1
|
Mo S, Kim MK, Jang JS, Lee SH, Hong SJ, Jung S, Kim HH. Unique expression and critical role of metallothionein 3 in the control of osteoclastogenesis and osteoporosis. Exp Mol Med 2024; 56:1791-1806. [PMID: 39085359 PMCID: PMC11372110 DOI: 10.1038/s12276-024-01290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Bone homeostasis is maintained by an intricate balance between osteoclasts and osteoblasts, which becomes disturbed in osteoporosis. Metallothioneins (MTs) are major contributors in cellular zinc regulation. However, the role of MTs in bone cell regulation has remained unexplored. Single-cell RNA sequencing analysis discovered that, unlike the expression of other MT members, the expression of MT3 was unique to osteoclasts among various macrophage populations and was highly upregulated during osteoclast differentiation. This unique MT3 upregulation was validated experimentally and supported by ATAC sequencing data analyses. Downregulation of MT3 by gene knockdown or knockout resulted in excessive osteoclastogenesis and exacerbated bone loss in ovariectomy-induced osteoporosis. Transcriptome sequencing of MT3 knockdown osteoclasts and gene set enrichment analysis indicated that the oxidative stress and redox pathways were enriched, which was verified by MT3-dependent regulation of reactive oxygen species (ROS). In addition, MT3 deficiency increased the transcriptional activity of SP1 in a manner dependent on intracellular zinc levels. This MT3-zinc-SP1 axis was crucial for the control of osteoclasts, as zinc chelation and SP1 knockdown abrogated the promotion of SP1 activity and osteoclastogenesis by MT3 deletion. Moreover, SP1 bound to the NFATc1 promoter, and overexpression of an inactive SP1 mutant negated the effects of MT3 deletion on NFATc1 and osteoclastogenesis. In conclusion, MT3 plays a pivotal role in controlling osteoclastogenesis and bone metabolism via dual axes involving ROS and SP1. The present study demonstrated that MT3 elevation is a potential therapeutic strategy for osteolytic bone disorders, and it established for the first time that MT3 is a crucial bone mass regulator.
Collapse
Affiliation(s)
- Shenzheng Mo
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Bone Science R&D Center, Tissue Regeneration Institute, Osstem Implant, Seoul, 07789, Republic of Korea
| | - Ji Sun Jang
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seung Hye Lee
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seo Jin Hong
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Suhan Jung
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Korkola NC, Stillman MJ. Human apo-metallothionein 1a is not a random coil: Evidence from guanidinium chloride, high temperature, and acidic pH unfolding studies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:141010. [PMID: 38490456 DOI: 10.1016/j.bbapap.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada.
| |
Collapse
|
3
|
Mao Y, Wang L, Xu Z, Xie W, Wang Y, Qiao W, Zhu Z, Wang J. Developing a Selection Framework for Zinc Ion-Based Biomaterial Design: Guided by the Biosafety Assessment of ZIF-8 and ZnO. ACS Biomater Sci Eng 2024; 10:2967-2982. [PMID: 38632925 DOI: 10.1021/acsbiomaterials.3c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
In recent years, nanomaterials have gained widespread use in the biomedical field, with ZIF-8 and ZnO emerging as promising candidates due to their remarkable performance in osteogenesis, angiogenesis, and antimicrobial therapy. However, before advancing these nanomaterials for clinical applications, it is imperative to evaluate their biocompatibility. In particular, comparing nanomaterials with similar biomedical functions is crucial for identifying the most suitable nanomaterials for further development and market entry. Our study aimed to compare the biocompatibility of nano-ZIF-8 and nano-ZnO under the same conditions. We found that nano-ZIF-8 exhibited lower toxicity both in vitro and in vivo compared to nano-ZnO. To gain insights into the underlying mechanisms responsible for this difference, we conducted further experiments to investigate lysosome damage, mitochondrial change, and the occurrence of ferroptosis. Additionally, we performed transcriptome sequencing to analyze the expression of relevant genes, thereby providing robust validation for our findings. In summary, our study highlighted the importance of evaluating nanomaterials with similar biomedical effects. Through this comparative study, we have not only shed light on the superior biocompatibility of nano-ZIF-8 over nano-ZnO, but also contributed valuable insights and methodological references for future material screening endeavors. Ultimately, our study served as a stepping stone toward the development of safer and more effective nanomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Yilin Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 000000, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
4
|
Korkola NC, Stillman MJ. Structural motifs in the early metallation steps of Zn(II) and Cd(II) binding to apo-metallothionein 1a. J Inorg Biochem 2024; 251:112429. [PMID: 38000179 DOI: 10.1016/j.jinorgbio.2023.112429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Many proteins require a metal cofactor to function and these metals are often involved in the protein folding process. The protein metallothionein (MT) has a dynamic structure capable of binding to a variety of metals with different stoichiometries. The most well-understood structure is the seven-metal, two domain structure formed upon metallation using Zn(II) or Cd(II). However, the partially metallated states and the pathways to form these clusters are less well-understood, although it is known that the pathways are pH dependent. Using stopped flow methods, it is shown that the metallation rates of the less cooperative Zn(II) binding pathway is much more impacted by low pH conditions that that of the more cooperative Cd(II) binding pathway. Electrospray ionization mass spectrometry (ESI-MS) methods reveal specific mixtures of bridging and terminally bound MxSy structures form in the first few metallation steps. Using a combination of methods, the data show that the result of unfolding this intrinsically disordered apo-MT structure using guanidinium chloride is that the formation of preliminary bridging structures that form in the first few metallation steps is impeded. The data show that more terminally bound structures form. Our conclusion is that the compact conformation of the native apo-MT at physiological pH allows for rapid formation of complex metal-thiolate structures with high affinity that provides protection from oxidation, a function that is suppressed upon unfolding. Overall, these results highlight both the importance of the apo-MT structure in the metallation pathway, but also the differences in Zn(II) and Cd(II) binding under different conditions.
Collapse
Affiliation(s)
- Natalie C Korkola
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, ON N6A5B7, Canada.
| |
Collapse
|
5
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
The Difference in Zinc Concentrations Required for Induction among Metallothionein Isoforms Can Be Explained by the Different MTF1 Affinities to MREs in Its Promoter. Int J Mol Sci 2022; 24:ijms24010283. [PMID: 36613726 PMCID: PMC9820605 DOI: 10.3390/ijms24010283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Metallothioneins (MTs) are cysteine-rich low-molecular-weight proteins that protect cells from heavy metal toxicity. MT1 and MT2 are considered ubiquitously expressed among the MT isoforms ranging from 1 to 4. These MT1 and MT2 transcriptions are regulated by metal regulatory transcription factor 1 (MTF1) binding to the metal response element (MRE) of the promoter, which is upregulated in response to zinc. The functional MT isoforms are MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X, and MT2A in humans, but these expressions were differently regulated. Here, MT1A was shown to be significantly less upregulated by zinc than MT1E, MT1G, MT1X, and MT2A. The poor responsiveness of the MT1A zinc was suggested to be due to the MRE sequence in the MT1A promoter region having a lower MTF1 binding affinity compared to the other isoforms. MT1A may be induced via pathways other than the MTF1-MRE binding pathway. These findings may help elucidate the differential regulation of MT isoform expression.
Collapse
|
8
|
Mahim A, Petering DH. Zinc trafficking to apo-Zn-proteins 2. Cellular interplay of proteome, metallothionein, and glutathione. Metallomics 2022; 14:mfac081. [PMID: 36214409 PMCID: PMC9646480 DOI: 10.1093/mtomcs/mfac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022]
Abstract
A recent study investigated the impact of glutathione (GSH) on the transfer of zinc (Zn) from proteome to apo-carbonic anhydrase. Here, we probed the requirement of glutathione for zinc trafficking in LLC-PK1 pig kidney epithelial cells. Depletion of GSH by at least 95% left cells viable and able to divide and synthesize Zn-proteins at the control rate over a 48-h period. Loss of GSH stimulated the accumulation of 2.5x the normal concentration of cellular Zn. According to gel filtration chromatography, differential centrifugal filtration, and spectrofluorimetry with TSQ, the extra Zn was distributed between the proteome and metallothionein (MT). To test the functionality of proteome and/or MT as sources of Zn for the constitution of Zn-proteins, GSH-deficient cells were incubated with CaEDTA to isolate them from their normal source of nutrient Zn. Control cells plus CaEDTA stopped dividing; GSH-depleted cells plus CaEDTA continued to divide at ∼40% the rate of GSH deficient cells. Evidently, proteome and/or MT served as a functional source of Zn for generating Zn-proteins. In vitro insertion of Zn bound to proteome into apo-carbonic anhydrase occurred faster at larger concentrations of Zn bound to proteome. These results support the hypothesis that enhanced transport of Zn into cells drives the conversion of apo-Zn-proteins to Zn-proteins by mass action. Similar results were also obtained with human Jurkat T lymphocyte epithelial cells. This study reveals a powerful new model for studying the chemistry of Zn trafficking, including transport processes, involvement of intermediate binding sites, and constitution of Zn-proteins.
Collapse
Affiliation(s)
- Afsana Mahim
- PPD, Biopharmaceutical Department, Middleton WI, USA
| | - David H Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
9
|
Martyniuk V, Khoma V, Matskiv T, Baranovsky V, Orlova-Hudim K, Gylytė B, Symchak R, Matciuk O, Gnatyshyna L, Manusadžianas L, Stoliar O. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109425. [PMID: 35914710 DOI: 10.1016/j.cbpc.2022.109425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
The vulnerability of bivalve mollusks to micropollutants is estimated mainly in single model exposures. However, chronic environmental stress and complex exposures can modulate their responses. To evaluate the impact of population-dependent adaptations on the ability to react to common micropollutants, we compared freshwater bivalves Unio tumidus from two distinct populations, pure (Pr) and contaminated (Ct), in their exposures to microplastics (MP, 1 mg L-1, size 0.1-0.5 mm), pharmaceutical ibuprofen (IBU, 0.8 μg L-1), or their combination (Mix) for 14 days. Control groups from both sites showed remarkable differences, with lower levels of total antioxidant capacity (TAC), metallothionein protein (MTSH), NADH and NAD+, cytochrome P450-related EROD, glutathione-S transferase (GST), and citrate synthase (CS) but higher levels of GSH, GSSG, caspase-3 and cathepsin D (CTD) in the Ct-control group. These data indicate a chronic stress impact in the Ct population. Under exposures, we found an almost common strategy in both populations for NAD+/NADH and MTSH suppression and CTD induction. Additionally, Mix exposure caused an increase in CS, and IBU did not change GSH in both populations. However, the expected response to IBU - the suppression of caspase-3 - was indicated only in PrIBU- and PrMix-mollusks. CTD efflux increased dramatically only in PrMP- and PrMix- groups, and suppression of EROD and GST was detected in the PrMix-group. According to discriminant analysis, exposed Pr-groups were highly differentiated from control, whereas Ct-control and exposed groups had common localization demonstrating high resistance to environmental stress. Thus, the same exposures resulted in different adverse outcome pathways depending on the population.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | | | - Ruslan Symchak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Matciuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
10
|
Rozenberg JM, Kamynina M, Sorokin M, Zolotovskaia M, Koroleva E, Kremenchutckaya K, Gudkov A, Buzdin A, Borisov N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022; 10:biomedicines10051072. [PMID: 35625809 PMCID: PMC9139143 DOI: 10.3390/biomedicines10051072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
Collapse
Affiliation(s)
- Julian Markovich Rozenberg
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Correspondence:
| | - Margarita Kamynina
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Maksim Sorokin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Marianna Zolotovskaia
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| | - Elena Koroleva
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Kristina Kremenchutckaya
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
| | - Alexander Gudkov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
| | - Anton Buzdin
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.K.); (A.G.)
- OmicsWay Corporation, Walnut, CA 91789, USA
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Oncobox Ltd., 121205 Moscow, Russia
| | - Nicolas Borisov
- Moscow Institute of Physics and Technology, National Research University, 141700 Moscow, Russia; (M.S.); (M.Z.); (E.K.); (K.K.); (A.B.); (N.B.)
- OmicsWay Corporation, Walnut, CA 91789, USA
| |
Collapse
|
11
|
Kalyan G, Slusser-Nore A, Dunlevy JR, Bathula CS, Shabb JB, Muhonen W, Somji S, Sens DA, Garrett SH. Protein interactions with metallothionein-3 promote vectorial active transport in human proximal tubular cells. PLoS One 2022; 17:e0267599. [PMID: 35503771 PMCID: PMC9064079 DOI: 10.1371/journal.pone.0267599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
Metallothionein 3 (MT-3) is a small, cysteine-rich protein that binds to essential metals required for homeostasis, as well as to heavy metals that have the potential to exert toxic effects on cells. MT-3 is expressed by epithelial cells of the human kidney, including the cells of the proximal tubule. Our laboratory has previously shown that mortal cultures of human proximal tubular (HPT) cells express MT-3 and form domes in the cell monolayer, a morphological feature indicative of vectorial active transport, an essential function of the proximal tubule. However, an immortalized proximal tubular cell line HK-2 lacks the expression of MT-3 and fails to form domes in the monolayer. Transfection of HK-2 cells with the MT-3 gene restores dome formation in these cells suggesting that MT-3 is required for vectorial active transport. In order to determine how MT-3 imparts this essential feature to the proximal tubule, we sought to identify proteins that interact either directly or indirectly with MT-3. Using a combination of pulldowns, co-immunoprecipitations, and mass spectrometry analysis, putative protein interactants were identified and subsequently confirmed by Western analysis and confocal microscopy, following which proteins with direct physical interactions were investigated through molecular docking. Our data shows that MT-3 interacts with myosin-9, aldolase A, enolase 1, β-actin, and tropomyosin 3 and that these interactions are maximized at the periphery of the apical membrane of doming proximal tubule cells. Together these observations reveal that MT-3 interacts with proteins involved in cytoskeletal organization and energy metabolism, and these interactions at the apical membrane support vectorial active transport and cell differentiation in proximal tubule cultures.
Collapse
Affiliation(s)
- Gazal Kalyan
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Jane R. Dunlevy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Chandra S. Bathula
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - John B. Shabb
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Wallace Muhonen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States of America
- * E-mail:
| |
Collapse
|
12
|
Zhang N, Lu C, Zhang Z, Zhang H, Liu L, Jiang D, Wang K, Guo S, Wang J, Zhang Q. Enhancing photo-fermentative biohydrogen production using different zinc salt additives. BIORESOURCE TECHNOLOGY 2022; 345:126561. [PMID: 34902490 DOI: 10.1016/j.biortech.2021.126561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The kinetic properties of the hydrogen yield of photosynthetic bacteria were investigated using Han-Levenspiel and modified Gompertz models to determine the effects of different zinc salts on the growth and hydrogen production of the photosynthetic bacterium HAU-M1. Inorganic zinc salts (zinc standard solution and zinc sulfate) inhibited bacterial growth by 1-4-fold higher than organic zinc salts (zinc lactate and zinc gluconate). Among these four zinc salts, 5 mg/L zinc lactate displayed the weakest inhibition performance. This compound increased cumulative hydrogen production by approximately 57.81% (80.44 mL/g) and maximum hydrogen production rate by 58.27% (3.43 mL/[g·h]). The Han-Levenspiel model with parameters m > n > 0 indicated that the addition of zinc salts influenced the hydrogen production process of the bacterium in a noncompetitive manner. Compared with the inorganic zinc, the organic zinc salts were more suitable as exogenous zinc supplements to promote bacterial growth and its hydrogen production.
Collapse
Affiliation(s)
- Ningyuan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Huan Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Linghui Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Kaixin Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Siyi Guo
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Wang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy (Ministry of Agriculture and Rural Affairs of China), Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
13
|
Mahim A, Karim M, Petering DH. Zinc trafficking 1. Probing the roles of proteome, metallothionein, and glutathione. Metallomics 2021; 13:6362609. [PMID: 34472617 DOI: 10.1093/mtomcs/mfab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022]
Abstract
The cellular trafficking pathways that conduct zinc to its sites of binding in functional proteins remain largely unspecified. In this study, the hypothesis was investigated that nonspecific proteomic binding sites serve as intermediates in zinc trafficking. Proteome from pig kidney LLC-PK1 cells contains a large concentration of such sites, displaying an average conditional stability constant of 1010-11, that are dependent on sulfhydryl ligands to achieve high-affinity binding of zinc. As a result, the proteome competes effectively with induced metallothionein for Zn2+ upon exposure of cells to extracellular Zn2+ or during in vitro direct competition. The reaction of added Zn2+ bound to proteome with apo-carbonic anhydrase was examined as a potential model for intracellular zinc trafficking. The extent of this reaction was inversely dependent upon proteome concentration and under cellular conditions thought to be negligible. The rate of reaction was strictly first order in both Zn2+ and apo-carbonic anhydrase, and also considered to be insignificant in cells. Adding the low molecular weight fraction of cell supernatant to the proteome markedly enhanced the speed of this reaction, a phenomenon dependent on the presence of glutathione (GSH). In agreement, inclusion of GSH accelerated the reaction in a concentration-dependent manner. The implications of abundant high-affinity binding sites for Zn2+ within the proteome are considered in relation to their interaction with GSH in the efficient delivery of Zn2+ to functional binding sites and in the operation of fluorescent zinc sensors as a tool to observe zinc trafficking.
Collapse
Affiliation(s)
- Afsana Mahim
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Mohammad Karim
- Department of Cell and Gene Therapy, PPD, Middleton, WI, USA
| | - David H Petering
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
14
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
15
|
Wedler N, Matthäus T, Strauch B, Dilger E, Waterstraat M, Mangerich A, Hartwig A. Impact of the Cellular Zinc Status on PARP-1 Activity and Genomic Stability in HeLa S3 Cells. Chem Res Toxicol 2021; 34:839-848. [PMID: 33645215 DOI: 10.1021/acs.chemrestox.0c00452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is actively involved in several DNA repair pathways, especially in the detection of DNA lesions and DNA damage signaling. However, the mechanisms of PARP-1 activation are not fully understood. PARP-1 contains three zinc finger structures, among which the first zinc finger has a remarkably low affinity toward zinc ions. Within the present study, we investigated the impact of the cellular zinc status on PARP-1 activity and on genomic stability in HeLa S3 cells. Significant impairment of H2O2-induced poly(ADP-ribosyl)ation and an increase in DNA strand breaks were detected in the case of zinc depletion by the zinc chelator N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) which reduced the total and labile zinc concentrations. On the contrary, preincubation of cells with ZnCl2 led to an overload of total as well as labile zinc and resulted in an increased poly(ADP-ribosyl)ation response upon H2O2 treatment. Furthermore, the impact of the cellular zinc status on gene expression profiles was investigated via high-throughput RT-qPCR, analyzing 95 genes related to metal homeostasis, DNA damage and oxidative stress response, cell cycle regulation and proliferation. Genes encoding metallothioneins responded most sensitively on conditions of mild zinc depletion or moderate zinc overload. Zinc depletion induced by higher concentrations of TPEN led to a significant induction of genes encoding DNA repair factors and cell cycle arrest, indicating the induction of DNA damage and genomic instability. Zinc overload provoked an up-regulation of the oxidative stress response. Altogether, the results highlight the potential role of zinc signaling for PARP-1 activation and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Nadin Wedler
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Tizia Matthäus
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bettina Strauch
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Elena Dilger
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Martin Waterstraat
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
16
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
17
|
Mattii L, Bianchi F, Falleni A, Frascarelli S, Masini M, Alì G, Chiellini G, Sabbatini ARM. Ultrastructural Localization of Histidine-rich Glycoprotein in Skeletal Muscle Fibers: Colocalization With AMP Deaminase. J Histochem Cytochem 2019; 68:139-148. [PMID: 31880188 DOI: 10.1369/0022155419897573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histidine-rich glycoprotein (HRG) is a plasma protein synthesized by the liver. We have given the first evidence of a tissue localization of HRG demonstrating its presence in skeletal muscle, associated with the zinc enzyme AMP deaminase (AMPD1). Moreover, we have shown that muscle cells do not synthesize HRG, but they can internalize it from plasma. We have recently demonstrated by confocal laser scanning microscopy that in human skeletal muscle, HRG is mainly localized in the myofibrils, preferentially at the I-band of the sarcomere, in the sarcoplasm, and in the nuclei. Using transmission electron microscopy and immunogold analysis, we carried out this study on human and rat normal skeletal muscles with the purpose to deepen the ultrastructural localization of HRG in skeletal muscle fibers. The immunogold analysis evidenced the presence of HRG in the sarcomeres, mainly in the I-band and to a less extent in the A-band, in the heterochromatin of nuclei, and in the sarcoplasmic reticulum. The colocalization of HRG and skeletal muscle AMPD1 was also analyzed. A colabeling of HRG and AMPD1 was evident at sarcomeric, sarcoplasmic reticulum, and nuclear levels. The significance of these interesting and new results is discussed in this article.
Collapse
Affiliation(s)
- Letizia Mattii
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.,Nutrafood, Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la salute, Pisa, Italy
| | - Francesco Bianchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Alessandra Falleni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Sabina Frascarelli
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Matilde Masini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Greta Alì
- U.O. Anatomia Patologica III, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Grazia Chiellini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Antonietta R M Sabbatini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| |
Collapse
|
18
|
Marszałek I, Goch W, Bal W. Ternary Zn(II) Complexes of Fluorescent Zinc Probes Zinpyr-1 and Zinbo-5 with the Low Molecular Weight Component of Exchangeable Cellular Zinc Pool. Inorg Chem 2019; 58:14741-14751. [PMID: 31646867 DOI: 10.1021/acs.inorgchem.9b02419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The intracellular exchangeable Zn(II) is usually measured with synthetic fluorescent zinc sensors. 4',5'-Bis[bis(2-pyridylmethyl)aminomethyl]-2',7'-dichlorofluorescein (Zinpyr-1) is a sensor containing the fluorescein platform and a duplicated chelating unit. Its advantages include brightness and a relatively high affinity for Zn(II), Kd = 0.7 nM. 2-(4,5-Dimethoxy-2-hydroxyphenyl)-4-(2-pyridylmethyl)aminomethylbenzoxazole (Zinbo-5) is a member of a growing family of ratiometric synthetic Zn(II) probes, offering a possibility to determine Zn(II) concentration independently of the sensor concentration. Cells, however, contain high, millimolar or nearly millimolar concentrations of low molecular weight ligands (LMWLs) capable of binding Zn(II) ions. Previously, we demonstrated that such LMWLs can perturb the performance of some fluorescent zinc sensors by competition and formation of ternary Zn(sensor) (LMWL) complexes. Here we tested Zinpyr-1 and Zinbo-5 in this respect. Despite structural differences, both sensors formed such ternary complexes. We determined their stability constants CKtern and performed numerical simulations of Zn(II) distributions at physiological concentrations of selected LMWLs. Glutamic acid was found to provide the strongest ternary complexes with either of the studied sensors. Zn(Zinpyr-1)(Glu) was an absolutely dominant Zn(II)/Zinpyr-1 species (more than 96% of the exchangeable Zn(II)), and Zn(Zinbo-5)(Glu) was the most abundant one (more than 40%) in these simulations. Our results indicate that under cellular conditions these sensors are able to report Zn(II) complexed to LMWLs rather than free Zn2+ ions. On the other hand, the specific affinity of Zn(Zinpyr-1) and Zn(Zinbo-5) for Glu creates interesting opportunities for determining glutamic acid in biological samples.
Collapse
Affiliation(s)
- Ilona Marszałek
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland.,Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 , 02-091 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics , Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
19
|
Zlobin IE, Kartashov AV, Nosov AV, Fomenkov AA, Kuznetsov VV. The labile zinc pool in plant cells. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:796-805. [PMID: 31072451 DOI: 10.1071/fp19064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Zinc is the most abundant and important transition metal in plants; however, the dynamic aspects of zinc homeostasis in plant cells are poorly understood. In this study we explored the pool of labile exchangeable zinc complexes in plant cells, and the potential influence of changes in intracellular zinc availability on cellular physiology. Work was performed on cultivated cell extracts of Arabidopsis thaliana (L.) Heynh. and Thellungiella salsuginea (Pall.) O.E. Schulz grown under control (3.48 µM Zn2+), 10-fold Zn excess or Zn starvation conditions. The free and labile Zn contents in the extracts were then determined by fluorimetric titration. We observed for the first time that plant cells contain micromolar concentrations of labile zinc complexes that account for a low percentage of the total zinc content. Labile zinc is mainly protein bound. Zn starvation inhibits cell proliferation and leads to the disappearance of the labile zinc pool, whereas Zn excess drastically increases the labile zinc pool. Free Zn2+ is buffered at picomolar concentrations in the intracellular milieu, and the increase in free Zn2+ concentrations to low nanomolar values clearly modulates enzyme activity by direct reversible binding. Such increases in free Zn2+ can be achieved by the substantial influx of additional zinc or by the oxidation of zinc-binding thiols. The observed features of the labile zinc pool in plant cells suggest it has a role in intracellular zinc trafficking and zinc signalling.
Collapse
Affiliation(s)
- Ilya E Zlobin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; and Corresponding author.
| | - Alexander V Kartashov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Alexander V Nosov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Artem A Fomenkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Vladimir V Kuznetsov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
20
|
The Effects of Repeated Exposure to Zinc- and Copper-Containing Welding Fumes on Healthy Volunteers. J Occup Environ Med 2019; 61:8-15. [PMID: 30256298 DOI: 10.1097/jom.0000000000001455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Sun W, Yang J, Wang W, Hou J, Cheng Y, Fu Y, Xu Z, Cai L. The beneficial effects of Zn on Akt-mediated insulin and cell survival signaling pathways in diabetes. J Trace Elem Med Biol 2018; 46:117-127. [PMID: 29413101 DOI: 10.1016/j.jtemb.2017.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
Zinc is one of the essential trace elements and participates in numerous physiological processes. Abnormalities in zinc homeostasis often result in the pathogenesis of various chronic metabolic disorders, such as diabetes and its complications. Zinc has insulin-mimetic and anti-diabetic effects and deficiency has been shown to aggravate diabetes-induced oxidative stress and tissue injury in diabetic rodent models and human subjects with diabetes. Akt signaling pathway plays a central role in insulin-stimulated glucose metabolism and cell survival. Anti-diabetic effects of zinc are largely dependent on the activation of Akt signaling. Zn is also an inducer of metallothionein that plays important role in anti-oxidative stress and damage. However, the exact molecular mechanisms underlying zinc-induced activation of Akt signaling pathway remains to be elucidated. This review summarizes the recent advances in deciphering the possible mechanisms of zinc on Akt-mediated insulin and cell survival signaling pathways in diabetes conditions. Insights into the effects of zinc on epigenetic regulation and autophagy in diabetic nephropathy are also discussed in the latter part of this review.
Collapse
Affiliation(s)
- Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Jiaxing Yang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Jie Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
22
|
Goff JP. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci 2018; 101:2763-2813. [PMID: 29397180 DOI: 10.3168/jds.2017-13112] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
Several minerals are required for life to exist. In animals, 7 elements (Ca, P, Mg, Na, K, Cl, and S) are required to be present in the diet in fairly large amounts (grams to tens of grams each day for the dairy cow) and are termed macrominerals. Several other elements are termed microminerals or trace minerals because they are required in much smaller amounts (milligrams to micrograms each day). In most cases the mineral in the diet must be absorbed across the gastrointestinal mucosa and enter the blood if it is to be of value to the animal. The bulk of this review discusses the paracellular and transcellular mechanisms used by the gastrointestinal tract to absorb each of the various minerals needed. Unfortunately, particularly in ruminants, interactions between minerals and other substances within the diet can occur within the digestive tract that impair mineral absorption. The attributes of organic or chelated minerals that might permit diet minerals to circumvent factors that inhibit absorption of more traditional inorganic forms of these minerals are discussed. Once absorbed, minerals are used in many ways. One focus of this review is the effect macrominerals have on the acid-base status of the animal. Manipulation of dietary cation and anion content is commonly used as a tool in the dry period and during lactation to improve performance. A section on how the strong ion theory can be used to understand these effects is included. Many microminerals play a role in the body as cofactors of enzymes involved in controlling free radicals within the body and are vital to antioxidant capabilities. Those same minerals, when consumed in excess, can become pro-oxidants in the body, generating destructive free radicals. Complex interactions between minerals can compromise the effectiveness of a diet in promoting health and productivity of the cow. The objective of this review is to provide insight into some of these mechanisms.
Collapse
Affiliation(s)
- Jesse P Goff
- Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames 50011.
| |
Collapse
|
23
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
24
|
Atrián-Blasco E, Santoro A, Pountney DL, Meloni G, Hureau C, Faller P. Chemistry of mammalian metallothioneins and their interaction with amyloidogenic peptides and proteins. Chem Soc Rev 2017; 46:7683-7693. [PMID: 29114657 PMCID: PMC5728347 DOI: 10.1039/c7cs00448f] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cu and Zn ions are essential in most living beings. Their metabolism is critical for health and mis-metabolism can be lethal. In the last two decades, a large body of evidence has reported the role of copper, zinc and iron, and oxidative stress in several neurodegenerative diseases like Alzheimer's, Parkinson's, prion diseases, etc. To what extent this mis-metabolism is causative or a consequence of these diseases is still a matter of research. In this context metallothioneins (MTs) appear to play a central gate-keeper role in controlling aberrant metal-protein interactions. MTs are small proteins that can bind high amounts of Zn(ii) and Cu(i) ions in metal-cluster arrangements via their cysteine thiolates. Moreover, MTs are well known antioxidants. The present tutorial outlines the chemistry underlying the interconnection between copper(i/ii) and zinc(ii) coordination to amyloidogenic proteins and MTs, and their redox properties in generation and/or silencing reactive oxygen species (overproduced in oxidative stress) and other reactants. These studies have revealed the coordination chemistry involved in neurodegenerative diseases and the interactions between MTs and amyloidogenic protein metal-complexes (like amyloid-β, α-synuclein and prion-protein). Overall, the protective role of MTs in neurodegenerative processes is emerging, serving as a foundation for exploring MT chemistry as inspiration for therapeutic approaches.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09 (France)
- Université de Toulouse ; UPS, INPT, 31077 Toulouse (France)
| | - Alice Santoro
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
| | - Dean L. Pountney
- Menzies Health Institute Queensland, Griffith University Gold Coast 4222, QLD, Australia
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080-3021, USA
| | - Christelle Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09 (France)
- Université de Toulouse ; UPS, INPT, 31077 Toulouse (France)
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| | - Peter Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR7177), Université de Strasbourg, 4 rue B. Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
| |
Collapse
|
25
|
Barbieri L, Luchinat E, Banci L. Intracellular metal binding and redox behavior of human DJ-1. J Biol Inorg Chem 2017; 23:61-69. [DOI: 10.1007/s00775-017-1509-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022]
|