1
|
Feng B, Zhao W, Zhang M, Fan X, He T, Luo Q, Yan J, Sun J. Lignin-Based Carbon Nanomaterials for Biochemical Sensing Applications. Chem Asian J 2024; 19:e202400611. [PMID: 38995858 DOI: 10.1002/asia.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Lignin-based carbon nanomaterials offer several advantages, including biodegradability, biocompatibility, high specific surface area, ease of functionalization, low toxicity, and cost-effectiveness. These materials show promise in biochemical sensing applications, particularly in the detection of metal ions, organic compounds, and human biosignals. Various methods can be employed to synthesize carbon nanomaterials with different dimensions ranging from 0D-3D, resulting in diverse structures and physicochemical properties. This study provides an overview of the preparation techniques and characteristics of multidimensional (0-3D) lignin-based carbon nanomaterials, such as carbon dots (CDs), carbon nanotubes (CNTs), graphene, and carbon aerogels (CAs). Additionally, the sensing capabilities of these materials are compared and summarized, followed by a discussion on the potential challenges and future prospects in sensor development.
Collapse
Affiliation(s)
- Baofang Feng
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063015, P.R. China
| | - Min Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Xu Fan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Ting He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Qizhen Luo
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jipeng Yan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Beijing Engineering Research Center of Cellulose and Its Derivatives, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
2
|
Ding Z, Li G, Wang Y, Du C, Ye Z, Liang L, Tang LC, Chen G. Ultrafast Response and Threshold Adjustable Intelligent Thermoelectric Systems for Next-Generation Self-Powered Remote IoT Fire Warning. NANO-MICRO LETTERS 2024; 16:242. [PMID: 38985378 PMCID: PMC11236834 DOI: 10.1007/s40820-024-01453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024]
Abstract
Fire warning is vital to human life, economy and ecology. However, the development of effective warning systems faces great challenges of fast response, adjustable threshold and remote detecting. Here, we propose an intelligent self-powered remote IoT fire warning system, by employing single-walled carbon nanotube/titanium carbide thermoelectric composite films. The flexible films, prepared by a convenient solution mixing, display p-type characteristic with excellent high-temperature stability, flame retardancy and TE (power factor of 239.7 ± 15.8 μW m-1 K-2) performances. The comprehensive morphology and structural analyses shed light on the underlying mechanisms. And the assembled TE devices (TEDs) exhibit fast fire warning with adjustable warning threshold voltages (1-10 mV). Excitingly, an ultrafast fire warning response time of ~ 0.1 s at 1 mV threshold voltage is achieved, rivaling many state-of-the-art systems. Furthermore, TE fire warning systems reveal outstanding stability after 50 repeated cycles and desired durability even undergoing 180 days of air exposure. Finally, a TED-based wireless intelligent fire warning system has been developed by coupling an amplifier, analog-to-digital converter and Bluetooth module. By combining TE characteristics, high-temperature stability and flame retardancy with wireless IoT signal transmission, TE-based hybrid system developed here is promising for next-generation self-powered remote IoT fire warning applications.
Collapse
Affiliation(s)
- Zhaofu Ding
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Gang Li
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Yejun Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Zhenqiang Ye
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China.
| | - Guangming Chen
- College of Materials Science and Engineering & College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
3
|
Fazeli M, Mukherjee S, Baniasadi H, Abidnejad R, Mujtaba M, Lipponen J, Seppälä J, Rojas OJ. Lignin beyond the status quo: recent and emerging composite applications. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:593-630. [PMID: 38264324 PMCID: PMC10802143 DOI: 10.1039/d3gc03154c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
The demand for biodegradable materials across various industries has recently surged due to environmental concerns and the need for the adoption of renewable materials. In this context, lignin has emerged as a promising alternative, garnering significant attention as a biogenic resource that endows functional properties. This is primarily ascribed to its remarkable origin and structure that explains lignin's capacity to bind other molecules, reinforce composites, act as an antioxidant, and endow antimicrobial effects. This review summarizes recent advances in lignin-based composites, with particular emphasis on innovative methods for modifying lignin into micro and nanostructures and evaluating their functional contribution. Indeed, lignin-based composites can be tailored to have superior physicomechanical characteristics, biodegradability, and surface properties, thereby making them suitable for applications beyond the typical, for instance, in ecofriendly adhesives and advanced barrier technologies. Herein, we provide a comprehensive overview of the latest progress in the field of lignin utilization in emerging composite materials.
Collapse
Affiliation(s)
- Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Sritama Mukherjee
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Division of Fiber and Polymer Technology, CBH, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd P.O. Box 1000 Espoo FI-02044 Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University Espoo Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia Vancouver BC V6T 1Z3 Canada
| |
Collapse
|
4
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
5
|
Synergistic flame retardant effect of a new N-P flame retardant on poplar wood density board. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Yuan J, Zhu Z, Wang Y, Yin X, Lin X. Multi-functional solvent-free SiO2 nanofluid simultaneously improve major properties and fluidity of epoxy resin: A new strategy beyond nanofillers. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
7
|
Arnawtee WH, Jaleh B, Nasrollahzadeh M, Bakhshali‐Dehkordi R, Nasri A, Orooji Y. Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D. Multifunctional lignin-based nanocomposites and nanohybrids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6698-6760. [PMID: 34671223 PMCID: PMC8452181 DOI: 10.1039/d1gc01684a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU) Bilbao 48013 Spain
- BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
| |
Collapse
|
9
|
Yang Y, Díaz Palencia JL, Wang N, Jiang Y, Wang DY. Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules 2021; 26:4670. [PMID: 34361823 PMCID: PMC8348979 DOI: 10.3390/molecules26154670] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film-matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.
Collapse
Affiliation(s)
- Yuan Yang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
| | - José Luis Díaz Palencia
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Na Wang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - Yan Jiang
- Liaoning Provincial Key Laboratory for Synthesis and Preparation of Special Functional Materials, Shenyang University of Chemical Technology, Shenyang 110142, China; (Y.Y.); (Y.J.)
- Shenyang Research Institute of Industrial Technology for Advanced Coating Materials, Shenyang 110142, China
| | - De-Yi Wang
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1800, Pozuelo de Alarcón, 28223 Madrid, Spain;
- IMDEA Materials Institute, C/Eric Kandel, 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
10
|
Nano-Metal Organic Framework for Enhanced Mechanical, Flame Retardant and Ultraviolet-Blue Light Shielding Properties of Transparent Cellulose-Based Bioplastics. Polymers (Basel) 2021; 13:polym13152433. [PMID: 34372036 PMCID: PMC8348410 DOI: 10.3390/polym13152433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
From the perspective of sustainable development and practical applications, there has been a great need for the design of multifunctional transparent cellulose-based composite films. We herein propose a novel concept of improving the mechanical, fire-resistant and ultraviolet (UV)-blue light shielding properties of cellulose-based composite bioplastic films though in situ embedding nano-metal organic framework (MIL-125(Ti)-NH2) into regenerated cellulose gel. Regenerated cellulose hydrogel (CH) with a porous structure acts as a nanoreactor and stabilizer to facilitate the growth and anchorage of MIL-125(Ti)-NH2 nanoparticles (MNPs). Subsequently, hot-pressing induces the formation of transparent MIL-125(Ti)-NH2@cellulose bioplastics (MNP@CBPs). As expected, the MNP@CBPs exhibit exceptional UV-blue light shielding capability, while retaining satisfactory optical transmittance. Meanwhile, with the incorporation of MNPs, the mechanical strength of MNP@CBPs is increased by 6.5~25.9%. In addition, MNPs enhance the flame retardant effect of the MNP@CBPs. The limited oxygen index (LOI) of the MNP@CBPs increased from 21.95 to 27.01%. The hot-pressing process improves the resistance of the MNP@CBPs to the penetration of water/non-aqueous liquids. This simple strategy would direct sustainable multifunctional MNP@CBPs toward diversified applications: food containers or packaging materials that can reduce or eliminate food spoilage, screen protectors for blocking harmful light, and promising candidates for protective plastic products, among others.
Collapse
|
11
|
The influences of graphene and carbon nanotubes on properties of waterborne intumescent fire resistive coating. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Kim Y, Lee S, Yoon H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers (Basel) 2021; 13:540. [PMID: 33673106 PMCID: PMC7918670 DOI: 10.3390/polym13040540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.
Collapse
Affiliation(s)
- Yukyung Kim
- R&D Laboratory: Korea Fire Institute, 331 Jisam-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17088, Korea;
| | - Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
13
|
Kundu CK, Li Z, Li X, Zhang Z, Hu Y. Graphene oxide functionalized biomolecules for improved flame retardancy of Polyamide 66 fabrics with intact physical properties. Int J Biol Macromol 2020; 156:362-371. [DOI: 10.1016/j.ijbiomac.2020.04.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 11/28/2022]
|
14
|
Song K, Ganguly I, Eastin I, Dichiara A. High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121283. [PMID: 31585295 DOI: 10.1016/j.jhazmat.2019.121283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/30/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Wood is one of the most widely used construction materials but it is thermally degradable and combustible, which poses serious safety concerns. In this research, the high temperature and fire behavior of hydrothermally modified western hemlock, impregnated with carbon nanomaterials pre-adsorbed with alkali lignin, was examined by cone calorimetry, scanning electron microscopy, thermal gravimetric analysis, and Fourier transform infrared spectroscopy. The hydrothermal treatment made the wood less hydrophilic, allowing the formation of a dense protective layer of carbon-rich additives on the external wood surface at low loading (5 wt%) after aqueous-phase vacuum impregnation. Results revealed that the unique combination of these two processes reduced the total heat release by up to 32%, diminished flame spread by 31%, decreased the average carbon dioxide yield by 12%, lowered the total mass loss by 10%, and significantly slowed the pyrolytic reactions of wood. This research has important implications for the development of valued-added wood products with superior fire safety from relatively low cost timbers, such as western hemlock.
Collapse
Affiliation(s)
- Kunlin Song
- School of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USA
| | - Indroneil Ganguly
- Center of International Trade in Forest Products (CINTRAFOR), School of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USA
| | - Ivan Eastin
- School of Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Dichiara
- School of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Xin F, Zhai C, Guo C, Chen Y, Qian L. Carbon nanotubes coated with phosphorus-nitrogen flame retardant and its application in epoxy thermosets. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1587769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|