1
|
Guo X, Yan X, Li Y. Genome-wide identification and expression analysis of the WRKY gene family in Rhododendron henanense subsp. lingbaoense. PeerJ 2024; 12:e17435. [PMID: 38827309 PMCID: PMC11143974 DOI: 10.7717/peerj.17435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Background This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.
Collapse
Affiliation(s)
- Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xinyu Yan
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
2
|
Tao H, Gao F, Linying Li, He Y, Zhang X, Wang M, Wei J, Zhao Y, Zhang C, Wang Q, Hong G. WRKY33 negatively regulates anthocyanin biosynthesis and cooperates with PHR1 to mediate acclimation to phosphate starvation. PLANT COMMUNICATIONS 2024; 5:100821. [PMID: 38229439 PMCID: PMC11121177 DOI: 10.1016/j.xplc.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.
Collapse
Affiliation(s)
- Han Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Fei Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mengyu Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Jia Wei
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiaomei Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of the MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Kandhol N, Rai P, Mishra V, Pandey S, Kumar S, Deshmukh R, Sharma S, Singh VP, Tripathi DK. Silicon regulates phosphate deficiency through involvement of auxin and nitric oxide in barley roots. PLANTA 2024; 259:144. [PMID: 38709333 DOI: 10.1007/s00425-024-04364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/11/2024] [Indexed: 05/07/2024]
Abstract
MAIN CONCLUSION Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, 208002, India
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India.
| |
Collapse
|
4
|
Chao M, Huang L, Dong J, Chen Y, Hu G, Zhang Q, Zhang J, Wang Q. Molecular characterization and expression pattern of Rubisco activase gene GhRCAβ2 in upland cotton (Gossypium hirsutum L.). Genes Genomics 2024; 46:423-436. [PMID: 38324226 DOI: 10.1007/s13258-024-01494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rubisco activase (RCA) is a pivotal enzyme that can catalyse the activation of Rubisco in carbon assimilation pathway. Many studies have shown that RCA may be a potential target for genetic manipulation aimed at enhancing photosynthetic efficiency and crop yield. OBJECTIVE To understand the biological function of the GhRCAβ2 gene in upland cotton, we cloned the coding sequence (CDS) of the GhRCAβ2 gene and investigated its sequence features, evolutionary relationship, subcellular localization, promoter sequence and expression pattern. METHODS The bioinformatics tools were used to analyze the sequence features of GhRCAβ2 protein. Transient transformation of Arabidopsis mesophyll protoplasts was performed to determine the subcellular localization of the GhRCAβ2 protein. The expression pattern of the GhRCAβ2 gene was examined by analyzing transcriptome data and using the quantitative real-time PCR (qRT-PCR). RESULTS The full-length CDS of GhRCAβ2 was 1317 bp, and it encoded a protein with a chloroplast transit peptide. The GhRCAβ2 had two conserved ATP-binding domains, and did not have the C-terminal extension (CTE) domain that was unique to the RCA α-isoform in plants. Evolutionarily, GhRCAβ2 was clustered in Group A, and had a close evolutionary relationship with the soybean RCA. Western blot analysis demonstrated that GhRCAβ2 was immunoreactive to the RCA antibody displaying a molecular weight similar to that of the RCA β-isoform. The GhRCAβ2 protein was found in chloroplast, aligning with its role as a vital enzyme in the process of photosynthesis. The GhRCAβ2 gene had a leaf tissue-specific expression pattern, and the yellow-green leaf mutant exhibited a decreased expression of GhRCAβ2 in comparison to the wild-type cotton plants. The GhRCAβ2 promoter contained several cis-acting elements that respond to light, phytohormones and stress, suggesting that the expression of GhRCAβ2 may be regulated by these factors. An additional examination of stress response indicated that GhRCAβ2 expression was influenced by cold, heat, salt, and drought stress. Notably, diverse expression pattern was observed across different stress conditions. Additionally, low phosphorus and low potassium stress may result in a notable reduction in the expression of GhRCAβ2 gene. CONCLUSION Our findings will establish a basis for further understanding the function of the GhRCAβ2 gene, as well as providing valuable genetic knowledge to improve cotton photosynthetic efficiency and yield under challenging environmental circumstances.
Collapse
Affiliation(s)
- Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ling Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Yu Chen
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Genhai Hu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qiufang Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qinglian Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Wang H, Cheng X, Yin D, Chen D, Luo C, Liu H, Huang C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr Issues Mol Biol 2023; 45:2861-2880. [PMID: 37185711 PMCID: PMC10136515 DOI: 10.3390/cimb45040187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The WRKY transcription factors are a class of transcriptional regulators that are ubiquitous in plants, wherein they play key roles in various physiological activities, including responses to stress. Specifically, WRKY transcription factors mediate plant responses to biotic and abiotic stresses through the binding of their conserved domain to the W-box element of the target gene promoter and the subsequent activation or inhibition of transcription (self-regulation or cross-regulation). In this review, the progress in the research on the regulatory effects of WRKY transcription factors on plant responses to external stresses is summarized, with a particular focus on the structural characteristics, classifications, biological functions, effects on plant secondary metabolism, regulatory networks, and other aspects of WRKY transcription factors. Future research and prospects in this field are also proposed.
Collapse
Affiliation(s)
- Hongli Wang
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dongmei Yin
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Cross-Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Malus mandshurica. Int J Mol Sci 2022; 23:ijms23094896. [PMID: 35563283 PMCID: PMC9105917 DOI: 10.3390/ijms23094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphorus (Pi) is a macronutrient essential for plant growth, development, and reproduction. However, there is not an efficient available amount of Pi that can be absorbed by plants in the soil. Previously, an elite line, MSDZ 109, selected from Malus mandshurica, was justified for its excellent tolerance to low phosphorus (low−Pi) stress. To date, however, the genes involved in low−Pi stress tolerance have not yet been unraveled in this species. Currently, the physiological responses of this line for different days to low−Pi stress were characterized, and their roots as well as leaves were used to carry out transcriptome analysis, so as to illuminate the potential molecular pathways and identify the genes involved in low−Pi stress−response. After exposure to low−Pi treatment (32 µmol/L KH2PO4) for 20 day after treatment (DAF) the biomass of shoots was significantly reduced in comparison with that of the stress−free (control), and root architecture diversely changed. For example, the root growth parameters e.g., length, surface area, and total volume somewhat increase in comparison with those of the control. The activity of acid phosphatase (ACP) increased with the low−Pi treatment, whereas the photosynthetic rate and biomass were declining. The activity of antioxidant enzymes, e.g., superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), were substantially elevated in response to low−Pi treatment. Many enzyme−related candidate genes e.g., MmCAT1, MmSOD1 and MmPOD21 were up−regulated to low−Pi treatment. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the processes of photosynthesis, plant hormone signal transduction, and MAPK signaling pathway were affected in the low−Pi response. In combination with the physiological characterization, several low−Pi−responsive genes, e.g., PHT, PHO, were identified, and the genes implicated in Pi uptake and transport, such as MmPHT1;5, MmPHO1, MmPAP1, etc., were also obtained since their expression status varied among the exposure times, which probably notifies the candidates involved in low−Pi−responsive tolerance in this line. Interestingly, low−Pi treatment activated the expression of transcription factors including the WRKY family, MYB family, etc. The available evidences will facilitate a better understanding of the roles of this line underlying the high tolerance to low−Pi stress. Additionally, the accessible data are helpful for the use of the apple rootstock M. mandshurica under low−Pi stress.
Collapse
|
7
|
Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. The role of 14-3-3 proteins in plant growth and response to abiotic stress. PLANT CELL REPORTS 2022; 41:833-852. [PMID: 34773487 DOI: 10.1007/s00299-021-02803-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The 14-3-3 proteins widely exist in almost all plant species. They specifically recognize and interact with phosphorylated target proteins, including protein kinases, phosphatases, transcription factors and functional proteins, offering an array of opportunities for 14-3-3s to participate in the signal transduction processes. 14-3-3s are multigene families and can form homo- and heterodimers, which confer functional specificity of 14-3-3 proteins. They are widely involved in regulating biochemical and cellular processes and plant growth and development, including cell elongation and division, seed germination, vegetative and reproductive growth, and seed dormancy. They mediate plant response to environmental stresses such as salt, alkaline, osmotic, drought, cold and other abiotic stresses, partially via hormone-related signalling pathways. Although many studies have reviewed the function of 14-3-3 proteins, recent research on plant 14-3-3s has achieved significant advances. Here, we provide a comprehensive overview of the fundamental properties of 14-3-3 proteins and systematically summarize and dissect the emerging advances in understanding the roles of 14-3-3s in plant growth and development and abiotic stress responses. Some ambiguous questions about the roles of 14-3-3s under environmental stresses are reviewed. Interesting questions related to plant 14-3-3 functions that remain to be elucidated are also discussed.
Collapse
Affiliation(s)
- Ye Huang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenshu Wang
- Institute of Crop Science of Wuhan Academy of Agriculture Science, Wuhan, 430345, China
| | - Hua Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhua Peng
- Huazhi Biotech Co., Ltd., Changsha, 410125, China
| | - Zhengrong Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhou M, Zhu S, Mo X, Guo Q, Li Y, Tian J, Liang C. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency. Cells 2022; 11:cells11040651. [PMID: 35203302 PMCID: PMC8870294 DOI: 10.3390/cells11040651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 01/25/2023] Open
Abstract
Phosphorus (P) is an essential nutrient for plant growth. In recent decades, the application of phosphate (Pi) fertilizers has contributed to significant increases in crop yields all over the world. However, low efficiency of P utilization in crops leads to intensive application of Pi fertilizers, which consequently stimulates environmental pollution and exhaustion of P mineral resources. Therefore, in order to strengthen the sustainable development of agriculture, understandings of molecular mechanisms underlying P efficiency in plants are required to develop cultivars with high P utilization efficiency. Recently, a plant Pi-signaling network was established through forward and reverse genetic analysis, with the aid of the application of genomics, transcriptomics, proteomics, metabolomics, and ionomics. Among these, proteomics provides a powerful tool to investigate mechanisms underlying plant responses to Pi availability at the protein level. In this review, we summarize the recent progress of proteomic analysis in the identification of differential proteins that play roles in Pi acquisition, translocation, assimilation, and reutilization in plants. These findings could provide insights into molecular mechanisms underlying Pi acquisition and utilization efficiency, and offer new strategies in genetically engineering cultivars with high P utilization efficiency.
Collapse
Affiliation(s)
- Ming Zhou
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China;
| | - Xiaohui Mo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Qi Guo
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Yaxue Li
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (X.M.); (Q.G.); (Y.L.)
- Correspondence: (J.T.); (C.L.); Tel.: +86-2085283380 (J.T.); +86-2085280156 (C.L.)
| |
Collapse
|
9
|
Identification of Phosphorus Stress Related Proteins in the Seedlings of Dongxiang Wild Rice ( Oryza Rufipogon Griff.) Using Label-Free Quantitative Proteomic Analysis. Genes (Basel) 2022; 13:genes13010108. [PMID: 35052448 PMCID: PMC8774503 DOI: 10.3390/genes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.
Collapse
|
10
|
da Fonseca-Pereira P, Pham PA, Cavalcanti JHF, Omena-Garcia RP, Barros JAS, Rosado-Souza L, Vallarino JG, Mutwil M, Avin-Wittenberg T, Nunes-Nesi A, Fernie AR, Araújo WL. The Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:196-214. [PMID: 34741366 DOI: 10.1111/tpj.15566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress.
Collapse
Affiliation(s)
- Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Phuong Anh Pham
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - João Henrique F Cavalcanti
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jessica A S Barros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - José G Vallarino
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, D-14476, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Zhang Y, Zhao Y, Sun L, Han P, Bai X, Lin R, Xiao K. The N uptake-associated physiological processes at late growth stage in wheat (Triticum aestivum) under N deprivation combined with deficit irrigation condition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:160-172. [PMID: 33991861 DOI: 10.1016/j.plaphy.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Elucidating physiological mechanisms underlying the plant N uptake benefits breeding of high N use efficiency (NUE) crop cultivars. In this study, we investigated the growth and N uptake-associated processes in wheat under N deprivation and deficit irrigation, using two contrasting NUE cultivars. Compared with sufficient-N (SN), deficient-N (DN) treatment reduced plant biomass, N accumulation, and yields in two cultivars (high NUE Shinong 086 and N deprivation-sensitive Jimai 585), suggesting that N deprivation negatively regulates plant growth and N uptake. Shinong 086 was better on growth and N uptake-associated traits than Jimai 585 due to the improved root biomass across soil profile, which was consistent with the decrease of available N contents in soil layers. These results suggested that the improved root system architecture (RAS) enhances plant acquirement for soil N under N- and water-deprivation condition, contributing to the plant N uptake and yield formation capacities. Transcriptome investigation revealed that numerous genes were differentially expressed (DE) in the N-deprived Shinong 086 plants, which involve the regulation of complicate biochemical pathways. These results suggested that the modified RAS and N uptake in high NUE plants are accomplished underlying the regulation of numerous DE genes. TaWRKY20, a gene in ZFP transcription factor family, was functionally characterized for the role in mediating plant N uptake. Overexpression of it conferred plants improved growth and N uptake under DN due to its regulation on TaNRT2.1 and TaNRT2.2, two nitrate transporter genes. Our investigation provides insights in high NUE mechanisms in wheat under N deprivation.
Collapse
Affiliation(s)
- Yanyang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Yingjia Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Liyong Sun
- Collaboration and Innovation Center of Hebei, Shijiazhuang, 050000, China
| | - Peng Han
- Agricultural Technology Extension Station of Hebei, Shijiazhuang, 050000, China
| | - Xinyang Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Ruize Lin
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China
| | - Kai Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, 071001, China; College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
12
|
Tamang P, Richards JK, Solanki S, Ameen G, Sharma Poudel R, Deka P, Effertz K, Clare SJ, Hegstad J, Bezbaruah A, Li X, Horsley RD, Friesen TL, Brueggeman RS. The Barley HvWRKY6 Transcription Factor Is Required for Resistance Against Pyrenophora teres f. teres. Front Genet 2021; 11:601500. [PMID: 33519904 PMCID: PMC7844392 DOI: 10.3389/fgene.2020.601500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres (Ptt) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley.
Collapse
Affiliation(s)
- Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Jonathan K Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, United States
| | - Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Priyanka Deka
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Karl Effertz
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Shaun J Clare
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Justin Hegstad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Achintya Bezbaruah
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Cereal Crops Research Unit, United States Department of Argiculture - Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States.,Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
Cai J, Cai W, Huang X, Yang S, Wen J, Xia X, Yang F, Shi Y, Guan D, He S. Ca14-3-3 Interacts With CaWRKY58 to Positively Modulate Pepper Response to Low-Phosphorus Starvation. FRONTIERS IN PLANT SCIENCE 2021; 11:607878. [PMID: 33519860 PMCID: PMC7840522 DOI: 10.3389/fpls.2020.607878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Low-phosphorus stress (LPS) and pathogen attack are two important stresses frequently experienced by plants in their natural habitats, but how plant respond to them coordinately remains under-investigated. Here, we demonstrate that CaWRKY58, a known negative regulator of the pepper (Capsicum annuum) response to attack by Ralstonia solanacearum, is upregulated by LPS. Virus-induced gene silencing (VIGS) and overexpression of CaWRKY58 in Nicotiana benthamiana plants in combination with chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA) demonstrated that CaWRKY58 positively regulates the response of pepper to LPS by directly targeting and regulating genes related to phosphorus-deficiency tolerance, including PHOSPHATE STARVATION RESPONSE1 (PHR1). Yeast two-hybrid assays revealed that CaWRKY58 interacts with a 14-3-3 protein (Ca14-3-3); this interaction was confirmed by pull-down, bimolecular fluorescence complementation (BiFC), and microscale thermophoresis (MST) assays. The interaction between Ca14-3-3 and CaWRKY58 enhanced the activation of PHR1 expression by CaWRKY58, but did not affect the expression of the immunity-related genes CaNPR1 and CaDEF1, which are negatively regulated by CaWRKY58 in pepper upon Ralstonia solanacearum inoculation. Collectively, our data indicate that CaWRKY58 negatively regulates immunity against Ralstonia solanacearum, but positively regulates tolerance to LPS and that Ca14-3-3 transcriptionally activates CaWRKY58 in response to LPS.
Collapse
Affiliation(s)
- Jinsen Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiwei Cai
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueying Huang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiayu Wen
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Xia
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yang
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Shi
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyi Guan
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
14
|
Hong Y, Cui J, Liu Z, Luan Y. SpWRKY6 acts as a positive regulator during tomato resistance to Phytophthora infestans infection. Biochem Biophys Res Commun 2018; 506:787-792. [PMID: 30389138 DOI: 10.1016/j.bbrc.2018.10.155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 01/08/2023]
Abstract
WRKY transcription factors have been widely known to play key regulatory roles in plant disease resistance. In our previous study, characteristics of SpWRKY6 and its role in response to biotic and abiotic stress was studied. To further investigate the function of SpWRKY6 in tomato resistance to Phytophthora infestans (P. infestans), we studied the effects of loss and gain of function of SpWRKY6. Inhibition of SpWRKY6 mRNA accumulation in tomato leaves, using virus-induced gene silencing (VIGS), greatly reduced SpWRKY6 mRNA levels, and compromised tomato resistance to P. infestans. In contrast, overexpressing- SpWRKY6 tomato plants showed enhanced resistance to P. infestans, accompanied by decreased number of necrotic cells, lesion sizes and disease index. Furthermore, after P. infestans infection, the expression levels of pathogenesis related (PR) genes in transgenic tomato plants overexpressed SpWRKY6 were significantly higher than those in wild type plants, while the number of necrotic cells and the reactive oxygen species (ROS) accumulation were fewer and lower. Taken together, these results indicating that SpWRKY6 acts as a positive regulator of tomato resistance to P. infestans infection through regulating the ROS level and the expression level of PR genes along with alleviating cell membrane injury.
Collapse
Affiliation(s)
- Yuhui Hong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Zhen Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
15
|
iTRAQ-based analysis of the Arabidopsis proteome reveals insights into the potential mechanisms of anthocyanin accumulation regulation in response to phosphate deficiency. J Proteomics 2018; 184:39-53. [PMID: 29920325 DOI: 10.1016/j.jprot.2018.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 01/18/2023]
Abstract
Phosphate (Pi) deficiency significantly limits plant growth in natural and agricultural systems. Accumulation of anthocyanins in shoots is a common response of Arabidopsis thaliana to Pi deficiency. To elucidate the mechanisms underlying Pi deficiency-induced anthocyanin accumulation, we employed a proteomic approach based on isobaric tags for relative and absolute quantification (iTRAQ) to investigate protein expression profiles of Arabidopsis thaliana seedlings subjected to Pi deficiency for 7 days. In total, 5,106 proteins were identified, of which 156 displayed significant changes in abundance upon Pi deficiency. Bioinformatics analysis indicated that flavonoid biosynthesis was the most significantly elevated metabolic process under Pi deficiency. We further examined the potential role of the flavonoid biosynthetic pathway using a dihydroflavonol 4-reductase (DFR) mutant (tt3) and quantitative RT-PCR (qRT-PCR) analysis, and found that the tt3 mutant was deprived of transcriptional up-regulation of three genes related to anthocyanin biosynthesis, modification and transport under Pi deficiency. These results showed that Pi deficiency probably enhances the anthocyanin accumulation by promoting the flavonoid biosynthesis. The exact functions of these proteins remain to be examined. Nevertheless, our study increases the understanding of the mechanisms implicated in the anthocyanin accumulation induced by Pi deficiency and adaptive responses of plants to Pi starvation.
Collapse
|