1
|
Park SA, Hwang D, Kim JH, Lee SY, Lee J, Kim HS, Kim KA, Lim B, Lee JE, Jeon YH, Oh TJ, Lee J, An S. Formulation of lipid nanoparticles containing ginsenoside Rg2 and protopanaxadiol for highly efficient delivery of mRNA. Biomater Sci 2024. [PMID: 39480551 DOI: 10.1039/d4bm01070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Lipid nanoparticles (LNPs) are widely recognized as crucial carriers of mRNA in therapeutic and vaccine development. The typical lipid composition of mRNA-LNP systems includes an ionizable lipid, a helper lipid, a polyethylene glycol (PEG)-lipid, and cholesterol. Concerns arise regarding cholesterol's susceptibility to oxidation, potentially leading to undesired immunological responses and toxicity. In this study, we formulated novel LNPs by replacing cholesterol with phytochemical-derived compounds, specifically ginsenoside Rg2 and its derivative phytosterol protopanaxadiol (PPD), and validated their efficacy as mRNA delivery systems. The mRNA-LNP complexes were manually prepared through a simple mixing process. The biocompatibility of these Rg2-based LNPs (Rg2-LNP) and PPD-based LNPs (PPD-LNP) was assessed through cell viability assays, while the protective function of LNPs for mRNA was demonstrated by RNase treatment. Enhanced green fluorescent protein (EGFP) mRNA delivery and expression in A549 and HeLa cells were analyzed using optical microscopy and flow cytometry. The expression efficiency of Rg2-LNP and PPD-LNP was compared with that of commercially available LNPs, with both novel formulations demonstrating superior transfection and EGFP expression. Furthermore, in vivo tests following intramuscular (I.M.) injection in hairless mice demonstrated efficient luciferase (Luc) mRNA delivery and effective Luc expression using Rg2-LNP and PPD-LNP compared to commercial LNPs. Results indicated that the efficiency of EGFP and Luc expression in Rg2-LNP and PPD-LNP surpassed that of the cholesterol-based LNP formulation. These findings suggest that Rg2-LNP and PPD-LNP are promising candidates for future drug and gene delivery systems.
Collapse
Affiliation(s)
- Sin A Park
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Dajeong Hwang
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jae Hoon Kim
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Seung-Yeul Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bumhee Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Jae-Eon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Yong Hyun Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub), Dong-gu, Daegu, 41061, Republic of Korea
| | - Tae Jeong Oh
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Jaewook Lee
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| | - Sungwhan An
- Genomictree Inc., Yuseong-gu, Daejeon, 34027, Republic of Korea.
| |
Collapse
|
2
|
Karim A, Qaisar R, Suresh S, Jagal J, Rawas-Qalaji M. Nanoparticle-delivered quercetin exhibits enhanced efficacy in eliminating iron-overloaded senescent chondrocytes. Nanomedicine (Lond) 2024; 19:2159-2170. [PMID: 39229808 PMCID: PMC11485748 DOI: 10.1080/17435889.2024.2393074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: The therapeutic potential of senolytic drugs in osteoarthritis (OA) is poorly known. Quercetin, a senolytic agent exhibits promising potential to treat OA, having limited bioavailability. We investigated the effects of Quercetin-loaded nanoparticles (Q-NP) with enhanced bioavailability in human chondrocytes mimicking OA phenotype.Materials & methods: The C-20/A4 chondrocytes were exposed to ferric ammonium citrate to induce OA phenotype, followed by treatment with free Quercetin/Q-NP for 24 and 48-h. Q-NP were synthesized by nanoprecipitation method. Following treatment chondrocytes were assessed for drug cellular bioavailability, viability, cell cycle, apoptosis, oxidative stress and expression of key senescence markers.Results: Q-NP exhibited 120.1 ± 1.2 nm particle size, 81 ± 2.4% encapsulation efficiency, increased cellular bioavailability and selective apoptosis of senescent chondrocytes compared with free Quercetin. Q-NP treatment also induced oxidative stress and reduced the expressions of senescence markers, including TRB3, p16, p62 and p21 suggesting their ability to eliminate senescent cells. Last, Q-NP arrested the cell cycle in the sub-G0 phase, potentially creating a beneficial environment for tissue repair.Conclusion: Q-NP propose a promising delivery system for treating OA by eliminating senescent chondrocytes through apoptosis. Furthermore, their enhanced cellular bioavailability and capacity to modify cell cycle and senescent pathways warrant further investigations.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Iron Biology Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Cardiovascular Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Space Medicine Research Group, Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Savitha Suresh
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
3
|
Conte R, Valentino A, Romano S, Margarucci S, Petillo O, Calarco A. Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases. Gels 2024; 10:478. [PMID: 39057501 PMCID: PMC11275451 DOI: 10.3390/gels10070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods. Stimuli-responsive nanocomposite hydrogels offer a promising solution by adapting to changes in environmental conditions during disease states, thereby enabling targeted drug delivery. These smart drug delivery systems have the potential to enhance drug efficacy, minimize adverse reactions, reduce administration frequency, and improve patient compliance, thus facilitating a faster recovery. This review explores various types of stimuli-responsive nanocomposite hydrogels tailored for smart drug delivery, with a specific focus on their applications in managing oral diseases.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Valentino
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Silvia Romano
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Sabrina Margarucci
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Orsolina Petillo
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Pietro Castellino 111, 80131 Naples, Italy; (A.V.); (S.R.); (S.M.); (O.P.); (A.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
4
|
Hemavathi KN, Skariyachan S, Raju R, Keshava Prasad TS, Abhinand CS. Computational screening of potential anti-inflammatory leads from Jeevaneeya Rasayana plants targeting COX-2 and 5- LOX by molecular docking and dynamic simulation approaches. Comput Biol Med 2024; 171:108164. [PMID: 38412690 DOI: 10.1016/j.compbiomed.2024.108164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Inflammation plays a pivotal role in various pathological processes, ranging from routine injuries and infections to cancer. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are two major enzymes involved in the formation of lipid mediators of inflammation, such as prostaglandins and leukotrienes, through the arachidonic acid pathway. Despite the frequent use of nonsteroidal anti-inflammatory drugs for managing inflammatory disorders by inhibiting these enzymes, there is a wide spectrum of adverse effects linked to their usage. Jeevaneeya Rasayana (JR), a polyherbal formulation traditionally used in India, is renowned for its anti-inflammatory properties. The present study aimed to identify the potential phytocompounds in JR plants against COX-2 and 5-LOX, utilizing molecular docking and dynamic simulations. Among the 429 identified phytocompounds retrieved from publicly available data sources, Terrestribisamide and 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine have shown potential binding affinity and favorable interactions with COX-2 and 5-LOX arachidonic acid binding sites. The physicochemical properties and ADMET profiles of these compounds determined their drug-likeness and pharmacokinetics features. Additional validation using molecular dynamics simulations, SASA, Rg, and MM-PBSA binding energy calculations affirmed the stability of the complex formed between those compounds with target proteins. Together, the study identified the effectual binding potential of those bioactive compounds against COX-2 and 5-LOX, providing a viable approach for the development of effective anti-inflammatory medications.
Collapse
Affiliation(s)
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, India
| | - Rajesh Raju
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
5
|
El-Far M, Essam A, El-Senduny FF, El-Azim AO, Yahia S, El-Sherbiny IM. Novel highly effective combination of naturally-derived quercetin and ascorbyl palmitate and their nanoformulations as an advancement therapy of cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Modulating Inflammation-Mediated Diseases via Natural Phenolic Compounds Loaded in Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15020699. [PMID: 36840021 PMCID: PMC9964760 DOI: 10.3390/pharmaceutics15020699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The global increase and prevalence of inflammatory-mediated diseases have been a great menace to human welfare. Several works have demonstrated the anti-inflammatory potentials of natural polyphenolic compounds, including flavonoid derivatives (EGCG, rutin, apigenin, naringenin) and phenolic acids (GA, CA, etc.), among others (resveratrol, curcumin, etc.). In order to improve the stability and bioavailability of these natural polyphenolic compounds, their recent loading applications in both organic (liposomes, micelles, dendrimers, etc.) and inorganic (mesoporous silica, heavy metals, etc.) nanocarrier technologies are being employed. A great number of studies have highlighted that, apart from improving their stability and bioavailability, nanocarrier systems also enhance their target delivery, while reducing drug toxicity and adverse effects. This review article, therefore, covers the recent advances in the drug delivery of anti-inflammatory agents loaded with natural polyphenolics by the application of both organic and inorganic nanocarriers. Even though nanocarrier technology offers a variety of possible anti-inflammatory advantages to naturally occurring polyphenols, the complexes' inherent properties and mechanisms of action have not yet been fully investigated. Thus, expanding the quest on novel natural polyphenolic-loaded delivery systems, together with the optimization of complexes' activity toward inflammation, will be a new direction of future efforts.
Collapse
|
7
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
8
|
Pereira GC. Novel Nanotechnology-Driven Prototypes for AI-Enriched Implanted Prosthetics Following Organ Failure. Methods Mol Biol 2023; 2575:195-237. [PMID: 36301477 DOI: 10.1007/978-1-0716-2716-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meeting medical challenges posed by global burdens is proven to be of primary interest. One example is the COVID-19 epidemic that humankind is currently experiencing, since around December 2019. Innovation is key to respond rapidly and effectively to sanitary and health emergencies, when human lives are severely threatened. In this scenery, medical devices that can be rapidly launched in the market and manufactured at scale are crucial for saving lives. One example is a lifesaving respiratory device launched in about 10 days (Mercedes F1 team's new device based on continuous positive airway pressure devices) and rapidly approved by international agencies responsible for assuring drug and medical devices safety, in response to the COVID-19 burden. Remarkably, it is the first time in history that mankind observes disease spread reaching such high proportions, globally, in such short time scale. However, while this epidemic had, in March 2020, reached the critical figures of about 38,000 deaths and c. 738,000 infected, organ donation and transplantation patients are suffering for years, accounting for an increasing number of affected, annually. These patients are invisible for the general public. Therefore, this chapter approaches the organ donation and transplantation burden, proposing effective solutions to leverage the suffering, improving life quality of patients enduring several underlying issues, from hemodialysis complications and critical organ failure to lacking compatible donors. This, on the basis of technology repurposing, to speed up approval processes followed by international agencies responsible for assuring drug and medical devices safety, while adding innovative methods to existing technology and reducing invasiveness.
Collapse
|
9
|
Jeong GJ, Khan S, Tabassum N, Khan F, Kim YM. Marine-Bioinspired Nanoparticles as Potential Drugs for Multiple Biological Roles. Mar Drugs 2022; 20:md20080527. [PMID: 36005529 PMCID: PMC9409790 DOI: 10.3390/md20080527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, A-10, Sector-62, Noida 201309, Uttar Pradesh, India
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Correspondence: (F.K.); (Y.-M.K.); Tel.: +82-51-629-5832 (Y.-M.K.); Fax: +82-51-629-5824 (Y.-M.K.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Correspondence: (F.K.); (Y.-M.K.); Tel.: +82-51-629-5832 (Y.-M.K.); Fax: +82-51-629-5824 (Y.-M.K.)
| |
Collapse
|
10
|
Cheng TM, Chu HY, Huang HM, Li ZL, Chen CY, Shih YJ, Whang-Peng J, Cheng RH, Mo JK, Lin HY, Wang K. Toxicologic Concerns with Current Medical Nanoparticles. Int J Mol Sci 2022; 23:7597. [PMID: 35886945 PMCID: PMC9322368 DOI: 10.3390/ijms23147597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Nanotechnology is one of the scientific advances in technology. Nanoparticles (NPs) are small materials ranging from 1 to 100 nm. When the shape of the supplied nanoparticles changes, the physiological response of the cells can be very different. Several characteristics of NPs such as the composition, surface chemistry, surface charge, and shape are also important parameters affecting the toxicity of nanomaterials. This review covered specific topics that address the effects of NPs on nanomedicine. Furthermore, mechanisms of different types of nanomaterial-induced cytotoxicities were described. The distributions of different NPs in organs and their adverse effects were also emphasized. This review provides insight into the scientific community interested in nano(bio)technology, nanomedicine, and nanotoxicology. The content may also be of interest to a broad range of scientists.
Collapse
Affiliation(s)
- Tsai-Mu Cheng
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-Yi Chu
- Graduate Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (T.-M.C.); (H.-Y.C.)
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Zi-Lin Li
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chiang-Ying Chen
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Ya-Jung Shih
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | | | - R. Holland Cheng
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
| | - Ju-Ku Mo
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Hung-Yun Lin
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Molecular & Cellular Biology, University of California, Davis, CA 95616, USA;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Z.-L.L.); (C.-Y.C.); (Y.-J.S.)
| |
Collapse
|
11
|
Flores Bautista MC, Cortés-Arriagada D, Shakerzadeh E, Chigo Anota E. Acetylsalicylic acid interaction with Boron nitride nanostructures – A density functional analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Acharya S, Misra R. Hypoxia responsive phytonanotheranostics: A novel paradigm towards fighting cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102549. [PMID: 35301157 DOI: 10.1016/j.nano.2022.102549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia enhances tumor aggressiveness, thereby reducing the efficacy of anticancer therapies. Phytomedicine, which is nowadays considered as the new panacea owing to its dynamic physiological properties, is often plagued by shortcomings. Incorporating these wonder drugs in nanoparticles (phytonanomedicine) for hypoxia therapy is a new prospect in the direction of cancer management. Similarly, the concept of phytonanotheranostics for the precise tumor lesion detection and treatment monitoring in the hypoxic scenario is going on a rampant speed. In the same line, smart nanoparticles which step in for "on-demand" drug release based on internal or external stimuli are also being explored as a new tool for cancer management. However, studies regarding these smart and tailor-made nanotheranostics in the hypoxic tumor microenvironment are very limited. The present review is an attempt to collate these smart stimuli-responsive phytonanotherapeutics in one place for initiating future research in this upcoming field for better cancer treatment.
Collapse
Affiliation(s)
- Sarbari Acharya
- School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| | - Ranjita Misra
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
13
|
LIPOSOMES LOADING GRAPE SEED EXTRACT: A NANOTECHNOLOGICAL SOLUTION TO REDUCE WINE-MAKING WASTE AND OBTAIN HEALTH-PROMOTING PRODUCTS. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Gouveia DN, Guimarães AG, Oliveira MA, Rabelo TK, Pina LTS, Santos WBR, Almeida IKS, A. Andrade T, Serafini MR, S. Lima B, Araújo AAS, Menezes-Filho JER, Santos-Miranda A, Scotti L, Scotti MT, Coutinho HDM, Quintans JSS, Capasso R, Quintans-Júnior LJ. Nanoencapsulated α-terpineol attenuates neuropathic pain induced by chemotherapy through calcium channel modulation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Enhanced Bioactivity of Pomegranate Peel Extract following Controlled Release from CaCO3 Nanocrystals. Bioinorg Chem Appl 2022; 2022:6341298. [PMID: 35190732 PMCID: PMC8858070 DOI: 10.1155/2022/6341298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Pomegranate peel extract is rich of interesting bioactive chemicals, principally phenolic compounds, which have shown antimicrobial, anticancer, and antioxidative properties. The aim of this work was to improve extract’ bioactivity through the adsorption on calcium carbonate nanocrystals. Nanocrystals revealed as efficient tools for extract adsorption reaching 50% of loading efficiency. Controlled release of the contained metabolites under acidic pH has been found, as it was confirmed by quantitative assay and qualitative study through NMR analysis. Specific functionality of inorganic nanocarriers could be also tuned by biopolymeric coating. The resulting coated nanoformulations showed a great antimicrobial activity against B. cinerea fungus preventing strawberries disease better than a commercial fungicide. Furthermore, nanoformulations demonstrated a good antiproliferative activity in neuroblastoma and breast cancer cells carrying out a higher cytotoxic effect respect to free extract, confirming a crucial role of nanocarriers. Finally, pomegranate peel extract showed a very high radical scavenging ability, equal to ascorbic acid. Antioxidant activity, measured also in intracellular environment, highlighted a protective action of extract-adsorbed nanocrystals twice than free extract, providing a possible application for new nutraceutical formulations.
Collapse
|
16
|
Kebede L, Masoomi Dezfooli S, Seyfoddin A. Medicinal Cannabis Pharmacokinetics and Potential Methods of Delivery. Pharm Dev Technol 2022; 27:202-214. [PMID: 35084279 DOI: 10.1080/10837450.2022.2035748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evidence of cannabis exhibiting polypharmacological properties has been accumulating for the past few decades, particularly for its analgesic and anti-inflammatory abilities. However, inconsistent dosage forms and erratic absorption levels prevent medicinal cannabis products from becoming mainstream recommendations for pain management. Current cannabis products fail to address the undesirable characteristics associated with cannabinoids such as low solubility, poor bioavailability, and lack of specificity, all of which contribute to low therapeutic effect. In this narrative view, the pharmacokinetics of cannabis products and possible methods of drug delivery, in the form of carrier systems, will be explored. The incorporation of cannabinoids into carrier systems provides an opportunity to improve absorption levels, increase bioavailability and reduce adverse events allowing for a greater therapeutic effect.
Collapse
Affiliation(s)
- Lidya Kebede
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Seyedehsara Masoomi Dezfooli
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Group, School of Science, Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
17
|
Kolisnyk T, Vashchenko O, Ruban O, Fil N, Slipchenko G. Assessing compatibility of excipients selected for a sustained release formulation of bilberry leaf extract. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Olga Vashchenko
- Institute for Scintillation Materials of NAS of Ukraine, Ukraine
| | | | - Nataliya Fil
- Kharkiv National Automobile and Highway University, Ukraine
| | | |
Collapse
|
18
|
Al-Shalabi E, Abusulieh S, Hammad AM, Sunoqrot S. Rhoifolin Loaded in PLGA Nanoparticles Alleviates Oxidative Stress and Inflammation In Vitro and In Vivo. Biomater Sci 2022; 10:5504-5519. [DOI: 10.1039/d2bm00309k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhoifolin (ROF) is a bioactive plant flavonoid with potent antioxidant and anti-inflammatory activity. However, no delivery system has yet been developed for ROF to overcome its biopharmaceutical limitations. The purpose...
Collapse
|
19
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
20
|
Rathod NB, Kulawik P, Ozogul F, Regenstein JM, Ozogul Y. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Silva JRV, Barroso PAA, Nascimento DR, Figueira CS, Azevedo VAN, Silva BR, Santos RPD. Benefits and challenges of nanomaterials in assisted reproductive technologies. Mol Reprod Dev 2021; 88:707-717. [PMID: 34553442 DOI: 10.1002/mrd.23536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022]
Abstract
Assisted reproductive technology (ART) have contributed to preserve fertility in humans and to increase multiplication of genetically superior animals. Despite being highly practiced worldwide, ART presents some challenges, especially because gametes and embryos are kept in vitro for a variable period of time, and the oxidative stress in vitro can have negative impact on oocyte competence and embryo development. Nanotechnology needs to be considered to help overcome some of those impairments, since it can provide strategies to deliver antioxidants and hormones to gametes and embryos in vitro. The application of nanotechnology to ART can allow the development of new protocols using nanomaterials to improve in vitro oocyte competence and embryo production. This review discusses the applicability of nanomaterials to improve sperm selection, to deliver antioxidants and hormones to preantral follicles, oocytes, and embryos in vitro, as well as the concerns about using nanotechnology in ART.
Collapse
Affiliation(s)
- José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| | | | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara-UFC, Sobral, Brazil
| | - Ricardo Pires Dos Santos
- Laboratory of Materials Engineering and Simulation of Sobral (LEMSS), Federal University of Ceara-UFC, Sobral, Brazil
| |
Collapse
|
22
|
Nanostructured Lipid Carriers for the Formulation of Topical Anti-Inflammatory Nanomedicines Based on Natural Substances. Pharmaceutics 2021; 13:pharmaceutics13091454. [PMID: 34575531 PMCID: PMC8472073 DOI: 10.3390/pharmaceutics13091454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The main function of the skin is to protect the body from the external environment. However, the skin can undergo inflammatory processes, due to genetic, hormonal, or environmental factors. When the defense system is overloaded, there is an increase in pro-inflammatory mediators and reactive oxygen species (ROS), which results in skin disorders. Among the substances used to treat these inflammatory processes, many natural substances with anti-inflammatory and antioxidant properties are being studied: nature is yet an abundant source to obtain diverse pharmacological actives. The treatment of skin diseases is usually focused on topical application, as it reduces the risk of systemic side effects and prevents drug degradation by first-pass metabolism. Thus, the properties of drug delivery vehicles can facilitate or inhibit its permeation. Due to the hydrophobic nature of the skin, a promising strategy to improve dermal drug penetration is the use of lipid-based nanoparticles, such as nanostructured lipid carriers (NLC). Therefore, in this review, we present NLC as a tool to improve dermal administration of natural substances with anti-inflammatory properties.
Collapse
|
23
|
Bioactivity and Delivery Strategies of Phytochemical Compounds in Bone Tissue Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plant-derived secondary metabolites represent a reservoir of phytochemicals for regenerative medicine application because of their varied assortment of biological properties including anti-oxidant, anti-inflammatory, antibacterial, and tissue remodeling properties. In addition, bioactive phytochemicals can be easily available, are often more cost-effective in large-scale industrialization, and can be better tolerated compared to conventional treatments mitigating the long-lasting side effects of synthetic compounds. Unfortunately, their poor bioavailability and lack of long-term stability limit their clinical impact. Nanotechnology-based delivery systems can overcome these limitations increasing bioactive molecules’ local effectiveness with reduction of the possible side effects on healthy bone. This review explores new and promising strategies in the area of delivery systems with particular emphasis on solutions that enhance bioavailability and/or health effects of plant-derived phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and curcumin in bone tissue regeneration.
Collapse
|
24
|
Smart Coatings Prepared via MAPLE Deposition of Polymer Nanocapsules for Light-Induced Release. Molecules 2021; 26:molecules26092736. [PMID: 34066573 PMCID: PMC8125711 DOI: 10.3390/molecules26092736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/17/2023] Open
Abstract
Herein, smart coatings based on photo-responsive polymer nanocapsules (NC) and deposited by laser evaporation are presented. These systems combine remotely controllable release and high encapsulation efficiency of nanoparticles with the easy handling and safety of macroscopic substrates. In particular, azobenzene-based NC loaded with active molecules (thyme oil and coumarin 6) were deposited through Matrix-Assisted Pulsed Laser Evaporation (MAPLE) on flat inorganic (KBr) and organic (polyethylene, PE) and 3D (acrylate-based micro-needle array) substrates. SEM analyses highlighted the versatility and performance of MAPLE in the fabrication of the designed smart coatings. DLS analyses, performed on both MAPLE- and drop casting-deposited NC, demonstrated the remarkable adhesion achieved with MAPLE. Finally, thyme oil and coumarin 6 release experiments further demonstrated that MAPLE is a promising technique for the realization of photo-responsive coatings on various substrates.
Collapse
|
25
|
Wang Q, Bao Y. Nanodelivery of natural isothiocyanates as a cancer therapeutic. Free Radic Biol Med 2021; 167:125-140. [PMID: 33711418 DOI: 10.1016/j.freeradbiomed.2021.02.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/31/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Natural isothiocyanates (ITCs) are phytochemicals abundant in cruciferous vegetables with the general structure, R-NCS. They are bioactive organosulfur compounds derived from the hydrolysis of glucosinolates by myrosinase. A significant number of isothiocyanates have been isolated from different plant sources that include broccoli, Brussels sprouts, cabbage, cauliflower, kale, mustard, wasabi, and watercress. Several ITCs have been demonstrated to possess significant pharmacological properties including: antioxidant, anti-inflammatory, anti-cancer and antimicrobial activities. Due to their chemopreventive effects on many types of cancer, ITCs have been regarded as a promising anti-cancer therapeutic agent without major toxicity concerns. However, their clinical application has been hindered by several factors including their low aqueous solubility, low bioavailability, instability as well as their hormetic effect. Moreover, the typical dietary uptake of ITCs consumed for promotion of good health may be far from their bioactive (or cytotoxic) dose necessary for cancer prevention and/or treatment. Nanotechnology is one of best options to attain enhanced efficacy and minimize hormetic effect for ITCs. Nanoformulation of ITCs leads to enhance stability of ITCs in plasma and emphasize on their chemopreventive effects. This review provides a summary of the potential bioactivities of ITCs, their mechanisms of action for the prevention and treatment of cancer, as well as the recent research progress in their nanodelivery strategies to enhance solubility, bioavailability, and anti-cancer efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK.
| |
Collapse
|
26
|
Lasoń E. Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Systems. Molecules 2020; 25:molecules25235758. [PMID: 33297317 PMCID: PMC7730254 DOI: 10.3390/molecules25235758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Terpenes are a group of phytocompounds that have been used in medicine for decades owing to their significant role in human health. So far, they have been examined for therapeutic purposes as antibacterial, anti-inflammatory, antitumoral agents, and the clinical potential of this class of compounds has been increasing continuously as a source of pharmacologically interesting agents also in relation to topical administration. Major difficulties in achieving sustained delivery of terpenes to the skin are connected with their low solubility and stability, as well as poor cell penetration. In order to overcome these disadvantages, new delivery technologies based on nanostructures are proposed to improve bioavailability and allow controlled release. This review highlights the potential properties of terpenes loaded in several types of lipid-based nanocarriers (liposomes, solid lipid nanoparticles, and nanostructured lipid carriers) used to overcome free terpenes' form limitations and potentiate their therapeutic properties for topical administration.
Collapse
Affiliation(s)
- Elwira Lasoń
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska St 24, 31-155 Kraków, Poland
| |
Collapse
|
27
|
V. E, Krishnan K, Bhattacharyya A, R. S. Advances in Ayurvedic medicinal plants and nanocarriers for arthritis treatment and management: A review. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release 2020; 327:641-666. [PMID: 32911014 PMCID: PMC7476894 DOI: 10.1016/j.jconrel.2020.09.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is intimately related to the pathogenesis of numerous acute and chronic diseases like cardiovascular disease, inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases. Therefore anti-inflammatory therapy is a very promising strategy for the prevention and treatment of these inflammatory diseases. To overcome the shortcomings of existing anti-inflammatory agents and their traditional formulations, such as nonspecific tissue distribution and uncontrolled drug release, bioresponsive drug delivery systems have received much attention in recent years. In this review, we first provide a brief introduction of the pathogenesis of inflammation, with an emphasis on representative inflammatory cells and mediators in inflammatory microenvironments that serve as pathological fundamentals for rational design of bioresponsive carriers. Then we discuss different materials and delivery systems responsive to inflammation-associated biochemical signals, such as pH, reactive oxygen species, and specific enzymes. Also, applications of various bioresponsive drug delivery systems in the treatment of typical acute and chronic inflammatory diseases are described. Finally, crucial challenges in the future development and clinical translation of bioresponsive anti-inflammatory drug delivery systems are highlighted.
Collapse
Affiliation(s)
- Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chenwen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jiawei Guo
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Pharmaceutical Analysis, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
29
|
Kumar N, Jose J. Current developments in the nanomediated delivery of photoprotective phytochemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38446-38471. [PMID: 32761528 DOI: 10.1007/s11356-020-10100-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Natural products have been used to protect the skin from harmful UV radiation for decades. Due to the ecotoxicological implications of synthetic sunscreen exposure in aquatic ecosystems, there is a greater need to explore alternative sources of UV filters. Recent research has focused on discovering novel UV absorbing photoprotective molecules from nature. In response to the excessive damage caused by UVB rays, plants induce the production of high concentrations of phytoprotective secondary metabolites and anti-oxidative enzymes. Despite promising UV absorbing and photoprotective properties, plant secondary metabolites have been underutilized in topical delivery due to low solubility and high instability. Numerous phytochemicals have been effectively nanosized, incorporated in formulations, and studied for their sustained effects in photoprotection. The present review outlines recent developments in nanosizing and delivering photoprotective crude plant extract and phytochemicals from a phytochemical perspective. We searched for articles using keywords: "UV damage," "skin photoprotection," "photodamage," and "nano delivery" in varied combinations. We identified and reviewed literature from 43 original research articles exploring nanosized phytochemicals and crude plant extracts with photoprotective activity. Nanosized phytochemicals retained higher amounts of bioactive compounds in the skin and acted as depots for their sustained release. Novel approaches in nanosizing considerably improved the photostability, efficacy, and water resistance of plant secondary metabolites. We further discuss the need for broad-spectrum sunscreen products, potential challenges, and future growth in this area.
Collapse
Affiliation(s)
- Nimmy Kumar
- Department of Pharmacognosy, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, 575018, Mangalore, India
| | - Jobin Jose
- Department of Pharmaceutics, NITTE Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore, 575018, India.
| |
Collapse
|
30
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
31
|
Park SJ. Protein-Nanoparticle Interaction: Corona Formation and Conformational Changes in Proteins on Nanoparticles. Int J Nanomedicine 2020; 15:5783-5802. [PMID: 32821101 PMCID: PMC7418457 DOI: 10.2147/ijn.s254808] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) are highly potent tools for the diagnosis of diseases and specific delivery of therapeutic agents. Their development and application are scientifically and industrially important. The engineering of NPs and the modulation of their in vivo behavior have been extensively studied, and significant achievements have been made in the past decades. However, in vivo applications of NPs are often limited by several difficulties, including inflammatory responses and cellular toxicity, unexpected distribution and clearance from the body, and insufficient delivery to a specific target. These unfavorable phenomena may largely be related to the in vivo protein-NP interaction, termed "protein corona." The layer of adsorbed proteins on the surface of NPs affects the biological behavior of NPs and changes their functionality, occasionally resulting in loss-of-function or gain-of-function. The formation of a protein corona is an intricate process involving complex kinetics and dynamics between the two interacting entities. Structural changes in corona proteins have been reported in many cases after their adsorption on the surfaces of NPs that strongly influence the functions of NPs. Thus, understanding of the conformational changes and unfolding process of proteins is very important to accelerate the biomedical applications of NPs. Here, we describe several protein corona characteristics and specifically focus on the conformational fluctuations in corona proteins induced by NPs.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon21936, Korea
| |
Collapse
|
32
|
Yang G, Wu P, Yu C, Zhang J, Song J. Facile Engineering of Anti‐Inflammatory Nanotherapies by Host‐Guest Self‐Assembly. ChemistrySelect 2020. [DOI: 10.1002/slct.202001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guoyu Yang
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Peng Wu
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Cong Yu
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| | - Jianxiang Zhang
- Department of Pharmaceutics College of PharmacyThird Military Medical University (Army Medical University) 30 Gaotanyan Main Street Chongqing 400038 China
| | - Jinlin Song
- College of Stomatology Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Medical University 426 Songshibei Road Chongqing 401147 China
| |
Collapse
|
33
|
Vaiserman A, Koliada A, Lushchak O. Neuroinflammation in pathogenesis of Alzheimer's disease: Phytochemicals as potential therapeutics. Mech Ageing Dev 2020; 189:111259. [PMID: 32450086 DOI: 10.1016/j.mad.2020.111259] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
Accumulation of neurotoxic forms of amyloid-β proteins in senile plaques and hyperphosphorylated tau proteins in neurofibrillary tangles is a well-known pathophysiological hallmark of Alzheimer's disease (AD). However, clinical trials with drugs targeting amyloid-β and tau have failed to demonstrate efficacy in treating AD. All currently FDA-approved anti-AD drugs have symptomatic effects only and are not able to cure this disease. This makes necessary to search for alternative therapeutic targets. Accumulating evidence suggests that systemic inflammation and related vascular dysfunction play important etiological roles in AD and precede its clinical manifestation. Therefore, novel therapeutic modalities targeted at these pathophysiological components of AD are intensively developed now. Phytochemicals such as resveratrol, curcumin, quercetin, genistein and catechins are promising anti-AD therapeutics due to their ability to affect major pathogenetic mechanisms of AD, including oxidative stress, neuroinflammation and mitochondrial dysfunction. The implementation of innovative approaches for phytochemical delivery, including the nanotechnology-based ones which enable to significantly enhance their oral bioavailability, would likely provide an opportunity to address many challenges of conventional anti-AD therapies. In this review, roles of inflammation and vascular dysregulation in AD are described and phytobioactive compound-based treatment strategies for AD are discussed.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| |
Collapse
|
34
|
Al-Shalabi E, Alkhaldi M, Sunoqrot S. Development and evaluation of polymeric nanocapsules for cirsiliol isolated from Jordanian Teucrium polium L. as a potential anticancer nanomedicine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Öztürk AA, Namlı İ, Güleç K, Kıyan HT. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res 2020; 130:103991. [PMID: 32105668 DOI: 10.1016/j.mvr.2020.103991] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
The development of a new drug active substance is not only time-consuming and expensive, but also a chain of operations that often fails. However, increasing the bioavailability, effectiveness, safety, or targeting the drugs used in clinic by various methods, such as nanoparticles (NPs), may be a more effective way of using them in clinic. In addition, NP formulations are becoming increasingly popular in modern medical treatments. Angiogenesis, formation of new capillaries from a pre-existing one, fundamentally occurs in physiological processes such as wound healing, embryogenesis and menstrual cycle, also has a vital role in pathology of cancer, psoriasis, diabetic retinopathy and chronic inflammation. The Hen's Egg Test on the Chorioallantoic Membrane (HET-CAM) assay is a useful, well established and animal alternative in vivo procedure for evaluation of anti-inflammatory potentials and anti-irritant properties of nano drug delivery systems. In this study, diclofenac sodium (DS) loaded PLGA NPs were prepared and characterized. The particle size (PS) of DS-loaded PLGA NPs was between 114.7 and 124.8 nm and all NPs were monodisperse with negative zeta potential values. The encapsulation efficiency was in range of 41.4-77.8%. In vitro dissolution studies of NPs showed up to 24 h of DS release after the first 3 h of burst effect. The 3 h burst effect and 24 h release kinetics studied with DDSolver were found to be predominantly driven not only by one mechanism, by a combined mechanism of Fickian and non-Fickian. Solid state structures of formulations were clarified by DSC and FT-IR analysis. PS, EE% and release rates were found to be affected by the amount of DS added to the formulations. Increasing the amount of DS added to the formulations increased PS, while the EE% decreased. The release rates were affected by PS and the formulation with the lowest PS value showed slower release. The anti-inflammatory activity of optimum formulation (NP-1) was examined using in vivo HET-CAM assay. The anti-inflammatory activity results indicated that NP-1 coded NP formulation showed significantly good anti-inflammatory potential at low dose. As a result, a low dose high anti-inflammatory effect was achieved with the NP structure of DS. To the best of our knowledge this is the first study on in vivo anti-inflammatory activities of DS loaded PLGA NPs by HET-CAM.
Collapse
Affiliation(s)
- A Alper Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey.
| | - İrem Namlı
- Anadolu University, Graduate School of Health Sciences, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey
| | - Kadri Güleç
- Anadolu University, Graduate School of Health Sciences, Department of Analytical Chemistry, 26470 Eskişehir, Turkey
| | - H Tuba Kıyan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskişehir, Turkey
| |
Collapse
|
36
|
Martín Giménez VM, Russo MG, Narda GE, Fuentes LB, Mazzei L, Gamarra-Luques C, Kassuha DE, Manucha W. Synthesis, physicochemical characterisation and biological activity of anandamide/ɛ-polycaprolactone nanoparticles obtained by electrospraying. IET Nanobiotechnol 2020; 14:86-93. [PMID: 31935683 PMCID: PMC8676047 DOI: 10.1049/iet-nbt.2019.0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors' work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/ɛ-polycaprolactone nanoparticles (Nps-AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps-AEA/PCL. They obtained particles from 100 to 900 nm of diameter with a predominance of 200-400 nm. Their zeta potential was -20 ± 1.86 mV. They demonstrated the stable encapsulation of AEA in Nps-AEA/PCL, as well as its dose-dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+/K+ ATPase activity in HK2 cells. Obtaining Nps-AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.
Collapse
Affiliation(s)
- Virna M Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Av. Ignacio de la Roza 1516 (o), 5400, San Juan, Argentina
| | - Marcos G Russo
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700HGC, San Luis, Argentina
| | - Griselda E Narda
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, D5700HGC, San Luis, Argentina
| | - Lucía B Fuentes
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, D5700HOJ, San Luis, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80 - Parque General San Martín, Centro Universitario, M5500 Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Av. Ruiz Leal s/n - Parque Gral. San Martín, M5500 Mendoza, Argentina
| | - Diego E Kassuha
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Av. Ignacio de la Roza 1516 (o), 5400, San Juan, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Av. Libertador 80 - Parque General San Martín, Centro Universitario, M5500 Mendoza, Argentina.
| |
Collapse
|
37
|
Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Nanodelivery of Natural Antioxidants: An Anti-aging Perspective. Front Bioeng Biotechnol 2020; 7:447. [PMID: 31998711 PMCID: PMC6965023 DOI: 10.3389/fbioe.2019.00447] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
The aging process is known to be associated with heightened oxidative stress and related systemic inflammation. Therefore, antioxidant supplementation is regarded as a promising strategy to combat aging and associated pathological conditions. Food-grade antioxidants from plant-derived extracts are the most common ingredients of these supplements. Phyto-bioactive compounds such as curcumin, resveratrol, catechins, quercetin are among the most commonly applied natural compounds used as potential modulators of the free radical-induced cellular damages. The therapeutic potential of these compounds is, however, restricted by their low bioavailability related to poor solubility, stability, and absorbance in gastrointestinal tract. Recently, novel nanotechnology-based systems were developed for therapeutic delivery of natural antioxidants with improved bioavailability and, consequently, efficacy in clinical practice. Such systems have provided many benefits in preclinical research over the conventional preparations, including superior solubility and stability, extended half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent developments in nanodelivery of natural antioxidants and its application to combat pathological conditions associated with oxidative stress.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, Kyiv, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
38
|
Nanotechnological breakthroughs in the development of topical phytocompounds-based formulations. Int J Pharm 2019; 572:118787. [DOI: 10.1016/j.ijpharm.2019.118787] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/24/2022]
|
39
|
Lushchak O, Strilbytska O, Koliada A, Zayachkivska A, Burdyliuk N, Yurkevych I, Storey KB, Vaiserman A. Nanodelivery of phytobioactive compounds for treating aging-associated disorders. GeroScience 2019; 42:117-139. [PMID: 31686375 DOI: 10.1007/s11357-019-00116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine.
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Alexander Koliada
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine
| | - Alina Zayachkivska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Ihor Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv, 04114, Ukraine.
| |
Collapse
|
40
|
Nangare S, Jadhav N, Ghagare P, Muthane T. Pharmaceutical applications of electrospinning. ANNALES PHARMACEUTIQUES FRANÇAISES 2019; 78:1-11. [PMID: 31564424 DOI: 10.1016/j.pharma.2019.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Development of tailor-made pharmaceutical nanofibers has gained vital prominence due to ease of fabrication and versatility of electrospinning (ES). ES is one of the flexible and, wonderful strategies for the fabrication of nanofibers. ES unit comprises a supplier of high voltage current, a syringe (pump), spinneret and a metal plate collector. The obtained nanofibers are optimized by manipulating process and formulation variables Viz: polymer/drug resolution (viscosity, concentration, physical phenomenon, molecular mass) and the environmental conditions (humidity, temperature). The electrospun nanofibers can be used for loading of the drug, amorphization of a crystalline API and an increase in its physical storage stability. ES technique enables mixing of two or more API and may facilitate or inhibit the burst release of a drug, along with attainment of modified release. Additionally, nanofibers demonstrate a reduction in overall dose needed for the therapeutic activity, by improving dissolution and bioavailability of the drugs. The current review is an attempt to focus on ES method, the optimization parameters, and pharmaceutical applications of the electrospun nanofibers.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India.
| | - Pravin Ghagare
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| | - Tejashwini Muthane
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 127 SOC. NO. 1. R. K. Nagar, 416013 Kolhapur, India
| |
Collapse
|
41
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
42
|
Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases. Molecules 2019; 24:molecules24101932. [PMID: 31137465 PMCID: PMC6572147 DOI: 10.3390/molecules24101932] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/21/2023] Open
Abstract
Carvacrol, a plant-derived volatile small molecule, is effective against various agents that can cause damage to humans, the food processing industry, and plants, and is considered a safe substance for human consumption. In this short communication, previous studies on the effectiveness of carvacrol against various agents, particularly plant pathogens and their associated mechanisms are described. In our study, carvacrol was found to be effective on media against several soilborne pathogens and in planta against three foliar pathogens (Xanthomonas perforans, Alternaria tomatophila, and Podosphaeraxanthii) of important vegetable crops in south Florida of the United States. Current research findings indicated that the effectiveness of carvacrol against various plant pathogens tested was associated with its direct bactericidal/fungicidal effect, which was affected greatly by its volatility. Development of new formulations to overcome the volatility and to prolong the effectiveness of carvacrol was also presented. Our studies on carvacrol suggested that, with advanced development of new formulations, carvacrol could be used as a promising tool in the integrated pest management for bacterial, fungal, and viral pathogens of important vegetable crops in Florida, the USA, and the world.
Collapse
|
43
|
de Matos SP, Teixeira HF, de Lima ÁAN, Veiga-Junior VF, Koester LS. Essential Oils and Isolated Terpenes in Nanosystems Designed for Topical Administration: A Review. Biomolecules 2019; 9:biom9040138. [PMID: 30959802 PMCID: PMC6523335 DOI: 10.3390/biom9040138] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Essential oils are natural products with a complex composition. Terpenes are the most common class of chemical compounds present in essential oils. Terpenes and the essential oils containing them are widely used and investigated by their pharmacological properties and permeation-enhancing ability. However, many terpenes and essential oils are sensitive to environmental conditions, undergoing volatilization and chemical degradation. In order to overcome the chemical instability of some isolated terpenes and essential oils, the encapsulation of these compounds in nanostructured systems (polymeric, lipidic, or molecular complexes) has been employed. In addition, nanoencapsulation can be of interest for pharmaceutical applications due to its capacity to improve the bioavailability and allow the controlled release of drugs. Topical drug administration is a convenient and non-invasive administration route for both local and systemic drug delivery. The present review focuses on describing the current status of research concerning nanostructured delivery systems containing isolated terpenes and/or essential oils designed for topical administration and on discussing the use of terpenes and essential oils either for their biological activities or as permeation enhancers in pharmaceutic formulations.
Collapse
Affiliation(s)
- Sheila P de Matos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, Brazil.
| | - Helder F Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Av. General Cordeiro de Farias, s/n, Petrópolis, Natal 59012-570, Brazil.
| | - Ádley A N de Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Av. General Cordeiro de Farias, s/n, Petrópolis, Natal 59012-570, Brazil.
| | - Valdir F Veiga-Junior
- Departamento de Engenharia Química, Instituto Militar de Engenharia, Praça Gen. Tibúrcio, 80, Praia Vermelha, Urca, Rio de Janeiro 22290-270, Brazil.
| | - Letícia S Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, Brazil.
| |
Collapse
|
44
|
Crowley K, de Vries ST, Moreno-Sanz G. Self-Reported Effectiveness and Safety of Trokie ® Lozenges: A Standardized Formulation for the Buccal Delivery of Cannabis Extracts. Front Neurosci 2018; 12:564. [PMID: 30154694 PMCID: PMC6102350 DOI: 10.3389/fnins.2018.00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Therapeutic use of cannabinoids, the main active ingredients of Cannabissativa L., is often hindered by their limited bioavailability and undesirable psychoactivity. We conducted an observational study in December 2016 and another one in February 2018 to investigate respectively: (i) the effectiveness of Trokie® lozenges, a standardized formulation containing cannabis extracts, to deliver cannabinoids via buccal absorption and (ii) its long-term safety. Participants were members of the Palliative Care Corporation health clinic, registered California cannabis patients, and had a diagnosis of chronic non-cancer pain. For the effectiveness study, 49 participants were asked to self-report pain perception before and after 1–12 weeks of taking Trokie® lozenges, using an 11-point pain intensity numeric rating scale (PI-NRS). A mean reduction in PI-NRS score of 4.9 ± 2.0 points was observed. Onset of analgesia typically varied between 5 and 40 min, which seems consistent with, at least partial, buccal absorption. In the safety study, 35 participants were asked to complete a questionnaire about adverse events (AEs) associated with Trokie® lozenges. AEs were reported by 16 subjects (46%), the most common being dizziness/unsteadiness (N = 7), bad taste (N = 5), and throat irritation/dry mouth (N = 4). None of the self-reported AEs resulted in a serious medical situation and most of them had limited impact on daily functions. Despite the AEs, 90% of participants reported being “satisfied” or “very satisfied” with the product. These observations suggest that buccal administration of standardized extracts via Trokie® lozenges may represent an efficacious and safe approach to cannabis administration.
Collapse
Affiliation(s)
- Kenton Crowley
- Palliative Care Corporation, Huntington Beach, CA, United States
| | - Sieta T de Vries
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
45
|
Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM, Daglia M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials. BIOFOULING 2018; 34:630-656. [PMID: 30067078 DOI: 10.1080/08927014.2018.1480756] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Carvacrol (5-isopropyl-2-methyl phenol) is a natural compound that occurs in the leaves of a number of plants and herbs including wild bergamot, thyme and pepperwort, but which is most abundant in oregano. The aim of this review is to analyse the scientific data from the last five years (2012-2017) on the antimicrobial and anti-biofilm activities of carvacrol, targeting different bacteria and fungi responsible for human infectious diseases. The antimicrobial and anti-biofilm mechanisms of carvacrol and its synergies with antibiotics are illustrated. The potential of carvacrol-loaded anti-infective nanomaterials is underlined. Carvacrol shows excellent antimicrobial and anti-biofilm activities, and is a very interesting bioactive compound against fungi and a wide range of Gram-positive and Gram-negative bacteria, and being active against both planktonic and sessile human pathogens. Moreover, carvacrol lends itself to being combined with nanomaterials, thus providing an opportunity for preventing biofilm-associated infections by new bio-inspired, anti-infective materials.
Collapse
Affiliation(s)
- Anna Marchese
- a Microbiology Section DISC-Ospedale Policlinico San Martino , University of Genoa , Genoa , Italy
| | - Carla Renata Arciola
- b Department of Experimental, Diagnostic and Specialty Medicine , University of Bologna , Bologna , Italy
- c Research Unit on Implant Infections , Rizzoli Orthopaedic Institute , Bologna , Italy
| | - Erika Coppo
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Ramona Barbieri
- d Microbiology Section DISC , University of Genoa , Genoa , Italy
| | - Davide Barreca
- e Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , Messina , Italy
| | - Salima Chebaibi
- f Department of Health and Environment, Science Faculty , University Moulay Ismail , Meknes , Morocco
| | - Eduardo Sobarzo-Sánchez
- g Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy , University of Santiago de Compostela , Spain
- h Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud , Universidad Central de Chile , Chile
| | - Seyed Fazel Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- i Applied Biotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Maria Daglia
- j Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section , University of Pavia , Pavia , Italy
| |
Collapse
|
46
|
Squillaro T, Cimini A, Peluso G, Giordano A, Melone MAB. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 2018; 154:303-317. [PMID: 29803506 DOI: 10.1016/j.bcp.2018.05.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (NDs) and brain tumors are severe, disabling, and incurable disorders that represent a critical problem regarding human suffering and the economic burden on the healthcare system. Because of the lack of effective therapies to treat NDs and brain tumors, the challenge for physicians is to discover new drugs to improve their patients' quality of life. In addition to risk factors such as genetics and environmental influences, increased cellular oxidative stress has been reported as one of the potential common etiologies in both disorders. Given their antioxidant and anti-inflammatory potential, dietary polyphenols are considered to be one of the most bioactive natural agents in chronic disease prevention and treatment. Despite the protective activity of polyphenols, their inefficient delivery systems and poor bioavailability strongly limit their use in medicine and functional food. A potential solution lies in polymeric nanoparticle-based polyphenol delivery systems that are able to enhance their absorption across the gastrointestinal tract, improve their bioavailability, and transport them to target organs. In the present manuscript, we provide an overview of the primary polyphenols used for ND and brain tumor prevention and treatment by focusing on recent findings, the principal factors limiting their application in clinical practice, and a promising delivery strategy to improve their bioavailability.
Collapse
Affiliation(s)
- T Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - A Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - G Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - A Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Italy.
| | - M A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
47
|
El-Sherbiny M, Eldosoky M, El-Shafey M, Othman G, Elkattawy HA, Bedir T, Elsherbiny NM. Vitamin D nanoemulsion enhances hepatoprotective effect of conventional vitamin D in rats fed with a high-fat diet. Chem Biol Interact 2018; 288:65-75. [PMID: 29653100 DOI: 10.1016/j.cbi.2018.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with hyperlipidemia, obesity and type II diabetes. Due to increasing prevalence of these diseases globally, NAFLD is considered as a common form of chronic liver diseases. Vitamin D is a fat soluble vitamin with reported anti-inflammatory, anti-oxidant and immune modulating activity. Hypovitaminosis D often coexists with NAFLD and various studies reported beneficial role of vitamin D in modulating NAFLD. However, variable oral bioavailability, poor water solubility, and chemical degradation hinder the clinical application of vitamin D. PURPOSE We evaluated the potential protective effect of Vitamin D nanoemulsion (developed by sonication and pH-Shifting of pea protein isolate and canola oil) compared to conventional vitamin D against liver injury in rats fed with high fat diet (HFD). METHODS We analyzed liver function enzymes, lipid profile, lipid metabolism, levels and histopathology of inflammation and fibrosis in rat liver tissues. RESULTS HFD fed rats exhibited deterioration of liver function, poor lipid profile, decreased fatty acid oxidation and up-regulation of inflammatory cytokines and extracellular matrix deposition. Vitamin D administration reduced elevated liver enzymes, improved lipid profile, enhanced fatty acid oxidation and attenuated liver inflammation and fibrosis. Interestingly, vitamin D nanoemulsion was superior to conventional vitamin D with remarkable hepatoprotective effect against HFD-induced liver injury. CONCLUSION This study demonstrated vitamin D nanoemulsion as a more efficient formulation with more prominent hepatoprotective effect against HFD-induced liver injury compared to conventional oral vitamin D.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Anatomy Department, Mansoura Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Mohamed Eldosoky
- Medical Physiology Department, Mansoura Faculty of Medicine, Egypt
| | - Mohamed El-Shafey
- Anatomy Department, Mansoura Faculty of Medicine, Egypt; Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Gamal Othman
- Medical Biochemistry Department, Mansoura Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Hany A Elkattawy
- Medical Physiology Department, Zagazig Obesity Management and Research Unit, Zagazig Faculty of Medicine, Egypt; Almaarefa College of Medicine, Riyadh, Saudi Arabia
| | - Tamer Bedir
- Medical Microbiology and Immunology Department, Mansoura Faculty of Medicine, Egypt
| | - Nehal Mohsen Elsherbiny
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
48
|
Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediators Inflamm 2018; 2018:9734845. [PMID: 29785173 PMCID: PMC5896216 DOI: 10.1155/2018/9734845] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/17/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota (GM) plays several crucial roles in host physiology and influences several relevant functions. In more than one respect, it can be said that you “feed your microbiota and are fed by it.” GM diversity is affected by diet and influences metabolic and immune functions of the host's physiology. Consequently, an imbalance of GM, or dysbiosis, may be the cause or at least may lead to the progression of various pathologies such as infectious diseases, gastrointestinal cancers, inflammatory bowel disease, and even obesity and diabetes. Therefore, GM is an appropriate target for nutritional interventions to improve health. For this reason, phytochemicals that can influence GM have recently been studied as adjuvants for the treatment of obesity and inflammatory diseases. Phytochemicals include prebiotics and probiotics, as well as several chemical compounds such as polyphenols and derivatives, carotenoids, and thiosulfates. The largest group of these comprises polyphenols, which can be subclassified into four main groups: flavonoids (including eight subgroups), phenolic acids (such as curcumin), stilbenoids (such as resveratrol), and lignans. Consequently, in this review, we will present, organize, and discuss the most recent evidence indicating a relationship between the effects of different phytochemicals on GM that affect obesity and/or inflammation, focusing on the effect of approximately 40 different phytochemical compounds that have been chemically identified and that constitute some natural reservoir, such as potential prophylactics, as candidates for the treatment of obesity and inflammatory diseases.
Collapse
|
49
|
Insights into Natural Products in Inflammation. Int J Mol Sci 2018; 19:ijms19030644. [PMID: 29495321 PMCID: PMC5877505 DOI: 10.3390/ijms19030644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 12/22/2022] Open
|
50
|
Sarker SD, Nahar L. Application of Nanotechnology in Phytochemical Research. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.15171/ps.2017.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|