular endothelial growth factor (VEGF) therapy. However, these methods have some disadvantages and limitations. Therefore, it is a matter of great interest and urgency to discover drugs that can target the pathogenesis of DR. Since ancient times, traditional Chinese medicine practitioners have accumulated extensive experiences in the use of Chinese herbal medicine for the prevention and treatment of diseases. In the theory of traditional Chinese medicine, curcumin has the effects of promoting blood circulation and relieving pain. A number of studies have also demonstrated that curcumin has multiple biological activities, including exerting anti‑apoptotic, anti‑inflammatory, antioxidant and antitumor properties. In recent years, studies have also confirmed that curcumin can prevent a variety of diabetic complications, including diabetic nephropathy (DN). However, the preventive and curative effects of curcumin on DR and its mechanisms of action have not yet been fully elucidated. The present review aimed to explore the therapeutic potential of curcumin in diabetes mellitus and DR.
Collapse
Affiliation(s)
- Jian Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiao Miao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Feng-Juan Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Feng Cao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xin Liu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jin-Ling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guan-Fang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
31
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
32
|
Al-Jameel SS. The activity of curcumin combined with ZnCl₂ on streptozotocin-induced diabetic rats. An anti-diabetic, anti-hyperlipidemic study . JOURNAL OF ADVANCED PHARMACY EDUCATION AND RESEARCH 2021; 11:189-198. [DOI: 10.51847/o1gqkvmdou] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Zhang S, Li L, Chen W, Xu S, Feng X, Zhang L. Natural products: The role and mechanism in low-density lipoprotein oxidation and atherosclerosis. Phytother Res 2020; 35:2945-2967. [PMID: 33368763 DOI: 10.1002/ptr.7002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerosis is a chronic inflammatory, metabolic, and epigenetic disease, which leads to the life-threatening coronary artery disease. Emerging studies from bench to bedside have demonstrated the pivotal role of low-density lipoprotein (LDL) oxidation in the initiation and progression of atherosclerosis. This article hereby reviews oxidation mechanism of LDL, and the pro-atherogenic and biomarker role of oxidized LDL in atherosclerosis. We also review the pharmacological effects of several representative natural products (vitamin E, resveratrol, quercetin, probucol, tanshinone IIA, epigallocatechin gallate, and Lycopene) in protecting against LDL oxidation and atherosclerosis. Clinical and basic research supports the beneficial effects of these natural products in inhibiting LDL oxidation and preventing atherosclerosis, but the data are still controversial. This may be related to factors such as the population and the dosage and time of taking natural products involved in different studies. Understanding the mechanism of LDL oxidation and effect of oxidized LDL help researchers to find novel therapies against atherosclerosis.
Collapse
Affiliation(s)
- Shengyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wenxu Chen
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Kirisci M, Guneri B, Seyithanoglu M, Kazanci U. Lycopene hampers lung injury due to skeletal muscle ischemia-reperfusion in rat model. INT J VITAM NUTR RES 2020; 92:240-247. [PMID: 32856544 DOI: 10.1024/0300-9831/a000678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study investigates lycopene's preventive efficacy in skeletal muscle ischemia-reperfusion (I/R) induced lung injury. Thirty-two rats were randomly assigned to control group, lycopene group, I/R group and I/R + lycopene group. In the lycopene and I/R + lycopene groups, the rats initially received 10 mg/kg/day lycopene orally for 15 days. Then, dissection around the abdominal aorta was performed in all rats under general anesthesia. The aorta was clamped at the infrarenal level in the I/R group and I/R + lycopene group for two hours before two hours of reperfusion. The mean serum levels of malondialdehyde (53.0 ± 20.14 nmol/mL) and superoxide dismutase (1.03 ± 0.16 U/mL) were higher and lower in the I/R group than the other three groups, respectively (p < 0.001). The mean serum IMA level of I/R + lycopene group (0.42 ± 0.04 abs/u) was lower than the I/R group (0.47 ± 0.04 abs/u) (p = 0.015). The mean tissue malondialdehyde levels of I/R group (69.10 ± 11.55 nmol/mL) and I/R + lycopene group (68.36 ± 21.17 nmol/mL) were high compared to the control group (49.87 ± 6.52 nmol/mL) and lycopene group (47.82 ± 4.44 nmol/mL) (p = 0.002). The mean tissue glutathione peroxidase (p < 0.001) and superoxide dismutase (p = 0.001) levels of I/R group (121.81 ± 43.59 nmol/mL and 25.17 ± 8.69 U/mL) were low compared to the control group (236.12 ± 18.01 nmol/mL and 46.30 ± 5.17 U/mL), lycopene group (227.52 ± 16.92 nmol/mL and 45.82 ± 4.02 U/mL), and I/R + lycopene group (176.02 ± 24.27 nmol/mL and 35.20 ± 4.85 U/mL). The histopathological analyses of I/R + lycopene group indicated less significant changes than the control group. Tissue damage in the I/R + lycopene group was less prominent than the I/R group. These findings suggest oral lycopene supplementation as a promising prevention against skeletal muscle I/R caused lung injury.
Collapse
Affiliation(s)
- Mehmet Kirisci
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Cardiovascular Surgery, Kahramanmaras, Turkey
| | - Bulent Guneri
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Orthopedics and Traumatology, Kahramanmaras, Turkey
| | - Muhammed Seyithanoglu
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Medical Biochemistry, Kahramanmaras, Turkey
| | - Ulku Kazanci
- Kahramanmaras Sutcu Imam University, Faculty of Medicine, Department of Medical Pathology, Kahramanmaras, Turkey
| |
Collapse
|
35
|
Inacio MD, Costa MC, Lima TFO, Figueiredo ID, Motta BP, Spolidorio LC, Assis RP, Brunetti IL, Baviera AM. Pentoxifylline mitigates renal glycoxidative stress in obese mice by inhibiting AGE/RAGE signaling and increasing glyoxalase levels. Life Sci 2020; 258:118196. [PMID: 32763295 DOI: 10.1016/j.lfs.2020.118196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022]
Abstract
AIM The pharmacological properties of pentoxifylline have been re-evaluated, particularly in chronic kidney disease in diabetes, favored by its anti-inflammatory action. Definitive evidences of renal outcomes are lacking, which indicates the need for investigation of novel mechanisms of action of pentoxifylline. We postulated that components associated with the metabolism of advanced glycation end products (AGEs) may be modulated by pentoxifylline, which consequently decreases the detrimental effects of obesity on kidneys. MAIN METHODS C57BL-6J mice were fed a high-fat diet for 14 weeks and treated with 50 mg/kg pentoxifylline during the last 7 weeks. Changes in the renal levels of AGE metabolism-associated components were investigated, with particular focus on the receptor for AGEs (RAGE), its downstream components, and components related to AGE detoxification, including glyoxalase 1 (GLO 1). KEY FINDINGS Pentoxifylline reduced body weight gain, improved insulin sensitivity and glucose tolerance, downregulated biomarkers of glycoxidative stress, and enhanced plasma paraoxonase 1 activity. In the kidneys, pentoxifylline inhibited glomerular expansion, lipid deposition, reduced pro-inflammatory cytokine levels, and induced the activation of AMP-activated protein kinase. Pentoxifylline inhibited the renal accumulation of AGEs and reduced the levels of RAGE and its downstream components, and consequently mitigated oxidative stress and apoptosis. Pentoxifylline also increased the renal levels of GLO 1 and the activities of antioxidant enzymes. Urinary albumin levels were observed to be lowered, which reconfirmed the antialbuminuric effects of pentoxifylline. SIGNIFICANCE The novel mechanisms of action help explain the renoprotective effects of pentoxifylline and the attenuation of obesity-associated renal complications related to glycoxidative stress.
Collapse
Affiliation(s)
- Maiara Destro Inacio
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Mariana Campos Costa
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Ingrid Delbone Figueiredo
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Bruno Pereira Motta
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Luís Carlos Spolidorio
- São Paulo State University (Unesp), Araraquara School of Dentistry, Department of Physiology and Pathology, Araraquara, São Paulo, Brazil
| | - Renata Pires Assis
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil; Paulista University (UNIP), Institute of Health Sciences, Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
36
|
Curcumin derivatives for Type 2 Diabetes management and prevention of complications. Arch Pharm Res 2020; 43:567-581. [PMID: 32557163 DOI: 10.1007/s12272-020-01240-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes Mellitus (T2DM) is characterized by chronically increased blood glucose levels, which is associated with impairment of the inflammatory and oxidative state and dyslipidaemia. Although it is considered a world heath concern and one of the most studied diseases, we are still pursuing an effective therapy for both the pathophysiological mechanisms and the complications. Curcumin, a natural compound found in the rhizome of Curcuma longa, is well known for its numerous biological activities, as demonstrated by several studies supporting that curcumin possesses hypoglycaemic, hypolipidemic, anti-inflammatory and antioxidant properties, among others. These effects have been explored to the attenuation of hyperglycaemia and progression of DM complications, being appointed as a potential therapeutic approach. Besides its strong intrinsic activity, the polyphenol has low bioavailability, compromising its therapeutic efficacy. In order to overcome this limitation, several chemical strategies have been applied to curcumin, such as drug delivery systems, chemical manipulation and the use of adjuvant therapies. Given the promising results obtained with curcumin derivative, in this review we discuss not only the therapeutic targets of curcumin, but also its most recently developed analogues and their efficacy in the management of T2DM pathophysiology and complications.
Collapse
|
37
|
Lycopene in protection against obesity and diabetes: A mechanistic review. Pharmacol Res 2020; 159:104966. [PMID: 32535223 DOI: 10.1016/j.phrs.2020.104966] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Lycopene, a natural pigment that mainly exists in the mature fruit of tomatoes, has gained increasing attention due to its protective effects against obesity and diabetes. The aim of this review is to summarize the potential mechanisms in which lycopene exerts protection against obesity and diabetes, along with highlighting its bioavailability, synthesis and safety. Literature sources used in this review were from the PubMed Database, China Knowledge Resource Integrated Database, China Science and Technology Journal Database, National Science and Technology Library, Wanfang Data, and the Web of Science. For the inquiries, keywords such as lycopene, properties, synthesis, diabetes, obesity, and safety were used in various combinations. About 200 articles and reviews were evaluated. Lycopene exhibits anti-obesity and anti-diabetic activities in different organs and/or tissues, including adipose tissue, liver, kidney, pancreas, brain, ovaries, intestine, and eyes. The underlying mechanism may be attributed to its anti-oxidant and anti-inflammatory properties and through its ability to regulate of AGE/RAGE, JNK/MAPK, PI3K/Akt, SIRT1/FoxO1/PPARγ signaling pathways and AchE activity. The epidemiological investigations support that lycopene consumption may contribute to lowering the risk of obesity and diabetes. The cis-isomers of lycopene are more bioavailable and better absorbed than trans-lycopene, and mainly distribute in liver and adipose tissue. Lycopene exhibits a good margin of safety and can be obtained by plant extraction, chemical synthesis and microbial fermentation. In summary, lycopene consumption beneficially contributes to protecting against diabetes and obesity in animal studies and epidemiological investigations, which supports the potential of this compound as a preventive/therapeutic agent against these disorders. Well-designed, prospective clinical studies are warranted to evaluate the potential therapeutic effect of lycopene against common metabolic diseases.
Collapse
|
38
|
Curcumin, Alone or in Combination with Aminoguanidine, Increases Antioxidant Defenses and Glycation Product Detoxification in Streptozotocin-Diabetic Rats: A Therapeutic Strategy to Mitigate Glycoxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1036360. [PMID: 32566072 PMCID: PMC7260652 DOI: 10.1155/2020/1036360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Both oxidative stress and the exacerbated generation of advanced glycation end products (AGEs) have crucial roles in the onset and progression of diabetic complications. Curcumin has antioxidant and antidiabetic properties; its combination with compounds capable of preventing the advanced glycation events, such as aminoguanidine, is an interesting therapeutic option to counteract diabetic complications. This study is aimed at investigating the effects of treatments with curcumin or aminoguanidine, alone or in combination, on metabolic alterations in streptozotocin-diabetic rats; the focus was mainly on the potential of these bioactive compounds to oppose the glycoxidative stress. Curcumin (90 mg/kg) or aminoguanidine (50 and 100 mg/kg), alone or in combination, slightly decreased glycemia and the biomarkers of early protein glycation, but markedly decreased AGE levels (biomarkers of advanced glycation) and oxidative damage biomarkers in the plasma, liver, and kidney of diabetic rats. Some novel insights about the in vivo effects of these bioactive compounds are centered on the triggering of cytoprotective machinery. The treatments with curcumin and/or aminoguanidine increased the activities of the antioxidant enzymes (paraoxonase 1, superoxide dismutase, and catalase) and the levels of AGE detoxification system components (AGE-R1 receptor and glyoxalase 1). In addition, combination therapy between curcumin and aminoguanidine effectively prevented dyslipidemia in diabetic rats. These findings demonstrate the combination of curcumin (natural antioxidant) and aminoguanidine (prototype therapeutic agent with anti-AGE activity) as a potential complementary therapeutic option for use with antihyperglycemic agents, which may aggregate beneficial effects against diabetic complications.
Collapse
|
39
|
Zhou T, Wang Y, Liu M, Huang Y, Shi J, Dong N, Xu K. Curcumin inhibits calcification of human aortic valve interstitial cells by interfering NF-κB, AKT, and ERK pathways. Phytother Res 2020; 34:2074-2081. [PMID: 32189385 DOI: 10.1002/ptr.6674] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The osteogenic differentiation of human aortic valve interstitial cells (hVICs) is the key cellular mechanism of calcified aortic valve disease (CAVD). This study aimed to explore how curcumin (CCM) inhibits the osteogenic differentiation of hVICs and elucidate the molecular mechanisms involved. In this study, CCM inhibited the osteogenic differentiation of hVICs under osteogenic medium (OM) conditions by reversing the OM-induced increase in calcified nodule formation and osteogenesis-specific markers (ALP and Runx2). RNA sequencing identified 475 common differentially expressed genes with Venn diagrams of the different groups. Kyoto Encyclopedia of Genes and Genomes enrichment revealed that the CCM inhibition of hVIC osteogenic differentiation was enriched in the NF-κB, PI3K-AKT, TNF, Jak-STAT, and MAPK signaling pathways. In addition, CCM suppressed the phosphorylation of ERK, IκBα, AKT, and interfered with the translocation of P65 into the cell nucleus in hVICs under OM culture conditions. In conclusion, CCM inhibited the osteogenic differentiation of hVICs via interfering with the activation of NF-κB/AKT/ERK signaling pathways. Our findings provide novel insights into a critical role for CCM in CAVD progression and shed new light on CCM-directed therapeutics for CAVD.
Collapse
Affiliation(s)
- Tingwen Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuming Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Costa MC, Lima TFO, Arcaro CA, Inacio MD, Batista-Duharte A, Carlos IZ, Spolidorio LC, Assis RP, Brunetti IL, Baviera AM. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J Nutr Biochem 2020; 76:108303. [DOI: 10.1016/j.jnutbio.2019.108303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/17/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
|
41
|
Figueiredo ID, Lima TFO, Inácio MD, Costa MC, Assis RP, Brunetti IL, Baviera AM. Lycopene Improves the Metformin Effects on Glycemic Control and Decreases Biomarkers of Glycoxidative Stress in Diabetic Rats. Diabetes Metab Syndr Obes 2020; 13:3117-3135. [PMID: 32982345 PMCID: PMC7495351 DOI: 10.2147/dmso.s265944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Oxidative stress and exacerbated generation of advanced glycation end products (AGEs) participate in the onset of diabetic complications. Lycopene is a potent antioxidant; evidence accounts for its ability to mitigate diabetic disturbances, including the deleterious events of advanced glycation. Therefore, this carotenoid has emerged as a candidate to be used in combination with antidiabetic drugs, such as metformin, attempting to counteract the glycoxidative stress. This study investigated the effects of the treatments with lycopene or metformin, alone or in combination, on glycoxidative stress biomarkers and antioxidant defenses in diabetic rats. METHODS Streptozotocin-induced diabetic rats were treated for 35 days with lycopene (45 mg/kg) or metformin (250 mg/kg), alone or as mixtures in yoghurt. Plasma levels of glucose, triglycerides, cholesterol, thiobarbituric acid reactive substances and protein carbonyl groups (biomarkers of oxidative damage), fluorescent AGEs (biomarkers of advanced glycation), and paraoxonase 1 activity (antioxidant enzyme) were assessed. Changes in the hepatic and renal levels of glycoxidative damage biomarkers and the activities of antioxidant enzymes were investigated. RESULTS The combination of lycopene with metformin maintained the beneficial effects of the isolated treatments, improving the glucose tolerance and lipid profile, lessening biomarkers of oxidative damage, and increasing the paraoxonase 1 activity. Besides, the combined therapy caused further decreases in postprandial glycemia, plasma levels of cholesterol and AGEs, avoided lipid peroxidation (plasma, kidney), and increased antioxidant defenses, mainly the activity of superoxide dismutase (liver, kidney), indicating the maintenance of the lycopene effects. CONCLUSION Lycopene combined with metformin may act synergistically in the control of postprandial glycemia, dyslipidemia and glycoxidative stress, as well as increased antioxidant defenses, arising as a promising therapeutic strategy to mitigate diabetic complications.
Collapse
Affiliation(s)
- Ingrid Delbone Figueiredo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Maiara Destro Inácio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Mariana Campos Costa
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Renata Pires Assis
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- Correspondence: Amanda Martins Baviera Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University Rodovia Araraquara Jaú, Km 01 – s/n, Campos Ville, Araraquara, São PauloCEP 14800-903, BrazilTel +55 16 3301 5717Fax +55 16 3322 0073 Email
| |
Collapse
|
42
|
Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, Tewari D, Xu S, Nabavi SM. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv 2020; 38:107343. [DOI: 10.1016/j.biotechadv.2019.01.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
|
43
|
Ferron AJT, Aldini G, Francisqueti-Ferron FV, Silva CCVDA, Bazan SGZ, Garcia JL, Campos DHSD, Ghiraldeli L, Kitawara KAH, Altomare A, Correa CR, Moreto F, Ferreira ALA. Protective Effect of Tomato-Oleoresin Supplementation on Oxidative Injury Recoveries Cardiac Function by Improving β-Adrenergic Response in a Diet-Obesity Induced Model. Antioxidants (Basel) 2019; 8:antiox8090368. [PMID: 31480719 PMCID: PMC6770924 DOI: 10.3390/antiox8090368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/01/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022] Open
Abstract
The system redox imbalance is one of the pathways related to obesity-related cardiac dysfunction. Lycopene is considered one of the best antioxidants. The aim of this study was to test if the tomato-oleoresin would be able to recovery cardiac function by improving β-adrenergic response due its antioxidant effect. A total of 40 animals were randomly divided into two experimental groups to receive either the control diet (Control, n = 20) or a high sugar-fat diet (HSF, n = 20) for 20 weeks. Once cardiac dysfunction was detected by echocardiogram in the HSF group, animals were re- divided to begin the treatment with Tomato-oleoresin or vehicle, performing four groups: Control (n = 6); (Control + Ly, n = 6); HSF (n = 6) and (HSF + Ly, n = 6). Tomato oleoresin (10 mg lycopene/kg body weight (BW) per day) was given orally every morning for a 10-week period. The analysis included nutritional and plasma biochemical parameters, systolic blood pressure, oxidative parameters in plasma, heart, and cardiac analyses in vivo and in vitro. A comparison among the groups was performed by two-way analysis of variance (ANOVA). Results: The HSF diet was able to induce obesity, insulin-resistance, cardiac dysfunction, and oxidative damage. However, the tomato-oleoresin supplementation improved insulin-resistance, cardiac remodeling, and dysfunction by improving the β-adrenergic response. It is possible to conclude that tomato-oleoresin is able to reduce the oxidative damage by improving the system’s β-adrenergic response, thus recovering cardiac function.
Collapse
Affiliation(s)
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | | | | | | | | | - Luciana Ghiraldeli
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | | - Alessandra Altomare
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | | | - Fernando Moreto
- Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil
| | | |
Collapse
|
44
|
The Association between PON1 (Q192R and L55M) Gene Polymorphisms and Risk of Cancer: A Meta-Analysis Based on 43 Studies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5897505. [PMID: 31467900 PMCID: PMC6699405 DOI: 10.1155/2019/5897505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/16/2019] [Accepted: 07/01/2019] [Indexed: 02/08/2023]
Abstract
Q192R and L55M polymorphism were considered to be associated with the development of multiple cancers. Nevertheless, the results of these researches were inconclusive and controversial. Therefore, we conducted a meta-analysis of all eligible case-control studies to assess the association between PON1 (Q192R and L55M) gene polymorphisms and risk of cancer. With the STATA 14.0 software, we evaluated the strength of the association by using the odds ratios (ORs) and 95% confidence intervals (CIs). A total of 43 case-control publications 19887 cases and 23842 controls were employed in our study. In all genetic models, a significant association between PON1-L55M polymorphisms and overall cancer risk was observed. Moreover, in the stratified analyses by cancer type, polymorphism of PON1-L55M played a risk factor in the occurrence of breast cancer, hematologic cancer, and prostate cancer. Similarly, an increased risk was observed in the Caucasian and Asian population as well as hospital-based group and population-based group. For PON1-Q192R polymorphisms, in the stratified analyses by cancer type, PON1-Q192R allele was associated with reduced cancer risks in breast cancer. Furthermore, for racial stratification, there was a reduced risk of cancer in recession model in Caucasian population. Similarly, in the stratification analysis of control source, the overall risk of cancer was reduced in the heterozygote comparison and dominant model in the population-based group. In conclusion, PON1-Q192R allele decreased the cancer risk especially breast cancer; there was an association between PON1-L55M allele and increased overall cancer risk. However, we need a larger sample size, well-designed in future and at protein levels to confirm these findings.
Collapse
|
45
|
Mahato B, Prodhan C, Mandal S, Dutta A, Kumar P, Deb T, Jha T, Chaudhuri K. Evaluation of Efficacy of Curcumin along with Lycopene and Piperine in the Management of Oral Submucous Fibrosis. Contemp Clin Dent 2019; 10:531-541. [PMID: 32308333 PMCID: PMC7150573 DOI: 10.4103/ccd.ccd_937_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Oral submucous fibrosis (OSMF) is a high-risk premalignant condition of the oral cavity and oropharynx. Complete regression of the disease is still not possible with available treatment modalities. AIMS The aim of the study was to evaluate the efficacy of curcumin, lycopene, and piperine as a combination in the management of OSMF. SETTINGS AND DESIGN Efficacy was evaluated on the basis of improvement in clinical parameters (i.e., visual Analog Scale [VAS]) score for burning sensation, mouth opening (MO), mucosal flexibility (MF), and tongue protrusion [TP]). MATERIALS AND METHODS Forty patients clinically and histopathologically diagnosed with OSMF were included in the study; patients were administered with the above-stated drug combination, and clinical parameters were evaluated at regular intervals to compare the pre- and post-treatment measurements. STATISTICAL ANALYSIS USED Paired t-test was done to evaluate significance of the results. RESULTS Highly significant improvement was observed for posttreatment reduction in VAS score for burning sensation and increase in MO (P < 0.001). Significant improvement was also observed in the increase of MF and TP. Posttreatment histopathological evaluation also revealed reepithelialization, indicated by significant increase in the epithelial thickness as found through quantitative image analysis. Immunohistochemical studies with Col1A1 showed decrease in collagen deposition. CONCLUSIONS Taken together, the present study proposes the usage of combination drug therapy for the management of OSMF as an effective and affordable way.
Collapse
Affiliation(s)
- Basudev Mahato
- Department of Oral Pathology, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India
- Oral Health Division, Multidisciplinary Organizations for Technical and Health Education and Research, Kolkata, West Bengal, India
| | - Chandraday Prodhan
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Samir Mandal
- Oral Health Division, Multidisciplinary Organizations for Technical and Health Education and Research, Kolkata, West Bengal, India
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Avirup Dutta
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Parna Kumar
- Department of Oral Pathology, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India
| | - Tushar Deb
- Department of Oral Pathology, Dr. R. Ahmed Dental College and Hospital, Kolkata, West Bengal, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Keya Chaudhuri
- Oral Health Division, Multidisciplinary Organizations for Technical and Health Education and Research, Kolkata, West Bengal, India
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
46
|
Zheng Z, Yin Y, Lu R, Jiang Z. Lycopene Ameliorated Oxidative Stress and Inflammation in Type 2 Diabetic Rats. J Food Sci 2019; 84:1194-1200. [PMID: 31012961 DOI: 10.1111/1750-3841.14505] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/23/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
We aim to study the antioxidative and anti-inflammatory effects of lycopene on type 2 diabetes mellitus (T2DM) rats, anticipating a complementary strategy for the prevention of long-term complications of T2DM. In this study, rats with streptozotocin-induced diabetes were divided into four groups, receiving a 10-week lycopene intervention: DM, DM + low dose of lycopene (L), DM + medium dose of lycopene (M), and DM + high dose of lycopene (H) group with 0, 5, 10, and 15 mg/kg BW lycopene, respectively. At the end of intervention, fasted blood glucose (FBG) level, oxidative stress indicators, including glycosylated hemoglobin (GHb), glycosylated low-density lipoprotein, oxidized low-density lipoprotein (ox-LDL). and malondialdehyde (MDA), as well as antioxidants, that is, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and inflammatory factors like tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) were determined. The results indicated that oxidative stress and inflammatory factors were elevated in DM rats. Lycopene intervention decreased the FBG level in DM rats compared with the untreated ones. It revealed a dose-dependent effect on decreasing serum oxidative stress biomarkers, including GHb, ox-LDL, and MDA. Inflammatory factors (TNF-α and CRP) in DM rats were also decreased by lycopene intervention. Total antioxidative capacity as well as the activities of antioxidants in DM rats including CAT, SOD, and GPx were increased after lycopene intervention. We conclude that lycopene protects against diabetic progression and prevents further complications of diabetic rats through ameliorating oxidative stress and inflammation, as well as improving the systemic antioxidative capacity. PRACTICAL APPLICATION: According to our study, lycopene intakes at experimental dosages appear to have beneficial effects on ameliorating oxidative stress and inflammation in type 2 diabetes mellitus (T2DM) rats, suggesting that lycopene might help improving T2DM progression when its daily intake is up to about 0.79 mg/kg BW in humans, which approximately equals to 5 mg/kg BW in rats. However, more clinical trials are needed to provide a more reliable and convincing conclusion in humans.
Collapse
Affiliation(s)
- Zicong Zheng
- Dept. of Nutrition, School of Public Health, Sun Yat-Sen Univ., No.74, 2nd Yat-Sen Road, Guangzhou, Guangdong, 510080, China
| | - Yimin Yin
- Dept. of Nutrition, School of Public Health, Sun Yat-Sen Univ., No.74, 2nd Yat-Sen Road, Guangzhou, Guangdong, 510080, China
| | - Rongrong Lu
- Dept. of Nutrition, School of Public Health, Sun Yat-Sen Univ., No.74, 2nd Yat-Sen Road, Guangzhou, Guangdong, 510080, China
| | - Zhuoqin Jiang
- Dept. of Nutrition, School of Public Health, Sun Yat-Sen Univ., No.74, 2nd Yat-Sen Road, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
47
|
Liposomal Curcumin is Better than Curcumin to Alleviate Complications in Experimental Diabetic Mellitus. Molecules 2019; 24:molecules24050846. [PMID: 30818888 PMCID: PMC6429477 DOI: 10.3390/molecules24050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin (CC) is known to have anti-inflammatory and anti-oxidative properties and has already been tested for its efficiency in different diseases including diabetes mellitus (DM). New formulations and route administration were designed to obtain products with higher bioavailability. Our study aimed to test the effect of intraperitoneal (i.p.) administration of liposomal curcumin (lCC) as pre-treatment in streptozotocin(STZ)-induced DM in rats on oxidative stress, liver, and pancreatic functional parameters. Forty-two Wistar-Bratislava rats were randomly divided into six groups (seven animals/group): control (no diabetes), control-STZ (STZ-induced DM —60 mg/100g body weight a single dose intraperitoneal administration, and no CC pre-treatment), two groups with DM and CC pre-treatment (1mg/100g bw—STZ + CC1, 2 mg/100g bw—STZ + CC2), and two groups with DM and lCC pre-treatment (1 mg/100g bw—STZ + lCC1, 2 mg/100g bw—STZ + lCC1). Intraperitoneal administration of Curcumin in diabetic rats showed a significant reduction of nitric oxide, malondialdehyde, total oxidative stress, and catalase for both evaluated formulations (CC and lCC) compared to control group (p < 0.005), with higher efficacy of lCC formulation compared to CC solution (p < 0.002, excepting catalase for STZ + CC2vs. STZ + lCC1when p = 0.0845). The CC and lCC showed hepatoprotective and hypoglycemic effects, a decrease in oxidative stress and improvement in anti-oxidative capacity status against STZ-induced DM in rats (p < 0.002). The lCC also proved better efficacy on MMP-2, and -9 plasma levels as compared to CC (p < 0.003, excepting STZ + CC2 vs. STZ + lCC1 comparison with p = 0.0553). The lCC demonstrated significantly better efficacy as compared to curcumin solution on all serum levels of the investigated markers, sustaining its possible use as adjuvant therapy in DM.
Collapse
|
48
|
Gutierres VO, Assis RP, Arcaro CA, Oliveira JO, Lima TFO, Beretta ALRZ, Costa PI, Baviera AM, Brunetti IL. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin-diabetic rats. Phytother Res 2019; 33:976-988. [PMID: 30656757 DOI: 10.1002/ptr.6291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
Insulin with natural antioxidants is emerging as a combination treatment for diabetes mellitus that attempts to exert effective glycemic control without adverse effects. The present study aimed to investigate the additive effects on metabolic disturbances, oxidative damage, and antioxidant defenses in streptozotocin-diabetic rats treated with curcumin and a reduced insulin dose. The best results were obtained in the treatment of diabetic rats with 4-U/day insulin; however, the glycemia levels in these rats were lower than those in normal rats, indicating a risk of hypoglycemia. Isolated treatments using curcumin or insulin in a reduced dose (1 U/day) decreased glycemia, dyslipidemia, and biomarkers of liver and kidney damage and increased the activity of hepatic antioxidants (superoxide dismutase and glutathione peroxidase), however, only to a lesser extent than 4-U/day insulin, without improvements in catalase activity or plasma lipid peroxidation. Decreases in glycemia, dyslipidemia, and tissue damage markers were more evident in the curcumin + 1-U/day insulin treatment than those seen in isolated treatments. The activity of hepatic antioxidants, including catalase, was further increased, and biomarkers of oxidative damage were decreased. Curcumin with a reduced insulin dose appears to be a promising strategy for combating the complications associated with diabetes and oxidative stress.
Collapse
Affiliation(s)
- Vânia Ortega Gutierres
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.,Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP
| | - Renata Pires Assis
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Carlos Alberto Arcaro
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Juliana Oriel Oliveira
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Tayra Ferreira Oliveira Lima
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Ana Laura Remédio Zeni Beretta
- Graduate Program in Biomedical Sciences Hermínio Ometto University Center, UNIARARAS, 7 Av. Dr. Maximiliano Baruto, 500, CEP 13607-339, Araras, SP
| | - Paulo Inácio Costa
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Amanda Martins Baviera
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| | - Iguatemy Lourenço Brunetti
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil
| |
Collapse
|
49
|
Li J, Wu N, Chen X, Chen H, Yang X, Liu C. Curcumin protects islet cells from glucolipotoxicity by inhibiting oxidative stress and NADPH oxidase activity both in vitro and in vivo. Islets 2019; 11:152-164. [PMID: 31750757 PMCID: PMC6930025 DOI: 10.1080/19382014.2019.1690944] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Curcumin possesses medicinal properties that are beneficial in various diseases, such as heart disease, cancer, and type 2 diabetes mellitus (T2 DM). It has been proposed that pancreatic beta cell dysfunction in T2 DM is promoted by oxidative stress caused by NADPH oxidase over-activity. The aim of the present study was to evaluate the efficacy of curcumin as a protective agent against high glucose/palmitate (HP)-induced islet cell damage and in streptozotocin (STZ)-induced DM rats. INS-1 cells were exposed to HP with or without curcumin. Cell proliferation, islet cell morphological changes, reactive oxygen species production, superoxide dismutase and catalase activity, insulin levels, NADPH oxidase subunit expression, and the expression of apoptotic factors by INS-1 cells were observed. Our results show that curcumin can effectively inhibit the impairment of cell proliferation and activated oxidative stress, increase insulin levels, and reduce the high expression of NADPH oxidase subunits and apoptotic factors induced by HP in INS-1 cells. The STZ-induced DM rat model was also used to determine whether curcumin can protect islets in vivo. Our results show that curcumin significantly reduced pathological damage and increased insulin levels of islets in STZ-induced DM rats. Curcumin also successfully inhibited the high expression of NADPH oxidase subunits and apoptotic factors in STZ-induced DM rats. These results suggest that curcumin is able to attenuate HP-induced oxidative stress in islet cells and protect these cells from apoptosis by modulating the NADPH pathway. In view of its efficiency, curcumin has potential for translation applications in protecting islets from glucolipotoxicity.
Collapse
Affiliation(s)
- Jing Li
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Ninghua Wu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiao Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
| | - Xiaosong Yang
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- Xiaosong Yang Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Chao Liu
- Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei, P. R. China
- CONTACT Chao Liu
| |
Collapse
|
50
|
Grabowska M, Wawrzyniak D, Rolle K, Chomczyński P, Oziewicz S, Jurga S, Barciszewski J. Let food be your medicine: nutraceutical properties of lycopene. Food Funct 2019; 10:3090-3102. [DOI: 10.1039/c9fo00580c] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this review, we highlight research and clinical trials involving lycopene and its impact on human health.
Collapse
Affiliation(s)
- Małgorzata Grabowska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Dariusz Wawrzyniak
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- Centre for Advanced Technology
- Adam Mickiewicz University
| | | | | | - Stefan Jurga
- NanoBioMedical Centre
- Adam Mickiewicz University
- 61-614 Poznan
- Poland
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences
- 61-704 Poznan
- Poland
- NanoBioMedical Centre
- Adam Mickiewicz University
| |
Collapse
|