1
|
Tammas I, Bitchava K, Gelasakis AI. Transforming Aquaculture through Vaccination: A Review on Recent Developments and Milestones. Vaccines (Basel) 2024; 12:732. [PMID: 39066370 PMCID: PMC11281524 DOI: 10.3390/vaccines12070732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
Collapse
Affiliation(s)
- Iosif Tammas
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantina Bitchava
- Laboratory of Applied Hydrobiology, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Athanasios I. Gelasakis
- Laboratory of Anatomy & Physiology of Farm Animals, Department of Animal Science, Agricultural University of Athens, 11855 Athens, Greece
| |
Collapse
|
2
|
Swain B, Campodonico VA, Curtiss R. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines (Basel) 2023; 11:1470. [PMID: 37766146 PMCID: PMC10534663 DOI: 10.3390/vaccines11091470] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1β, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
3
|
Zhang Y, Su J. Interleukin-2 family cytokines: An overview of genes, expression, signaling and functional roles in teleost. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104645. [PMID: 36696924 DOI: 10.1016/j.dci.2023.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
The interleukin-2 (IL-2) family cytokines include IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, which share γ chain (γc) subunit in receptors. The IL-2 family cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages. Deficiency of IL-2 family signaling pathway in mammals prevents CD4+ T cells from developing effector functions and CD8+ T cells from developing immunological memory. In the present review, we addressed available information from teleost IL-2 family cytokines and discussed implications in teleost immunity. Also, we described and discussed their expression profiles, receptors, signaling transductions and functions. In teleost, IL-2 family has 5 members (IL-2, IL-4/13, IL-7, IL-15, IL-21) without IL-9, and their receptors share a common γc subunit and include other 6 subunits (IL-2Rβ1/2, IL-4Rα1/2, IL-13Rα1/2, IL-7Rα, IL-15Rα, and IL-21Rα1/2). Some paralogues have changes in domain structure and show differential expression, modulation, functions. IL-2 family cytokines constitutively express in many immune associated tissues and are largely induced after pathogenic microbial stimulation. In general, there are relatively conserved functions in the IL-2 family throughout vertebrates, and many of the key IL-2 family members are important in lymphocyte proliferation and differentiation, development, inflammation from fishes to mammals. This review will give an update on the effective information of teleost IL-2 family cytokines. Thus, it will provide a source of reference for other researchers/readers and inspire further interest.
Collapse
Affiliation(s)
- Yanqi Zhang
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jianguo Su
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
4
|
Vijayaram S, Ringø E, Zuorro A, van Doan H, Sun Y. Beneficial roles of nutrients as immunostimulants in aquaculture: A review. AQUACULTURE AND FISHERIES 2023. [DOI: 10.1016/j.aaf.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Zhang S, Wang C, Liu S, Wang Y, Lu S, Han S, Jiang H, Liu H, Yang Y. Effect of dietary phenylalanine on growth performance and intestinal health of triploid rainbow trout ( Oncorhynchus mykiss) in low fishmeal diets. Front Nutr 2023; 10:1008822. [PMID: 36960199 PMCID: PMC10028192 DOI: 10.3389/fnut.2023.1008822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
This study aimed to investigate the effects of phenylalanine on the growth, digestive capacity, antioxidant capability, and intestinal health of triploid rainbow trout (Oncorhynchus mykiss) fed a low fish meal diet (15%). Five isonitrogenous and isoenergetic diets with different dietary phenylalanine levels (1.82, 2.03, 2.29, 2.64, and 3.01%) were fed to triplicate groups of 20 fish (initial mean body weight of 36.76 ± 3.13 g). The weight gain rate and specific growth rate were significantly lower (p < 0.05) in the 3.01% group. The trypsin activity in the 2.03% group was significantly higher than that in the control group (p < 0.05). Amylase activity peaked in the 2.64% treatment group. Serum superoxide dismutase, catalase, and lysozyme had the highest values in the 2.03% treatment group. Liver superoxide dismutase and catalase reached their maximum values in the 2.03% treatment group, and lysozyme had the highest value in the 2.29% treatment group. Malondialdehyde levels in both the liver and serum were at their lowest in the 2.29% treatment group. Interleukin factors IL-1β and IL-6 both reached a minimum in the 2.03% group and were significantly lower than in the control group, while IL-10 reached a maximum in the 2.03% group (p < 0.05). The tight junction protein-related genes occludin, claudin-1, and ZO-1 all attained their highest levels in the 2.03% treatment group and were significantly higher compared to the control group (p < 0.05). The intestinal villi length and muscle layer thickness were also improved in the 2.03% group (p < 0.05). In conclusion, dietary phenylalanine effectively improved the growth, digestion, absorption capacity, antioxidant capacity, and intestinal health of O. mykiss. Using a quadratic curve model analysis based on WGR, the dietary phenylalanine requirement of triploid O. mykiss fed a low fish meal diet (15%) was 2.13%.
Collapse
Affiliation(s)
- Shuze Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Chang’an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chang’an Wang,
| | - Siyuan Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Life Science, Dalian Ocean University, Dalian, China
| | - Yaling Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaoxia Lu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Hongbai Liu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Hongbai Liu,
| | - Yuhong Yang
- College of Animal Science, Northeast Agricultural University, Harbin, China
- Yuhong Yang,
| |
Collapse
|
6
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Shi X, Chi H, Sun Y, Tang X, Xing J, Sheng X, Zhan W. The Early Peritoneal Cavity Immune Response to Vibrio Anguillarum Infection and to Inactivated Bacterium in Olive Flounder ( Paralichthys olivaceus). Microorganisms 2022; 10:2175. [PMID: 36363767 PMCID: PMC9693283 DOI: 10.3390/microorganisms10112175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 10/29/2023] Open
Abstract
The peritoneal cavity plays an important role in the immune response, and intraperitoneal administration is an ideal vaccination route in fish. However, immune responses in the peritoneal cavity of teleost fish are still not completely characterized. This study characterized the morphology of peritoneal cavity cells (PerC cells) and their composition in flounder (Paralichthys olivaceus). Flow cytometric analysis of the resident PerC cells revealed two populations varying in granularity and size. One population, approximately 15.43% ± 1.8%, was smaller with a lower granularity, designated as lymphocytes. The other population of the cells, about 78.17% ± 3.52%, was larger with higher granularity and was designated as myeloid cells. The results of cytochemical staining and transmission electron microscopy indicated that peritoneal cavity in flounder normally contains a resident population of leukocytes dominated by granulocytes, macrophages, dendritic cells, and lymphocytes. The percentages of IgM+, CD4+, G-CSFR+, MHCII+, and CD83+ leukocytes among PerC cells determined by flow cytometry were 3.13% ± 0.4%, 2.83% ± 0.53%, 21.12% ± 1.44%, 27.11% ± 3.30%, and 19.64% ± 0.31%, respectively. Further, the changes in IgM+, CD4+, G-CSFR+, MHCII+, and CD83+ leukocytes in flounder after Vibrio anguillarum infection and immunization were compared. The composition changed rapidly after the infection or vaccination treatment and included two stages, a non-specific stage dominated by phagocytes and a specific immune stage dominated by lymphocytes. Due to the virulence effectors of bacteria, the infected group exhibited a more intense and complicated PerC cells immune response than that of the immunization group. Following our previous study, this is the first report on the morphology and composition of PerC cells and the early activation of PerC cells in flounder response to V. anguillarum infection and vaccination.
Collapse
Affiliation(s)
- Xueyan Shi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuanyuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
8
|
Fernanda Alves Mariano Soares de Farias M, Leite de Siqueira Patriota L, Bernadete de Souza Lira C, Maria de Souza Aguiar L, Rafaela da Silva Barros B, Maria Guedes Paiva P, Moutinho Lagos de Melo C, Diniz de Lima Santos N, Henrique Napoleão T. Purification, characterization, and immunomodulatory activity of a lectin from the seeds of horse chestnut (Aesculus hippocastanum L.). CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
9
|
Luo SW, Xiong NX, Luo ZY, Fan LF, Luo KK, Mao ZW, Liu SJ, Wu C, Hu FZ, Wang S, Wen M. A novel NK-lysin in hybrid crucian carp can exhibit cytotoxic activity in fish cells and confer protection against Aeromonas hydrophila infection in comparison with Carassius cuvieri and Carassius auratus red var. FISH & SHELLFISH IMMUNOLOGY 2021; 116:1-11. [PMID: 34174452 DOI: 10.1016/j.fsi.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
10
|
Tian H, Xing J, Tang X, Chi H, Sheng X, Zhan W. Identification and Characterization of a Master Transcription Factor of Th1 Cells, T-bet, Within Flounder ( Paralichthys olivaceus). Front Immunol 2021; 12:704324. [PMID: 34262572 PMCID: PMC8273736 DOI: 10.3389/fimmu.2021.704324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
T-bet, a T-box family member, is a transcription factor essential for the differentiation of naive CD4+ T cells into Th1 cells that are involved in both innate and adaptive immune responses. In this study, the transcription factor T-bet of flounder (Paralichthys olivaceus) was cloned and characterized, and its expression profile after infection was analyzed. T-bet+ cells were identified in flounder, and the expression and localization of T-bet in T lymphocyte subsets and B lymphocytes were investigated. Finally, the proliferation of T-bet+ cells, T lymphocyte subsets, and B lymphocytes were studied after stimulation with IFN-γ, IL-2, and IL-6, respectively, and the variations of some transcription factors and cytokines in CD4+ T lymphocyte subsets were detected. The results showed that T-bet in flounder consists of 619 aa with a conserved T-box DNA binding domain. T-bet was abundantly expressed in the spleen, head kidney, and heart, and it was significantly upregulated after infection with Vibrio anguillarum, Edwardsiella tarda, and Hirame rhabdovirus, especially in the group of Edwardsiella tarda. A polyclonal antibody against recombinant protein of T-bet was prepared, which specifically recognized the natural T-bet molecule in flounder. T-bet+ cells were found to be distributed in the lymphocytes of peripheral blood, spleen, and head kidney, with the highest proportion in spleen, and the positive signals of T-bet occurred in the cell nucleus. T-bet was also detected in the sorted CD4-1+, CD4-2+, CD8+ T lymphocytes, and IgM+ B lymphocytes. In addition, T-bet+ cells, coordinated with CD4-1+ and CD4-2+ T lymphocytes, were proliferated after stimulation with IFN-γ, IL-2, and IL-6. Especially in sorted CD4-1+ and CD4-2+ T lymphocytes, IFN-γ and IL-2 were able to upregulate the expression of T-bet, forming a positive feedback loop in Th1-type cytokine secretion. These results suggest that T-bet may act as a master transcription factor regulating flounder CD4+ T lymphocytes involved in a Th1-type immune response.
Collapse
Affiliation(s)
- Hongfei Tian
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Zhou X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Interleukin-2 (IL-2) Interacts With IL-2 Receptor Beta (IL-2Rβ): Its Potential to Enhance the Proliferation of CD4+ T Lymphocytes in Flounder ( Paralichthys olivaceus). Front Immunol 2020; 11:531785. [PMID: 33013923 PMCID: PMC7509493 DOI: 10.3389/fimmu.2020.531785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Interleukin-2 (IL-2) is an important immunomodulatory cytokine that primarily promotes the activation, proliferation, and differentiation of CD4+ T helper subsets and CD4+ T regulatory cells. In our previous studies, IL-2 and IL-2 receptor beta (IL-2Rβ) genes of flounder (Paralichthys olivaceus) were cloned, and IL-2Rβ molecules expressed on both B and T lymphocytes were identified. In the present study, the interaction of flounder IL-2 (fIL-2) with the IL-2 receptor beta (fIL-2Rβ) was investigated. The proportion of CD4+ T lymphocytes and IL-2Rβ+ cells were detected both in vivo and in vitro. Firstly, the binding of recombinant flounder IL-2 protein (rfIL-2) and rfIL-2Rβ was verified by pull-down assay and enzyme-linked immunosorbent assay. Indirect immunofluorescence assay showed that rfIL-2 enhanced the proliferation of CD4+ and IL-2Rβ+ cells in the gill and spleen. Furthermore, CD4-1+, CD4-2+ T lymphocytes and IL-2Rβ+ cells were significantly upregulated in cultured peripheral blood lymphocytes (PBLs) with addition of rfIL-2, as shown by Flow cytometry. The related genes were examined by Q-PCR in cultured PBLs with added rfIL-2. The results showed that the IL-2-IL-2R interaction induced upregulated expression of T lymphocyte surface makers, Th1-related cytokines or transcription factors, and critical genes of the IL-2 signaling pathway. In addition, these IL-2-elicited biological functions and immune responses were downregulated by blocked with anti-rfIL-2Rβ and anti-rfIL-2 Abs, showing that IL-2Rβ plays an indispensable role in IL-2 elicited biological function. Our results demonstrated that the interaction between IL-2 and IL-2Rβ showed its potential to enhance the proliferation of CD4+ T lymphocytes in flounder. As found in mammals, a Th1-mediated mechanism regulated by this interaction exists in teleost.
Collapse
Affiliation(s)
- Xiujuan Zhou
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Yu C, Zhang P, Zhang TF, Sun L. IL-34 regulates the inflammatory response and anti-bacterial immune defense of Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2020; 104:228-236. [PMID: 32502613 DOI: 10.1016/j.fsi.2020.05.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL)-34 is a relatively recently discovered cytokine with pleiotropic effects on various cellular activities, including immune response. In fish, the knowledge on the function of IL-34 is limited. In the present work, we investigated the function of Japanese flounder Paralichthys olivaceus IL-34 (PoIL-34) in association with inflammation and immune defense. PoIL-34 possesses the conserved structure of IL-34 superfamily and shares 21.52% sequence identity with murine IL-34. PoIL-34 expression was detected in a wide range of tissues of flounder, in particular intestine, and was regulated to a significant extent by bacterial infection in a time-dependent fashion. In vitro studies showed that recombinant PoIL-34 (rPoIL-34) bound peripheral blood leukocytes (PBLs) and promoted ROS production, acid phosphatase activity, and cellular resistance against bacterial infection. At the molecular level, rPoIL-34 enhanced the expressions of inflammatory cytokines and specific JAK and STAT genes. Similar stimulatory effects of rPoIL-34 were observed in vivo. When PoIL-34 was overexpressed in flounder, the expressions of pro- and anti-inflammatory mediators were significantly affected in a tissue-dependent manner, which correlated with an augmented ability of the fish to eliminate invading pathogens from tissues. Together, these results indicated that PoIL-34 regulated inflammatory response probably via specific JAK/STAT pathways and had a significant influence on the immune defense of flounder against bacterial infection.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Teng-Fei Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
13
|
Tang X, Guo M, Sheng X, Xing J, Zhan W. Interleukin-2 (IL-2) of flounder (Paralichthys olivaceus) as immune adjuvant enhance the immune effects of E. tarda subunit vaccine OmpV against Edwardsiellosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103615. [PMID: 31956084 DOI: 10.1016/j.dci.2020.103615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 05/21/2023]
Abstract
In our previous study, we cloned and explored the biological functions of flounder (Paralichthys olivaceus) interleukin-2 (poIL-2), and showed that poIL-2 might have adjuvant potential for fish vaccines. In this study, the adjuvant effects of recombinant and molecular forms of poIL-2 (rIL-2 and pcIL-2) were comparatively analyzed and evaluated in flounder from several aspects by co-vaccination with the recombinant E. tarda OmpV (rOmpV). The results showed that co-vaccination with rOmpV plus rIL-2 or pcIL-2 resulted in a relative percent survival of 71% and 57% respectively, which was significantly higher than the control groups, rOmpV plus rHis (40%) or pcN3 (36%). Immunological analysis showed that: (1) the levels of specific serum antibodies and sIg + lymphocytes in head kidney, spleen and peripheral blood induced by rOmpV plus rIL-2 or pcIL-2 were significantly higher than that in the two control groups; (2) Compared to the two control groups, CD4-1, CD4-2, CD8α, CD8β, MHCIα, MHCIIα, IgM and IFN-γ mRNA levels were also significantly induced by rOmpV plus rIL-2 or pcIL-2; (3) the rOmpV plus rIL-2 could induce higher levels of sIg + lymphocytes, specific serum antibodies and the expressions of all investigated genes than rOmpV plus pcIL-2. These results demonstrated that co-vaccination with rOmpV with rIL-2 or pcIL-2 could induce stronger humoral and cellular immune responses, and evoked higher immune protective efficacy against E. tarda infection, suggesting that poIL-2 could be served as a promising candidate adjuvant and have a potential application in the control of flounder diseases.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ming Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
14
|
Interleukin 34 Serves as a Novel Molecular Adjuvant against Nocardia Seriolae Infection in Largemouth Bass ( Micropterus Salmoides). Vaccines (Basel) 2020; 8:vaccines8020151. [PMID: 32231137 PMCID: PMC7349345 DOI: 10.3390/vaccines8020151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
DNA vaccines have been widely employed in controlling viral and bacterial infections in mammals and teleost fish. Co-injection of molecular adjuvants, including chemokines, cytokines, and immune co-stimulatory molecules, is one of the potential strategies used to improve DNA vaccine efficacy. In mammals and teleost fish, interleukin-34 (IL-34) had been described as a multifunctional cytokine and its immunological role had been confirmed; however, the adjuvant capacity of IL-34 remains to be elucidated. In this study, IL-34 was identified in largemouth bass. A recombinant plasmid of IL-34 (pcIL-34) was constructed and co-administered with a DNA vaccine encoding hypoxic response protein 1 (Hrp1; pcHrp1) to evaluate the adjuvant capacity of pcIL-34 against Nocardia seriolae infection. Our results indicated that pcIL-34 co-injected with pcHrp1 not only triggered innate immunity and a specific antibody response, but also enhanced the mRNA expression level of immune-related genes encoding for cytokines, chemokines, and humoral and cell-mediated immunity. Moreover, pcIL-34 enhanced the protection of pcHrp1 against N. seriolae challenge and conferred the relative percent survival of 82.14%. Collectively, IL-34 is a promising adjuvant in a DNA vaccine against nocardiosis in fish.
Collapse
|
15
|
Yu C, Zhang P, Li XP, Sun L. Japanese flounder Paralichthys olivaceus interleukin 21 induces inflammatory response and plays a vital role in the immune defense against bacterial pathogen. FISH & SHELLFISH IMMUNOLOGY 2020; 98:364-373. [PMID: 31991231 DOI: 10.1016/j.fsi.2020.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-21 is a pleiotropic cytokine and plays a vital role in immunity. In the current study, we examined the immune function of Japanese flounder Paralichthys olivaceus IL-21 (PoIL-21). PoIL-21 shares moderate (25.17%-46.25%) sequence identities with other teleost IL-21. PoIL-21 expression occurred in multiple tissues, especially intestine, and was regulated by bacterial infection in a time dependent manner. PoIL-21 was secreted by peripheral blood leukocytes (PBL) upon LPS stimulation. Recombinant PoIL-21 (rPoIL-21) bound to a wide range of Gram-negative and Gram-positive bacteria and inhibited the growth of the fish bacterial pathogen Streptococcus iniae. rPoIL-21 also interacted with PBL, resulting in enhanced cell proliferation, ROS production, and expression of IL-1β, TNF-α, CD8β, T-bet, PoIL-21, PoIL-21 receptor, and STAT. Consequently, the presence of rPoIL-21 significantly reduced bacterial infection in PBL. In vivo study showed that rPoIL-21 upregulated the expression of inflammatory cytokines and PoIL-21. Taken together, these results indicate that PoIL-21 is an inducible, secreted cytokine with a broad range of binding capacities and plays an important role in the regulation of anti-bacterial immunity.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
16
|
Thu Nguyen TT, Nguyen HT, Wang YT, Wang PC, Chen SC. α-Enolase as a novel vaccine candidate against Streptococcus dysgalactiae infection in cobia (Rachycentron canadum L.). FISH & SHELLFISH IMMUNOLOGY 2020; 98:899-907. [PMID: 31765793 DOI: 10.1016/j.fsi.2019.11.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus dysgalactiae is an important pathogenic bacterium that has caused economic loss for the cobia industry in Taiwan, ROC. This study presents a highly effective subunit vaccine composed of a moonlight protein, α-enolase, for the prevention of S. dysgalactiae infection. First, α-enolase was cloned, transformed, and expressed in E. coli for production of recombinant protein. Then, the protective efficacies of α-enolase recombinant protein were evaluated in combination with either a pro-inflammatory cytokine, TNF-α, or an oil adjuvant, ISA 763 AVG. The results showed that the combination of α-enolase and ISA 763 AVG was highly protective (RPS = 88.89%), while a negative effect was found in the group immunised with α-enolase adjuvanted with TNF-α (RPS = 22.22%). A further study was conducted with double dose of ISA 763 AVG, which led to an increased RPS value of 97.37%. Moreover, immunised cobia exhibited significantly greater lysozyme activity, antibody responses, and expression of certain immune-related genes post-challenge. Altogether, our results demonstrated that a combination of α-enolase recombinant protein with ISA 763 AVG adjuvant is a promising vaccine that can be employed for protection of cobia against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Hai Trong Nguyen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Yi-Ting Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Fish Vaccines and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Southern Taiwan Fish Disease Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Animal Biologics, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC; Research Center for Fish Vaccines and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
17
|
Li L, Song M, Peng B, Peng XX, Li H. Identification and innate immunity mechanism of protective immunogens from extracellular proteins of Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2020; 97:41-45. [PMID: 31830569 DOI: 10.1016/j.fsi.2019.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
One of the most important emerging pathogens in the aquaculture industry is Edwardsiella tarda, and it causes extensive losses in farmed fish globally. The identification of protective immunogens against E. tarda is increasingly valued. We previously investigated 20 recombinant proteins of 38 E. tarda extracellular secretory proteins and identified 10 as protective immunogens in a zebrafish model. Here, we clone 10 of the remaining 18 genes, and the resulting recombinant proteins are used for evaluation of immune protection. ETAE_2147 (FliK), ETAE_0654 (PpdD), and ETAE_3259 (DamX) are identified as protective immunogens. Furthermore, their protection mechanism is explored by the detection of innate immunity genes encoding IL-1b, IL-6, IL-8, C3b, and NF-κB. The three protective immunogens stimulate zebrafish to produce higher and more lasting expression of the five immunity genes than non-protective immunogens during the first 48 h of infection. In addition, these protective immunogens are prone to be regulated by host products, which is helpful for cross-talk between host and pathogen, and thus they become vaccine candidates. These results highlight the way to understand the working mechanisms of protective immunogens.
Collapse
Affiliation(s)
- Lu Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Ming Song
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, 510006, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
18
|
Protective immunity following vaccination with a recombinant multiple-epitope protein of bovine herpesvirus type I in a rabbit model. Appl Microbiol Biotechnol 2020; 104:3011-3023. [PMID: 32002602 DOI: 10.1007/s00253-020-10420-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/19/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
Bovine herpesvirus type 1 (BoHV-1) causes considerable economic losses to the cow industry. Vaccination remains an effective strategy to control the diseases associated with BoHV-1. However, live vaccines present safety concerns, especially in pregnant cows; thus, nonreplicating vaccines have been developed to control the disease. The envelope glycoproteins of BoHV-1 induce a protective immune response. In this work, selected epitopes on glycoproteins gD, gC, and gB were constructed in triplicate with linker peptides. Vaccination of rabbits demonstrated that P2-gD/gC/gB with AAYAAY induced higher specific antibodies than that with GGGGS linker. P2-gD/gC/gB with AAYAAY linker was fused with bovine interleukin-6 (BoIL-6) or rabbit IL-6 (RaIL-6) and bacterially expressed. Rabbits were intramuscularly immunized with 100 μg of P2-gD/gC/gB-BoIL-6, P2-gD/gC/gB-RaIL-6, P2-gD/gC/gB, P2-gD/gC/gB plus BoIL-6, P2-(gD-a)3-BoIL-6, or P2-(gD-a)3 emulsified with ISA 206 adjuvant thrice at 3-week intervals. P2-gD/gC/gB-BoIL-6 generated a higher titer of BoHV-1-specific antibodies, neutralizing antibodies, interferon (IFN)-γ, and IL-4 compared with P2-gD/gC/gB plus BoIL-6, P2-gD/gC/gB-RaIL-6, or other formulation. P2-gD/gC/gB-BoIL-6 triggered similar levels of antibodies and significantly higher titer of IFN-γ and IL-4 compared with inactivated bovine viral diarrhea (BVD)-infectious bovine rhinotracheitis (IBR) vaccine. Rabbits vaccinated with P2-gD/gC/gB-BoIL-6 dramatically reduced viral shedding and tissue lesions in lungs and trachea after viral challenge and reactivation compared with those with P2-gD/gC/gB plus BoIL-6 or P2-gD/gC/gB-RaIL-6. P2-gD/gC/gB-BoIL-6 provided protective effects against viral shedding and tissue pathogenesis similar to those of the inactivated vaccine. The data confirmed the safety and immunogenicity of multiple-epitope recombinant protein and a potential vaccine candidate to control the disease, especially for pregnant cattle.
Collapse
|
19
|
Huang P, Cai J, Yu D, Tang J, Lu Y, Wu Z, Huang Y, Jian J. An IL-6 gene in humphead snapper (Lutjanus sanguineus): Identification, expression analysis and its adjuvant effects on Vibrio harveyi OmpW DNA vaccine. FISH & SHELLFISH IMMUNOLOGY 2019; 95:546-555. [PMID: 31704205 DOI: 10.1016/j.fsi.2019.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that plays important role in mediating the innate and adaptive immune responses against pathogen infection. In this study, an IL-6 homolog (Ls-IL6) was identified and characterized from humphead snapper, Lutjanus sanguineus. The full-length cDNA of Ls-IL6 was 1066 bp, containing an open reading frame (ORF) of 639 bp encoding 212 amino acids, 5' untranslated region(UTR) of 63 bp and 3' UTR of 605 bp. The predicted Ls-IL6 protein had typical motif of IL-6 family and shared high identities to teleost IL-6s. Ls-IL6 extensively expressed in various tissues, and the highest expression of Ls-IL6 was detected in head kidney, spleen and thymus. In vivo, the transcript levels of Ls-IL6 were significantly up-regulated in response to Vibrio harveyi infection. Moreover, the DNA plasmid containing the OmpW of V. harveyi together with the gene encoding Ls-IL6 were successfully constructed and administered to fish, the protective efficacy of Ls-IL6 was investigated. Compared with the pcDNA-OmpW group, the level of specific antibodies against V. harveyi increased in pcDNA-IL6-OmpW injected group. After V. harveyi infection, the pcDNA-IL6-OmpW vaccinated fish showed higher relative percent survival (76%) than the relative survival of fish immunized with pcDNA-OmpW (60%). These results indicated that Ls-IL6 was involved in immune response against V. harveyi infection and could be applied as a promising adjuvant for DNA vaccines against V. harveyi.
Collapse
Affiliation(s)
- Pujiang Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Fisheries Service and Aquatic Product Technology Extension Center, Shenzhen, PR China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China; Guangxi Key Lab for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, PR China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
20
|
Tang X, Guo M, Du Y, Xing J, Sheng X, Zhan W. Interleukin-2 (IL-2) in flounder (Paralichthys olivaceus): Molecular cloning, characterization and bioactivity analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:55-65. [PMID: 31319204 DOI: 10.1016/j.fsi.2019.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-2 (IL-2) is mainly produced by CD4+ T helper lymphocytes, which is an important immunomodulatory cytokine that primarily promotes activation, proliferation and differentiation of T cells. In the present study, flounder (Paralichthys olivaceus) interleukin 2 homologue (poIL-2) was identified for the first time, and its expression patterns were characterized in healthy, virus- or bacteria-infected flounder. The full-length cDNA sequences of poIL-2 was 989 bp with an open reading frame of 423 bp coding a polypeptide of 140 amino acids (aa). The deduced aa sequences shared low similarities (<53%) with other known fish IL-2s. Multiple alignment of aa sequences revealed that poIL-2 own the classical IL-2 family signature of "C-X(3)-EL-X(2)-(T/V)-(V/M/L)-(K/T/R)-X-EC" and "DS-X-(F/L)Y(A/T/S)P". In healthy flounder, IL-2 mRNA was highly expressed in PBLs, spleen and hindgut, and moderately expressed in gill, trunk kidney and stomach. PHA, LPS and Con-A could effectively induce poIL-2 expression in primary cultured peripheral blood leukocytes in vitro. poIL-2 transcripts were significantly up-regulated in spleen, kidney, gill and hindgut post infections with Edwardsiella tarda and Hirame novirhabdovirus (HIRRV). The eukaryotic expression vector encoding poIL-2 (pcIL-2) was constructed and intramuscularly injected, which could be successfully expressed in flounders and induced significantly higher expressions of six immune related genes including poIL-2, β-defensin, CD4-1, CD8α, IFN-γ and TNF-α compared with the injection with control plasmid. Moreover, pretreatment with pcIL-2 could markedly increase the survival rate of flounder challenged with HIRRV. Our results demonstrated that poIL-2 plays an important role in the induction of immune responses and immune defense against bacterial and virus infection, which indicated its potential use as an immunopotentiator to prevent diseases in flounder.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ming Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yang Du
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
21
|
Zhu K, Lu XJ, Chen J. The interleukin-6 regulates the function of monocytes/macrophages (MO/MФ) via the interleukin-6 receptor β in ayu (Plecoglossus altivelis). FISH & SHELLFISH IMMUNOLOGY 2019; 93:191-199. [PMID: 31326589 DOI: 10.1016/j.fsi.2019.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-6 (IL-6) is one of the most pleiotropic cytokines because of its wide range of effects on cells of the immune and non-immune systems in the body. However, the role of IL-6 in fish monocytes/macrophages (MO/MФ) is poorly understood. In this study, we cloned the cDNA sequence of the IL-6 gene from ayu (Plecoglossus altivelis) and demonstrated using a tissue distribution assay that ayu interleukin-6 (PaIL-6) mRNA is expressed in all tested tissues. Changes in expression were observed in immune tissues as well as in MO/MФ after a Vibrio anguillarum infection; subsequently, PaIL-6 was expressed and purified to prepare anti-PaIL-6 antibodies. Recombinant PaIL-6 protein (rPaIL-6) treatment enhanced pro-inflammatory cytokine expression. Ayu interleukin-6 receptor β (PaIL-6Rβ) knockdown resulted in decreased pro-inflammatory cytokine expression in MO/MФ treated with rPaIL-6, whereas no significant changes were observed after ayu interleukin-6 receptor α (PaIL-6Rα) knockdown in MO/MФ. PaIL-6 and PaIL-6Rβ knockdown in MO/MФ inhibited the phosphorylation of signal transducer and activator of transcription 1. Moreover, PaIL-6Rβ knockdown inhibited the phagocytic and bactericidal ability of ayu MO/MФ treated with rPaIL-6. These data indicate that PaIL-6 may be able to regulate the function of ayu MO/MФ.
Collapse
Affiliation(s)
- Kai Zhu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Yang S, Tang X, Sheng X, Xing J, Zhan W. Analysis of the role of IL-10 in the phagocytosis of mIgM + B lymphocytes in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 92:813-820. [PMID: 31271840 DOI: 10.1016/j.fsi.2019.06.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
B cells have been found to have phagocytic activity in recent years, but the studies exploring the regulation mechanisms are still lacking to date. In the present study, the recombinant interleukin-10 (rIL-10) was obtained to study the function of IL-10 on phagocytosis of flounder (Paralichthys olivaceus) mIgM+ B lymphocytes. Flow cytometric analysis showed that IL-10 significantly enhanced the phagocytosis of Edwardsiella tarda but not Lactococcus lactis by mIgM+ B lymphocytes. Moreover, significantly higher intracellular ROS levels were detected in mIgM+ B lymphocytes following rIL-10 stimulation. The qRT-PCR analysis showed that rIL-10 could upregulate the expressions of IL-10Rb and Stat3 in mIgM+ B lymphocytes, suggesting that IL-10 might modulate the phagocytosis of mIgM+ B lymphocytes by activating IL-10R and Stat3. In addition, we also found that the enhancing effect of IL-10 on phagocytosis and intracellular ROS levels of mIgM+ B lymphocytes were suppressed by the administration of niclosamide. These results collectively demonstrated that IL-10 enhanced mIgM+ B lymphocyte-mediated phagocytosis of E. tarda and intracellular bactericidal ability, and IL-10R and Stat3 might play a curial role in the regulation of IL-10-stimulated phagocytosis, which would deepen our understanding of regulation mechanism of B cell phagocytosis.
Collapse
Affiliation(s)
- Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
23
|
Tang X, Yang S, Sheng X, Xing J, Zhan W. Transcriptome Analysis of Immune Response of mIgM + B Lymphocytes in Japanese Flounder ( Paralichthys olivaceus) to Lactococcus lactis in vitro Revealed That IFN I-3 Could Enhance Their Phagocytosis. Front Immunol 2019; 10:1622. [PMID: 31379827 PMCID: PMC6646603 DOI: 10.3389/fimmu.2019.01622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
B cells have recently been proven to have phagocytic activities, but few studies have explored the relevant regulation mechanisms. In this study, we showed that the Japanese flounder (Paralichthys olivaceus) membrane-bound (m)IgM+ B lymphocyte population could phagocytose inactivated Lactococcus lactis with a mean phagocytic rate of 25%. High-purity mIgM+ B lymphocytes were subsequently sorted to investigate the cellular response to L. lactis stimulation in vitro. Transcriptome analysis identified 1,375 differentially expressed genes (DEGs) after L. lactis stimulation, including 975 upregulated and 400 downregulated genes. Many of these DEGs were enriched in multiple pathways associated with phagocytosis such as focal adhesion, the phagosome, and actin cytoskeleton regulation. Moreover, many genes involved in phagolysosomal function and antigen presentation were also upregulated after stimulation, indicating that mIgM+ B lymphocytes may degrade the internalized bacteria and present processed antigenic peptides to other immune cells. Interestingly, the type I interferon 3 (IFN I-3) gene was upregulated after L. lactis stimulation, and further analysis showed that the recombinant (r)IFN I-3 significantly enhanced phagocytosis of L. lactis and Edwardsiella tarda by mIgM+ B lymphocytes. In addition, significantly higher intracellular reactive oxygen species (ROS) levels were detected in mIgM+ B lymphocytes following rIFN I-3 treatment. We also found that IFN I-3 significantly upregulated Stat1 expression in mIgM+ B lymphocytes, and the enhancing effect of IFN I-3 on mIgM+ B lymphocyte-mediated phagocytosis was suppressed by fludarabine treatment. Collectively, these results demonstrate that mIgM+ B cell-mediated phagocytosis in the Japanese flounder is effectively triggered by bacterial stimulation, and further enhanced by IFN I-3, which itself may be regulated by Stat1.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shun Yang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
24
|
Guo M, Tang X, Sheng X, Xing J, Zhan W. Comparative study of the adjuvant potential of four Th0 cytokines of flounder (Paralichthys olivaceus) on an E. tarda subunit vaccine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:147-155. [PMID: 29746982 DOI: 10.1016/j.dci.2018.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Cytokines have the potential as adjuvants for the application of vaccines in mammals. However, the adjuvant potential of teleost cytokines was limited. In the present work, the adjuvant effects of four recombinant cytokines including IL-1β, IL-8, TNF-α and G-CSF on E. tarda subunit vaccine rOmpV were comparatively investigated in flounder (Paralichthys olivaceus). Compared with control, the levels of specific serum antibodies and IgM + B lymphocytes were significantly enhanced by rIL-1β, rIL-8 and rG-CSF, whereas rIL-1β and rIL-8 induced significantly higher levels than rG-CSF. All four cytokines enhanced the expression of genes involved in humoral and/or cellular immunities, whereas rIL-1β and rIL-8 induced highest levels of genes involved in humoral immunities and cellular immunities, respectively. Compared to the relative percent survivals (RPS) of control group (40%) and rOmpV plus rG-CSF group (54%), rOmpV plus rIL-1β or rIL-8 produced higher RPS of 75% and 68%, respectively. Our results indicated that rIL-1β and rIL-8 are promising adjuvants for subunit vaccines against E. tarda.
Collapse
Affiliation(s)
- Ming Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
25
|
Guo M, Tang X, Sheng X, Xing J, Zhan W. The effects of IL-1β, IL-8, G-CSF and TNF-α as molecular adjuvant on the immune response to an E. tarda subunit vaccine in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2018; 77:374-384. [PMID: 29626667 DOI: 10.1016/j.fsi.2018.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Cytokines play vital roles in mounting immune responses and activating host defense network. In this study, the expression plasmid pcDNA3.1 (pcN3) encoding four flounder (Paralichthys olivaceus) cytokines including IL-1β, TNF-α, IL-8 or G-CSF (pcIL-1β, pcTNF-α, pcIL-8 and pcG-CSF) were successfully constructed, and their adjuvant potential on an Edwardsiella tarda (E. tarda) subunit vaccine OmpV (rOmpV) were comparatively analyzed in vaccinated flounder model. Results revealed that flounder vaccinated with rOmpV plus pcIL-1β, pcIL-8 or pcG-CSF produced the relative percent survivals (RPS) of 71%, 65% and 49% respectively, which were higher than that in flounder vaccinated with rOmpV plus pcTNF-α (39%) or pcN3 (36%, the control group). Immunological analysis showed that: (1) except pcTNF-α, higher levels of anti-E. tarda serum antibodies and sIg + lymphocytes in spleen, head kidney and peripheral blood were significantly enhanced by pcIL-1β, pcIL-8 or pcG-CSF, however, pcIL-8 and pcIL-1β enhanced higher levels of sIg + lymphocytes and anti-E. tarda antibodies than pcG-CSF; (2) pcTNF-α could promote the up-regulation of genes participated in cellular immunity (MHCIα, IFN-γ, CD8α and CD8β), pcIL-1β could enhance the expression of genes related to humoral immunity (CD4-1, CD4-2, MHCIIα and IgM), and all the detected genes were augmented by pcIL-8 and pcG-CSF; Among the four cytokines, pcIL-8 and pcIL-1β could strengthen the highest levels of genes participated in cellular immunity and humoral immunity, respectively. These results demonstrated that pcIL-8 and pcIL-1β could enhance stronger cellular and/or humoral immunity induced by rOmpV than pcG-CSF and pcTNF-α, and evoked higher RPS against E. tarda challenge in flounder, which indicated that pcIL-8 and pcIL-1β are promising adjuvants of vaccines in controlling E. tarda infection.
Collapse
Affiliation(s)
- Ming Guo
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
26
|
Xing J, Li P, Tang X, Zhan W. Recombinant Hsp33 and OmpC protein can serve as promising divalent vaccine with protection against Vibrio anguillarum and Edwardsiella tarda in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2018; 74:341-348. [PMID: 29309834 DOI: 10.1016/j.fsi.2017.12.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/05/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Vibrio anguillarum and Edwardsiella tarda are severe aquaculture pathogens shared similar epidemiological characteristics and susceptible to flounder (Paralichthys olivaceus). In our previous studies, recombinant(r) protein heat shock protein 33 (rHsp33) from V. anguillarum and outer membrane protein C (rOmpC) from E. tarda were proved to have protection against V. anguillarum and E. tarda, respectively. In this paper, the cross protection of rHsp33 against E. tarda and rOmpC against V. anguillarum, and the protection of divalent vaccine candidate (rHsp33 + rOmpC, rHC) against both V. anguillarum and E. tarda were evaluated. RHC, rHsp33, and rOmpC were vaccinated to flounder, respectively, and the percentages of surface immunoglobulin-positive (sIg+) cells in peripheral blood lymphocytes (PBLs), serum IgM, specific antibodies against V. anguillarum or E. tarda, specific antibodies against rHsp33, rOmpC or rHC, the expression of immune-related genes and relative percent survival (RPS) against V. anguillarum or E. tarda were measured. The results showed that: RHC could induced the enhancement of sIg + cells and high levels of specific antibodies against both V. anguillarm and E. tarda; Also a significant increase of specific antibodies against rHsp33, rOmpC or rHC, and up-regulation of gene expression of CD3, CD4-1, CD4-2, CD8α, CD8β and IgM in spleen, head-kidney, and hindgut, RPS of 70 ± 3.45% against V. anguillarum and 60 ± 1.48% against E. tarda, respectively. In addition, rHsp33 induced specific antibodies against E. tarda and rOmpC, and had a RPS of 43.3 ± 3.73% against E. tarda; rOmpC could evoke specific antibodies against V. anguillarum and rHsp33, and had a RPS of 44 ± 1.27% against V. anguillarm; The results demonstrated that there was cross protection of rHsp33 against E. tarda and rOmpC against V. anguillarum, rHC as a divalent vaccine can induce significant immune response and efficient protection against both E. tarda and V. anguillarum in flounder.
Collapse
Affiliation(s)
- Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China
| | - Pengwei Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, PR China.
| |
Collapse
|