1
|
Napoletano G, Marinelli E, Palla L, Zaami S, Maiese A. Expression of RIPK-1 and S-100B in traumatic brain injury- exploring a forensic cases series. Int J Legal Med 2024:10.1007/s00414-024-03400-2. [PMID: 39676104 DOI: 10.1007/s00414-024-03400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Traumatic Brain Injury (TBI) represents one of the leading causes of disability and death globally, with a significant impact on public health. We present 12 cases (age 5-80 years old) of death due to TBI with different post-traumatic interval (PTI). The expression of S-100B and RIPK-1 in pericontusional zones of TBI were studied in forensic cases to understand the vitality and timing of injuries. The anti-RIPK-1 antibodies mainly stained the cytoplasm of the nerve cells. In 3 cases (48 to 56 years old with no other comorbidities; PTI: 2 days to 4 days) antibodies positive for RIPK-1 were found. In 5 cases (48 to 71 years old; PTI: 2 days to 12 days) astrocyte, oligodendrocyte and neurons positive for anti-S-100B were found. In 3 of these 5 cases both antibodies tested were positive. In 7 cases (5-80 years old; one with history of drug abuse, other with no comorbidities, PTI 0 h; ) the glial cells were swollen and the submeningeal glial limitans became immunopositive for S100B. Stain accumulations were also observed adjacent to the walls of cerebral vessels, sometimes within the intravascular compartment. The results of the study show that in subjects who suffered a TBI, the expression of RIPK-1 and S-100B at the level of neurons in the pericontusional area was significantly increased compared to the control group. Neurons were not stained for RIPK-1 in cases of sudden cardiac deaths and sudden deaths due to TBI but observed neurons became immunopositive for RIPK-1 some days after TBI. S100-immunopositive neurons were not seen in immediate deaths but were found in cases with survival up to 12 days. Results regarding S100B are in line with existing knowledge. The study of necroptosis with anti-RIPK-1 antibodies could be useful in understanding the extent of secondary injuries and survival time in forensic contexts. However, this is a pilot study and should be extended to a larger number of cases to achieve more reliable results.
Collapse
Affiliation(s)
- Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy.
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, 04100, Italy
| | - Luigi Palla
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
2
|
Karaboue MAA, Ministeri F, Sessa F, Nannola C, Chisari MG, Cocimano G, Di Mauro L, Salerno M, Esposito M. Traumatic Brain Injury as a Public Health Issue: Epidemiology, Prognostic Factors and Useful Data from Forensic Practice. Healthcare (Basel) 2024; 12:2266. [PMID: 39595464 PMCID: PMC11593823 DOI: 10.3390/healthcare12222266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) represents a major public health problem, being a leading cause of disability and mortality among young people in developed countries. Head trauma occurs across all age groups, each experiencing consistently high rates of mortality and disability. This review aims to present an overview of TBI epidemiology and its socioeconomic impact, alongside data valuable for prevention, clinical management, and research efforts. Methods: A narrative review of TBI was performed with a particular focus on forensic pathology and public health. In fact, this review highlighted the economic and epidemiological aspects of TBI, as well as autopsy, histology, immunohistochemistry, and miRNA. Results: These data, together with immunohistochemical markers, are crucial for histopathological diagnosis and to determine the timing of injury onset, a fundamental aspect in forensic pathology practice. There is compelling evidence that brain injury biomarkers may enhance predictive models for clinical and prognostic outcomes. By clarifying the cause of death and providing details on survival time after trauma, forensic tools offer valuable information to improve the clinical management of TBI and guide preventive interventions. Conclusions: TBI is one of the most common causes of death today, with high costs for health care spending. Knowing the different mechanisms of TBI, reduces health care costs and helps improve prognosis.
Collapse
Affiliation(s)
| | - Federica Ministeri
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy
| | | | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy
| | - Lucio Di Mauro
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | | |
Collapse
|
3
|
Ludwig R, Rippee M, D'Silva L, Radel J, Eakman AM, Morris J, Beltramo A, Drerup M, Siengsukon C. The Impact of Cognitive Behavioral Therapy for Insomnia on Neurofilament Light and Phosphorylated Tau in Individuals with a Concussion. Arch Clin Neuropsychol 2024:acae096. [PMID: 39504933 DOI: 10.1093/arclin/acae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Concussions damage neurologic tissue, increasing release of intercellular proteins including phosphorylated Tau (pTau) and neurofilament light (NfL). Disrupted sleep from a concussion negatively impacts the ability of the glymphatic system to remove cellular waste from the brain. OBJECTIVE The purpose of this study was to determine if enhancing sleep using Cognitive Behavioral Therapy for Insomnia (CBT-I) impacts pTau and NFL levels following a concussion. METHODS This is pre/post intervention analysis of a larger wait-list control study. Participants had their blood sampled pre/post the CBT-I intervention which was analyzed using SIMOA analytics. Paired sampling statistics and linear regression models were used to examine how insomnia severity impacts pTau181 and NfL. RESULTS Twenty-eight participants were enrolled in this study. Age and baseline protein level were significantly associated with post-intervention protein levels, but post-intervention insomnia severity was not associated with post-intervention protein levels. About 50% of participants that had clinically meaningful change in insomnia and had a reduction in their NfL and pTau181 values. CONCLUSIONS Post-intervention insomnia was not associated with post-intervention NfL or pTau. Yet, on an individual level, ~50% of participants had a clinically meaningful change in insomnia and reduced level of NfL and pTau 18.1. CLINICAL TRIAL REGISTRATION NCT04885205 https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Michael Rippee
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Linda D'Silva
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy and Therapeutic Science, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop 2003 Kansas City, KS 66160, USA
| | - Aaron M Eakman
- Department of Occupational Therapy, Colorado State University, 850 Oval Drive Mail Stop 1501, Fort Collins, CO 80523, USA
| | - Jill Morris
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 2012, Kansas City, KS 66160, USA
| | - Alvin Beltramo
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Mailstop 1026, Kansas City, KS 66160, USA
| | - Michelle Drerup
- Sleep Disorders Center, Cleveland Clinic, Neurological Institute, 9500 Euclid Ave Cleveland, OH 44195, USA
| | - Catherine Siengsukon
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, 3901 Rainbow Blvd. Mail Stop 2002, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Lee DH, Lee HJ, Yang G, Kim DY, Kim JU, Yook TH, Lee JH, Kim HJ. A novel treatment strategy targeting cellular pathways with natural products to alleviate sarcopenia. Phytother Res 2024; 38:5033-5051. [PMID: 39099170 DOI: 10.1002/ptr.8301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.
Collapse
Affiliation(s)
- Da Hee Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Hye Jin Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Gabsik Yang
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Dae Yong Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jong Uk Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Tae Han Yook
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| | - Jun Ho Lee
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
- Da Capo Co., Ltd., Jeonju-si, Republic of Korea
| | - Hong Jun Kim
- College of Korean Medicine, Woosuk University, Jeonju-si, Republic of Korea
| |
Collapse
|
5
|
Xu Y, Wang Y, Yang Y, Fang X, Wu L, Hu J, Li J, Mei S. Piezo1: the key regulators in central nervous system diseases. Front Cell Neurosci 2024; 18:1441806. [PMID: 39539343 PMCID: PMC11557416 DOI: 10.3389/fncel.2024.1441806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The occurrence and development of central nervous system (CNS) diseases is a multi-factor and multi-gene pathological process, and their diagnosis and treatment have always posed a serious challenge in the medical field. Therefore, exploring the relevant factors in the pathogenesis of CNS and improving the diagnosis and treatment rates has become an urgent problem. Piezo1 is a recently discovered mechanosensitive ion channel that opens in response to mechanical stimuli. A number of previous studies have shown that the Piezo channel family plays a crucial role in CNS physiology and pathology, especially in diseases related to CNS development and mechanical stimulation. This article comprehensively describes the biological properties of Piezo1, focuses on the potential association between Piezo1 and CNS disorders, and explores the pharmacological roles of Piezo1 agonists and inhibitors in treating CNS disorders.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuheng Wang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanling Yang
- The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Wang X, Fan F, Hou Y, Meng X. Tile: Construction of a specific nanoprobe for scavenging ROS in hypobaric hypoxia induced brain injury of mice. Heliyon 2024; 10:e38958. [PMID: 39640698 PMCID: PMC11620081 DOI: 10.1016/j.heliyon.2024.e38958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 12/07/2024] Open
Abstract
The prevention and treatment of hypobaric hypoxia brain injury (HHBI) remains an unprecedented challenge due to the complex oxidative stress response at the damage site. In this study, RuCO phthalocyanine compound (RuPc) and bovine serum albumin (BSA) were self-assembled to obtain RuPc-BSA nanoparticles for HHBI therapy. As a nanoprobe carrying and storing carbon monoxide (CO), RuPc-BSA delivers CO to pathologically damaged areas of the brain. CO specifically attaches itself to the heme functional groups on mitochondria and restricts the source of reactive oxygen species (ROS) generation. RuPc-BSA nanoparticles have been demonstrated in vitro to exhibit amazing stability as well as remarkable scavenging activity on hydroxyl radical, superoxide anion, and hydrogen peroxide. In vivo experiments showed that ROS levels in the brain of HHBI rats pretreated with RuPc-BSA decreased significantly, and neuronal function and oxidative stress levels were alleviated. Western blot and qRT-RCR results indicated that RuPc-BSA restricted the protein levels of Keap1, whereas enhanced the gene and protein levels of Nrf2. This study demonstrated that RuPc-BSA can ameliorate HHBI of mice by scavenging ROS partly via activating Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fuhan Fan
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| |
Collapse
|
7
|
Wang M, Guo J, Chen W, Wang H, Hou X. Emerging roles of tRNA-derived small RNAs in injuries. PeerJ 2024; 12:e18348. [PMID: 39465146 PMCID: PMC11512806 DOI: 10.7717/peerj.18348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of small noncoding RNAs, precisely cleaved from tRNA, functioning as regulatory molecules. The topic of tsRNAs in injuries has not been extensively discussed, and studies on tsRNAs are entering a new era. Here, we provide a fresh perspective on this topic. We systematically reviewed the classification, generation, and biological functions of tsRNAs in response to stress, as well as their potential as biomarkers and therapeutic targets in various injuries, including lung injury, liver injury, renal injury, cardiac injury, neuronal injury, vascular injury, skeletal muscle injury, and skin injury. We also provided a fresh perspective on the association between stress-induced tsRNAs and organ injury from a clinical perspective.
Collapse
Affiliation(s)
- Mengjun Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junfeng Guo
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Chen
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hong Wang
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaotong Hou
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Xu Y, Wang Y, Mei S, Hu J, Wu L, Xu L, Bao L, Fang X. The mechanism and potential therapeutic target of piezo channels in pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1452389. [PMID: 39398533 PMCID: PMC11466900 DOI: 10.3389/fpain.2024.1452389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Pain is a common symptom of many clinical diseases; it adversely affects patients' physical and mental health, reduces their quality of life, and heavily burdens patients and society. Pain treatment is one of the most difficult problems today. There is an urgent need to explore the potential factors involved in the pathogenesis of pain to improve its diagnosis and treatment rate. Piezo1/2, a newly identified mechanosensitive ion channel opens in response to mechanical stimuli and plays a critical role in regulating pain-related diseases. Inhibition or downregulation of Piezo1/2 alleviates disease-induced pain. Therefore, in this study, we comprehensively discussed the biology of this gene, focusing on its potential relevance in pain-related diseases, and explored the pharmacological effects of drugs using this gene for the treatment of pain.
Collapse
Affiliation(s)
- Yi Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yuheng Wang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Shuchong Mei
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Luyang Xu
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lijie Bao
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaowei Fang
- Department of Emergency Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. Sci Rep 2024; 14:21369. [PMID: 39266604 PMCID: PMC11392954 DOI: 10.1038/s41598-024-71312-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury (DAI) and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal swellings, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals with confirmed DAI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
Affiliation(s)
| | - Karen M Gorse
- Virginia Commonwealth University, BOX 980709, Richmond, VA, 23298, USA
| | | |
Collapse
|
10
|
Consalvo F, Padovano M, Scopetti M, Morena D, Cipolloni L, Fineschi V, Santurro A. Analysis of miRNA Expression Profiles in Traumatic Brain Injury (TBI) and Their Correlation with Survival and Severity of Injury. Int J Mol Sci 2024; 25:9539. [PMID: 39273487 PMCID: PMC11394952 DOI: 10.3390/ijms25179539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of traumatic death worldwide and is a public health problem associated with high mortality and morbidity rates, with a significant socioeconomic burden. The diagnosis of brain injury may be difficult in some cases or may leave diagnostic doubts, especially in mild trauma with insignificant pathological brain changes or in cases where instrumental tests are negative. Therefore, in recent years, an important area of research has been directed towards the study of new biomarkers, such as micro-RNAs (miRNAs), which can assist clinicians in the diagnosis, staging, and prognostic evaluation of TBI, as well as forensic pathologists in the assessment of TBI and in the estimation of additional relevant data, such as survival time. The aim of this study is to investigate the expression profiles (down- and upregulation) of a panel of miRNAs in subjects deceased with TBI in order to assess, verify, and define the role played by non-coding RNA molecules in the different pathophysiological mechanisms of brain damage. This study also aims to correlate the detected expression profiles with survival time, defined as the time elapsed between the traumatic event and death, and with the severity of the trauma. This study was conducted on 40 cases of subjects deceased with TBI (study group) and 10 cases of subjects deceased suddenly from non-traumatic causes (control group). The study group was stratified according to the survival time and the severity of the trauma. The selection of miRNAs to be examined was based on a thorough literature review. Analyses were performed on formalin-fixed, paraffin-embedded (FFPE) brain tissue samples, with a first step of total RNA extraction and a second step of quantification of the selected miRNAs of interest. This study showed higher expression levels in cases compared to controls for miR-16, miR-21, miR-130a, and miR-155. In contrast, lower expression levels were found in cases compared to controls for miR-23a-3p. There were no statistically significant differences in the expression levels between cases and controls for miR-19a. In cases with short survival, the expression levels of miR-16-5p and miR-21-5p were significantly higher. In cases with long survival, miR-21-5p was significantly lower. The expression levels of miR-130a were significantly higher in TBI cases with short and middle survival. In relation to TBI severity, miR-16-5p and miR-21-5p expression levels were significantly higher in the critical-fatal TBI subgroup. Conclusions: This study provides evidence for the potential of the investigated miRNAs as predictive biomarkers to discriminate between TBI cases and controls. These miRNAs could improve the postmortem diagnosis of TBI and also offer the possibility to define the survival time and the severity of the trauma. The analysis of miRNAs could become a key tool in forensic investigations, providing more precise and detailed information on the nature and extent of TBI and helping to define the circumstances of death.
Collapse
Affiliation(s)
- Francesca Consalvo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, University of Foggia, 71100 Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| |
Collapse
|
11
|
Tsai MH, Wu CY, Wu CH, Chen CY. The Current Update of Conventional and Innovative Treatment Strategies for Central Nervous System Injury. Biomedicines 2024; 12:1894. [PMID: 39200357 PMCID: PMC11351448 DOI: 10.3390/biomedicines12081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This review explores the complex challenges and advancements in the treatment of traumatic brain injury (TBI) and spinal cord injury (SCI). Traumatic injuries to the central nervous system (CNS) trigger intricate pathophysiological responses, frequently leading to profound and enduring disabilities. This article delves into the dual phases of injury-primary impacts and the subsequent secondary biochemical cascades-that worsen initial damage. Conventional treatments have traditionally prioritized immediate stabilization, surgical interventions, and supportive medical care to manage both the primary and secondary damage associated with central nervous system injuries. We explore current surgical and medical management strategies, emphasizing the crucial role of rehabilitation and the promising potential of stem cell therapies and immune modulation. Advances in stem cell therapy, gene editing, and neuroprosthetics are revolutionizing treatment approaches, providing opportunities not just for recovery but also for the regeneration of impaired neural tissues. This review aims to emphasize emerging therapeutic strategies that hold promise for enhancing outcomes and improving the quality of life for affected individuals worldwide.
Collapse
Affiliation(s)
- Meng-Hsuan Tsai
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chi-Ying Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
| | - Chao-Hsin Wu
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Post-Baccalaureate Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan; (M.-H.T.); (C.-Y.W.); (C.-H.W.)
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| |
Collapse
|
12
|
Logan-Wesley AL, Gorse KM, Lafrenaye AD. Microglial process convergence onto injured axonal swellings, a human postmortem brain tissue study. RESEARCH SQUARE 2024:rs.3.rs-4713316. [PMID: 39149456 PMCID: PMC11326398 DOI: 10.21203/rs.3.rs-4713316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Traumatic brain injury (TBI) affects millions globally, with a majority of TBI cases being classified as mild, in which diffuse pathologies prevail. Two of the pathological hallmarks of TBI are diffuse axonal injury and microglial activation. While progress has been made investigating the breadth of TBI-induced axonal injury and microglial changes in rodents, the neuroinflammatory progression and interaction between microglia and injured axons following brain injury in humans is less well understood. Our group previously investigated microglial process convergence (MPC), in which processes of non-phagocytic microglia directly contact injured proximal axonal segments, in rats and micropigs acutely following TBI. These studies demonstrated that MPC occurred on injured axons in the micropig, but not in the rat, following diffuse TBI. While it has been shown that microglia co-exist and interact with injured axons in humans post-TBI, the occurrence of MPC has not been quantitatively measured in the human brain. Therefore, in the current study we sought to validate our pig findings in human postmortem tissue. We investigated MPC onto injured axonal swellings and intact myelinated fibers in cases from individuals that sustained a TBI and control human brain tissue using multiplex immunofluorescent histochemistry. We found an increase in MPC onto injured axonal swellings, consistent with our previous findings in micropigs, indicating that MPC is a clinically relevant phenomenon that warrants further investigation.
Collapse
|
13
|
Han Z, Zhao Z, Yu H, Wang L, Yue C, Zhu B, Zhu Y, Li Z, Sha Z. Microenvironment-Responsive Hydrogel Reduces Seizures After Traumatic Brain Injury in Juvenile Rats by Reducing Oxidative Stress and Hippocampal Inflammation. Macromol Biosci 2024; 24:e2400050. [PMID: 38810210 DOI: 10.1002/mabi.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Indexed: 05/31/2024]
Abstract
Traumatic brain injury (TBI) is the primary cause of child mortality and disability worldwide. It can result in severe complications that significantly impact children's quality of life, including post-traumatic epilepsy (PTE). An increasing number of studies suggest that TBI-induced oxidative stress and neuroinflammatory sequelae (especially, inflammation in the hippocampus region) may lead to the development of PTE. Due to the blood-brain barrier (BBB), typical systemic pharmacological therapy for TBI cannot deliver berberine (BBR) to the targeted location in the early stages of the injury, although BBR has strong anti-inflammatory properties. To break through this limitation, a microenvironment-responsive gelatin methacrylate (GM) hydrogel to deliver poly(propylene sulfide)60 (PPS60) and BBR (GM/PB) is developed for regulating neuroinflammatory reactions and removing reactive oxygen species (ROS) in the brain trauma microenvironment through PPS60. In situ injection of the GM/PB hydrogel efficiently bypasses the BBB and is administered directly to the surface of brain tissue. In post-traumatic brain injury models, GM/PB has the potential to mitigate oxidative stress and neuroinflammatory responses, facilitate functional recovery, and lessen seizing. These findings can lead to a new treatment for brain injuries, which minimizes complications and improves the quality of life.
Collapse
Affiliation(s)
- Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zeqi Zhao
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
- Department of Otolaryngology, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, No. 5 Leyuan Road, Daxing District, Beijing, 102627, P. R. China
| | - Lansheng Wang
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Chenglong Yue
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Yongqi Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhengwei Li
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhuang Sha
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Ministry of Education, 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
14
|
Yu J, Wu M, Shi M, Gong Y, Gao F, Gu H, Dang B. Up-regulation of BMAL1 by epigallocatechin-3-gallate improves neurological damage in SBI rats. Brain Res Bull 2024; 215:111033. [PMID: 39032586 DOI: 10.1016/j.brainresbull.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Brain Muscle ARNT-Like Protein 1 (BMAL1) suppresses oxidative stress in brain injury during surgery. Epigallocatechin-3-gallate (EGCG), a monomer in green tea, has been identified as an antioxidant and a potential agonist for BMAL1. In this work, the mechanism by which BMAL1 is regulated was investigated, as well as the therapeutic effect of EGCG on surgically injured rats. The pathological environment after brain injury during surgery was simulated by excising the right frontal lobe of rats. Rats received an intraperitoneal injection of EGCG immediately after surgery. Neurological scores and cerebral edema were recorded after surgery. Fluoro-Jade C staining, TUNEL staining, western blot, and lipid peroxidation analyses were conducted 3 days later. Here we show that the endogenous BMAL1 level decreased after brain injury. Postoperative administration of EGCG up-regulated the content of BMAL1 around the cerebral cortex, reduced the oxidative stress level, reduced neuronal apoptosis and the number of degenerated neurons, alleviated cerebral edema, and improved neurological scores in rats. This suggests that BMAL1 is an effective target for treating surgical brain injury, as well as that EGCG may be a promising agent for alleviating postoperative brain injury.
Collapse
Affiliation(s)
- Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China.
| |
Collapse
|
15
|
Ge Y, Wu X, Cai Y, Hu Q, Wang J, Zhang S, Zhao B, Cui W, Wu Y, Wang Q, Feng T, Liu H, Qu Y, Ge S. FNDC5 prevents oxidative stress and neuronal apoptosis after traumatic brain injury through SIRT3-dependent regulation of mitochondrial quality control. Cell Death Dis 2024; 15:364. [PMID: 38802337 PMCID: PMC11130144 DOI: 10.1038/s41419-024-06748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Mitochondrial dysfunction and oxidative stress are important mechanisms for secondary injury after traumatic brain injury (TBI), which result in progressive pathophysiological exacerbation. Although the Fibronectin type III domain-containing 5 (FNDC5) was reported to repress oxidative stress by retaining mitochondrial biogenesis and dynamics, its possible role in the secondary injury after TBI remain obscure. In present study, we observed that the level of serum irisin (the cleavage product of FNDC5) significantly correlated with the neurological outcomes of TBI patients. Knockout of FNDC5 increased the lesion volume and exacerbated apoptosis and neurological deficits after TBI in mice, while FNDC5 overexpression yielded a neuroprotective effect. Moreover, FNDC5 deficiency disrupted mitochondrial dynamics and function. Activation of Sirtuin 3 (SIRT3) alleviated FNDC5 deficiency-induced disruption of mitochondrial dynamics and bioenergetics. In neuron-specific SIRT3 knockout mice, FNDC5 failed to attenuate TBI-induced mitochondrial damage and brain injuries. Mechanically, FNDC5 deficiency led to reduced SIRT3 expression via enhanced ubiquitin degradation of transcription factor Nuclear factor erythroid 2-related factor 2 (NRF2), which contributed to the hyperacetylation and inactivation of key regulatory proteins of mitochondrial dynamics and function, including OPA1 and SOD2. Finally, engineered RVG29-conjugated nanoparticles were generated to selectively and efficiently deliver irisin to the brain of mice, which yielded a satisfactory curative effect against TBI. In conclusion, FNDC5/irisin exerts a protective role against acute brain injury by promoting SIRT3-dependent mitochondrial quality control and thus represents a potential target for neuroprotection after TBI.
Collapse
Affiliation(s)
- Yufeng Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yaning Cai
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shenghao Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Baocheng Zhao
- Department of Ambulant Clinic, Political Work Department of People's Republic of China Central Military Commission, Beijing, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yang Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Tian Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
16
|
Arabshahi S, Chung S, Alivar A, Amorapanth PX, Flanagan SR, Foo FYA, Laine AF, Lui YW. A Comprehensive and Broad Approach to Resting-State Functional Connectivity in Adult Patients with Mild Traumatic Brain Injury. AJNR Am J Neuroradiol 2024; 45:637-646. [PMID: 38604737 PMCID: PMC11288538 DOI: 10.3174/ajnr.a8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND AND PURPOSE Several recent works using resting-state fMRI suggest possible alterations of resting-state functional connectivity after mild traumatic brain injury. However, the literature is plagued by various analysis approaches and small study cohorts, resulting in an inconsistent array of reported findings. In this study, we aimed to investigate differences in whole-brain resting-state functional connectivity between adult patients with mild traumatic brain injury within 1 month of injury and healthy control subjects using several comprehensive resting-state functional connectivity measurement methods and analyses. MATERIALS AND METHODS A total of 123 subjects (72 patients with mild traumatic brain injury and 51 healthy controls) were included. A standard fMRI preprocessing pipeline was used. ROI/seed-based analyses were conducted using 4 standard brain parcellation methods, and the independent component analysis method was applied to measure resting-state functional connectivity. The fractional amplitude of low-frequency fluctuations was also measured. Group comparisons were performed on all measurements with appropriate whole-brain multilevel statistical analysis and correction. RESULTS There were no significant differences in age, sex, education, and hand preference between groups as well as no significant correlation between all measurements and these potential confounders. We found that each resting-state functional connectivity measurement revealed various regions or connections that were different between groups. However, after we corrected for multiple comparisons, the results showed no statistically significant differences between groups in terms of resting-state functional connectivity across methods and analyses. CONCLUSIONS Although previous studies point to multiple regions and networks as possible mild traumatic brain injury biomarkers, this study shows that the effect of mild injury on brain resting-state functional connectivity has not survived after rigorous statistical correction. A further study using subject-level connectivity analyses may be necessary due to both subtle and variable effects of mild traumatic brain injury on brain functional connectivity across individuals.
Collapse
Affiliation(s)
- Soroush Arabshahi
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Sohae Chung
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Alaleh Alivar
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| | - Prin X Amorapanth
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Steven R Flanagan
- Rehabilitation Medicine (P.X.A., S.R.F.), NYU Grossman School of Medicine, New York, New York
| | - Farng-Yang A Foo
- Department of Neurology (F.-Y.A.F.), NYU Grossman School of Medicine, New York, New York
| | - Andrew F Laine
- From Biomedical Engineering Department (S.A., A.F.L.), Columbia University, New York, New York
| | - Yvonne W Lui
- Departments of Radiology (S.C., A.A., Y.W.L.), NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
17
|
Zheng F, Li W, Su S, Hui Q. Annexin A1 conveys neuroprotective function via inhibiting oxidative stress in diffuse axonal injury of rats. Neuroreport 2024; 35:466-475. [PMID: 38526918 DOI: 10.1097/wnr.0000000000002030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diffuse axonal injury (DAI) is a critical pathological facet of traumatic brain injury (TBI). Oxidative stress plays a significant role in the progress of DAI. Annexin A1 (AnxA1) has been demonstrated to benefit from recovery of neurofunctional outcomes after TBI. However, whether AnxA1 exhibits neuronal protective function by modulating oxidative stress in DAI remains unknown. Expression of AnxA1 was evaluated via real-time PCR and western blotting in rat brainstem after DAI. The neurological effect of AnxA1 following DAI through quantification of modified neurologic severity score (mNSS) was compared between wild-type and AnxA1-knockout rats. Brain edema and neuronal apoptosis, as well as expression of oxidative factors and inflammatory cytokines, were analyzed between wild-type and AnxA1 deficiency rats after DAI. Furthermore, mNSS, oxidative and inflammatory cytokines were assayed after timely administration of recombinant AnxA1 for DAI rats. In the brainstem of DAI, the expression of AnxA1 remarkably increased. Ablation of AnxA1 increased the mNSS score and brain water content of rats after DAI. Neuron apoptosis in the brainstem after DAI was exaggerated by AnxA1 deficiency. In addition, AnxA1 deficiency significantly upregulated the level of oxidative and inflammatory factors in the brainstem of DAI rats. Moreover, mNSS decreased by AnxA1 treatment in rats following DAI. Expression of oxidative and inflammatory molecules in rat brainstem subjected to DAI inhibited by AnxA1 administration. AnxA1 exhibited neuronal protective function in the progression of DAI mainly dependent on suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Weixin Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University
| | - Shaobo Su
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
18
|
Murase M, Yasuda S, Sawano M. Prediction for the prognosis of diffuse axonal injury using automated pupillometry. Clin Neurol Neurosurg 2024; 240:108244. [PMID: 38520767 DOI: 10.1016/j.clineuro.2024.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Previous studies have reported various predictive indicators of diffuse axonal injury (DAI), but no consensus has not been reached. Although the efficiency of automated pupillometry in patients with consciousness disorder has been widely reported, there are few reports of its use in patients with DAI. This study aimed to investigate the significance of pupillary findings in predicting the prognosis of DAI. PATIENTS AND METHODS We included patients admitted to our center with a diagnosis of DAI from June 1, 2021 to June 30, 2022. Pupillary findings in both eyes were quantitatively measured by automated pupillometry every 2 hours after admission. We statistically examined the correlations between automated pupillometry parameters, the patients' characteristics, and outcomes such as the Glasgow Outcome Scale Extended (GOSE) after 6 months from injury, the time to follow command, and so on. RESULTS Among 22 patients included in this study, five had oculomotor nerve palsy. Oculomotor nerve palsy was correlated with all outcomes, whereas Marshall computed tomography (CT) classification, Injury severity score (ISS) and DAI grade were correlated with few outcomes. Some of the automated pupillometry parameters were significantly correlated with GOSE at 6 months after injury, and many during the first 24 hours of measurement were correlated with the time to follow command. Most of these results were not affected by adjustment using sedation period, ISS or Marshall CT classification. A subgroup analysis of patients without oculomotor nerve palsy revealed that many of the automated pupillometry parameters during the first 24 hours of measurement were significantly correlated with most of the outcomes. The cutoff values that differentiated a good prognosis (GOSE 5-8) from a poor prognosis (GOSE 1-4) were constriction velocity (CV) 1.43 (AUC = 0.81(0.62-1), p = 0.037) and maximum constriction velocity (MCV) 2.345 (AUC = 0.78 (0.58-0.98), p = 0.04). The cutoff values that differentiated the time to follow command into within 7 days and over 8 days were percentage of constriction 8 (AUC = 0.89 (0.68-1), p = 0.011), CV 0.63 (AUC = 0.92 (0.78-1), p = 0.013), MCV 0.855 (AUC = 0.9 (0.74-1), p = 0.017) and average dilation velocity 0.175 (AUC = 0.95 (0.86-1), p = 0.018). CONCLUSIONS The present results indicate that pupillary findings in DAI are a strong predictive indicator of the prognosis, and that quantitative measurement of them using automated pupillometry could facilitate enhanced prediction for the prognosis of DAI.
Collapse
Affiliation(s)
- Makoto Murase
- Department of Emergency Medicine and Critical Care, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama 350-8550, Japan.
| | - Shinichi Yasuda
- Department of Emergency Medicine and Critical Care, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama 350-8550, Japan
| | - Makoto Sawano
- Department of Emergency Medicine and Critical Care, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama 350-8550, Japan
| |
Collapse
|
19
|
Syzdykbayev M, Kazymov M, Aubakirov M, Kurmangazina A, Kairkhanov E, Kazangapov R, Bryzhakhina Z, Imangazinova S, Sheinin A. A Modern Approach to the Treatment of Traumatic Brain Injury. MEDICINES (BASEL, SWITZERLAND) 2024; 11:10. [PMID: 38786549 PMCID: PMC11123131 DOI: 10.3390/medicines11050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Background: Traumatic brain injury manifests itself in various forms, ranging from mild impairment of consciousness to severe coma and death. Traumatic brain injury remains one of the leading causes of morbidity and mortality. Currently, there is no therapy to reverse the effects associated with traumatic brain injury. New neuroprotective treatments for severe traumatic brain injury have not achieved significant clinical success. Methods: A literature review was performed to summarize the recent interdisciplinary findings on management of traumatic brain injury from both clinical and experimental perspective. Results: In the present review, we discuss the concepts of traditional and new approaches to treatment of traumatic brain injury. The recent development of different drug delivery approaches to the central nervous system is also discussed. Conclusions: The management of traumatic brain injury could be aimed either at the pathological mechanisms initiating the secondary brain injury or alleviating the symptoms accompanying the injury. In many cases, however, the treatment should be complex and include a variety of medical interventions and combination therapy.
Collapse
Affiliation(s)
- Marat Syzdykbayev
- Department of Hospital Surgery, Anesthesiology and Reanimatology, Semey Medical University, Semey 071400, Kazakhstan
| | - Maksut Kazymov
- Department of General Practitioners, Semey Medical University, Semey 071400, Kazakhstan
| | - Marat Aubakirov
- Department of Pediatric Surgery, Semey Medical University, Semey 071400, Kazakhstan
| | - Aigul Kurmangazina
- Committee for Medical and Pharmaceutical Control of the Ministry of Health of the Republic of Kazakhstan for East Kazakhstan Region, Ust-Kamenogorsk 070004, Kazakhstan
| | - Ernar Kairkhanov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Rustem Kazangapov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Zhanna Bryzhakhina
- Department Psychiatry and Narcology, Semey Medical University, Semey 071400, Kazakhstan
| | - Saule Imangazinova
- Department of Therapy, Astana Medical University, Astana 010000, Kazakhstan
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
20
|
Dai W, Guo X, Cai W, Zheng Y, Chen Y, Zhu Y, Tian X. Preliminary study of the consciousness-promotion mechanism of electroacupuncture in comatose patients with diffuse axonal injuries. J Neurosurg Sci 2024; 68:186-194. [PMID: 33709661 DOI: 10.23736/s0390-5616.21.05236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diffuse axonal injury (DAI) accounts for 30-40% of total neurotrauma cases, and the majority among them manifest with consciousness disturbance. At present, the understanding of the treatment of coma and awakening in patients with DAIs is still limited. This study is characterized by the use of electroacupuncture along with conventional Western medicine to promote consciousness more effectively in comatose patients with DAIs, shorten their time spent in a coma, and gain time for more favorable treatments during follow-up rehabilitation in order to improve the cure rate, reduce the morbidity rate, and achieve better therapeutic effects. METHODS In this randomized controlled study, 145 comatose patients with DAIs (type III) were divided into the treatment group (N.=71) and control group (N.=74). The patients in the control group were treated with conventional Western medicine, while those in the treatment group were treated with both electroacupuncture and conventional treatment. The Glasgow Coma Scale (GCS) scores and consciousness-promotion rates of both groups were observed before treatment as well as 10, 20, and 30 days after treatment. Meanwhile, serum acetylcholinesterase E (AchE) concentrations in both groups were measured with ELISA, while AchE activity was determined with the rate method. Correlations between GCS score, AchE concentration, and AchE activity in the treatment group were analyzed by using the stepwise multiple regression method. RESULTS The GCS scores in the treatment group showed significant increases after the first, second, and third courses of treatment when compared to the pre-treatment scores (P<0.05). After 1 course of treatment, the GCS scores in the control group were not statistically significantly different compared to the pre-treatment scores (P>0.05), whereas after 2 and 3 courses of treatment, the differences were of greater statistical significance (P<0.05). Statistically significant differences between the two groups were found in GCS scores in the same course of treatment (P<0.05). The consciousness-promotion rates between the two groups after the same treatment course were statistically significantly different (P<0.05). Both the standardized regression coefficients and partial correlation coefficients showed that AchE concentration had a certain influence on GCS score (|Beta|=0.3601; r Y2.1=0.726). CONCLUSIONS Conventional Western medicine combined with electroacupuncture treatment may promote the consciousness of patients with DAIs and shorten the amount of time they spend comatose. Furthermore, the neurotransmitter AchE may play a role in the pathophysiological mechanism of consciousness promotion.
Collapse
Affiliation(s)
- Weichuan Dai
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China -
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Wenhua Cai
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yanfei Zheng
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yingxian Chen
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yuyan Zhu
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Xiayang Tian
- Department of Rehabilitation, Jinjiang Municipal Hospital, Jinjiang, China
| |
Collapse
|
21
|
Mi Z, Ma J, Zeh DJ, Rose ME, Henchir JJ, Liu H, Ma X, Cao G, Dixon CE, Graham SH. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. Exp Neurol 2024; 373:114650. [PMID: 38092186 PMCID: PMC10939891 DOI: 10.1016/j.expneurol.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Xiecheng Ma
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Guodong Cao
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Lim L. Traumatic Brain Injury Recovery with Photobiomodulation: Cellular Mechanisms, Clinical Evidence, and Future Potential. Cells 2024; 13:385. [PMID: 38474349 PMCID: PMC10931349 DOI: 10.3390/cells13050385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic Brain Injury (TBI) remains a significant global health challenge, lacking effective pharmacological treatments. This shortcoming is attributed to TBI's heterogeneous and complex pathophysiology, which includes axonal damage, mitochondrial dysfunction, oxidative stress, and persistent neuroinflammation. The objective of this study is to analyze transcranial photobiomodulation (PBM), which employs specific red to near-infrared light wavelengths to modulate brain functions, as a promising therapy to address TBI's complex pathophysiology in a single intervention. This study reviews the feasibility of this therapy, firstly by synthesizing PBM's cellular mechanisms with each identified TBI's pathophysiological aspect. The outcomes in human clinical studies are then reviewed. The findings support PBM's potential for treating TBI, notwithstanding variations in parameters such as wavelength, power density, dose, light source positioning, and pulse frequencies. Emerging data indicate that each of these parameters plays a role in the outcomes. Additionally, new research into PBM's effects on the electrical properties and polymerization dynamics of neuronal microstructures, like microtubules and tubulins, provides insights for future parameter optimization. In summary, transcranial PBM represents a multifaceted therapeutic intervention for TBI with vast potential which may be fulfilled by optimizing the parameters. Future research should investigate optimizing these parameters, which is possible by incorporating artificial intelligence.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON M4Y 2G8, Canada
| |
Collapse
|
23
|
Shan J, Shi R, Hazra R, Hu X. Regulatory T lymphocytes in traumatic brain injury. Neurochem Int 2024; 173:105660. [PMID: 38151109 PMCID: PMC10872294 DOI: 10.1016/j.neuint.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Traumatic brain injury (TBI) presents a significant global health challenge with no effective therapies developed to date. Regulatory T lymphocytes (Tregs) have recently emerged as a potential therapy due to their critical roles in maintaining immune homeostasis, reducing inflammation, and promoting brain repair. Following TBI, fluctuations in Treg populations and shifts in their functionality have been noted. However, the precise impact of Tregs on the pathophysiology of TBI remains unclear. In this review, we discuss recent advances in understanding the intricate roles of Tregs in TBI and other brain diseases. Increased knowledge about Tregs may facilitate their future application as an immunotherapy target for TBI treatment.
Collapse
Affiliation(s)
- Jiajing Shan
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Rimi Hazra
- Department of Medicine, Pittsburgh Heart Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
24
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
25
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Dangare MS, Saklecha A, Harjpal P. A Case Report Emphasizing an Early Approach in a Patient With Diffuse Axonal Injury. Cureus 2024; 16:e52750. [PMID: 38389626 PMCID: PMC10882254 DOI: 10.7759/cureus.52750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Diffuse axonal injury (DAI) is a severe and frequently life-altering form of traumatic brain injury that is brought on by forces of rapid acceleration as well as deceleration impacting the brain. DAI primarily stems from mechanical forces that lead to the widespread disruption of axons throughout the brain. Unlike focal injuries that affect a specific brain region, DAI manifests as multifocal axonal damage, often impairing vital neural connections. This injury occurs due to shear and tensile forces during traumatic events, such as car accidents, falls, and sports-related incidents. This current case report includes a 19-year-old male who had a fall from his bike and was hospitalised with brain trauma. A Magnetic resonance imaging (MRI) scan was done, which revealed a case of DAI, and a computed tomography (CT) scan of the brain revealed the extra-calvarial soft tissue swelling in the left parietal region. Small haemorrhagic contusions involved the right ganglio-capsular region. Several integrative techniques, including joint approximation, proprioceptive neuromuscular facilitation (PNF) rhythmic initiation, D1 flexion-extension, and patient education, were used to manage the patient. The patient's development was evaluated using outcome measures, such as the functional independence measure (FIM) and the Glasgow coma scale (GCS). Thus, we conclude that completing physiotherapy exercises consistently helps patients achieve their highest level of functional independence and also enhances their quality of life.
Collapse
Affiliation(s)
- Mansee S Dangare
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akshaya Saklecha
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Harjpal
- Department of Neuro-Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
27
|
Liu Z, Wang X, Wu Z, Yin G, Chu H, Zhao P. HBOT has a better cognitive outcome than NBH for patients with mild traumatic brain injury: A randomized controlled clinical trial. Medicine (Baltimore) 2023; 102:e35215. [PMID: 37713814 PMCID: PMC10508512 DOI: 10.1097/md.0000000000035215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Normobaric hyperoxia (NBH) and hyperbaric oxygen therapy (HBOT) are effective treatment plan for traumatic brain injury (TBI). The aim of this study was to compare cognitive outcome after mild TBI between NBH and HBOT so as to provide a more suitable treatment strategy for patients with mild TBI. METHODS A prospective research was conducted between October 2017 and March 2023, enrolling patients with mild TBI (Glasgow coma scale score: 13-15 points) within 24 hours of injury in Cangzhou Central Hospital. Patients were randomized into 3 groups: group control (C), group NBH and group HBOT. The patients in HBOT group received hyperbaric oxygen therapy in high pressure oxygen chamber and patients in NBH group received hyperbaric oxygen therapy. at 0 minute before NBH or HBOT (T1), 0 minute after NBH or HBOT (T2) and 30 days after NBH or HBOT (T3), level of S100β, NSE, GFAP, HIF-1α, and MDA were determined by ELISA. At the same time, the detection was performed for MoCA and MMSE scores, along with rSO2. RESULTS The results showed both NBH and HBOT could improve the score of MoCA and MMSE, as well as the decrease the level of S100β, NSE, GFAP, HIF-1α, MDA, and rSO2 compared with group C. Furthermore, the patients in group HBOT have higher score of MoCA and MMSE and lower level of S100β, NSE, GFAP, HIF-1α, MDA, and rSO2. CONCLUSION Both NBH and HBOT can effectively improve cognitive outcome for patients with mild TBI by improving cerebral hypoxia and alleviating brain injury, while HBOT exert better effect than NBH.
Collapse
Affiliation(s)
- Zhiguo Liu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Xirui Wang
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Zhiyou Wu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Gangfeng Yin
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Haibin Chu
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| | - Pengyue Zhao
- The Third Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou City, China
| |
Collapse
|
28
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Pooleri A, Allen G, Morales A. Altered Mental Status in a Patient With Diffuse Axonal Injury and Bipolar 1 Disorder: A Clinical Vignette. Am J Phys Med Rehabil 2023; 102:e123-e126. [PMID: 36882300 DOI: 10.1097/phm.0000000000002226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Anand Pooleri
- From the Department of Physical Medicine and Rehabilitation, Brody School of Medicine at East Carolina University, Greenville, North Carolina (AP, AM); and Brody School of Medicine at East Carolina University, Greenville, North Carolina (GA)
| | | | | |
Collapse
|
30
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
31
|
Chaumeil M, Guglielmetti C, Qiao K, Tiret B, Ozen M, Krukowski K, Nolan A, Paladini MS, Lopez C, Rosi S. Hyperpolarized 13C metabolic imaging detects long-lasting metabolic alterations following mild repetitive traumatic brain injury. RESEARCH SQUARE 2023:rs.3.rs-3166656. [PMID: 37645937 PMCID: PMC10462249 DOI: 10.21203/rs.3.rs-3166656/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Career athletes, active military, and head trauma victims are at increased risk for mild repetitive traumatic brain injury (rTBI), a condition that contributes to the development of epilepsy and neurodegenerative diseases. Standard clinical imaging fails to identify rTBI-induced lesions, and novel non-invasive methods are needed. Here, we evaluated if hyperpolarized 13C magnetic resonance spectroscopic imaging (HP 13C MRSI) could detect long-lasting changes in brain metabolism 3.5 months post-injury in a rTBI mouse model. Our results show that this metabolic imaging approach can detect changes in cortical metabolism at that timepoint, whereas multimodal MR imaging did not detect any structural or contrast alterations. Using Machine Learning, we further show that HP 13C MRSI parameters can help classify rTBI vs. Sham and predict long-term rTBI-induced behavioral outcomes. Altogether, our study demonstrates the potential of metabolic imaging to improve detection, classification and outcome prediction of previously undetected rTBI.
Collapse
Affiliation(s)
| | | | - Kai Qiao
- University of California, San Francisco
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lu Y, Chen Y, Xu S, Wei L, Zhang Y, Chen W, Liu M, Zhong C. HDAC inhibitor attenuates rat traumatic brain injury induced neurological impairments. Heliyon 2023; 9:e18485. [PMID: 37560709 PMCID: PMC10407045 DOI: 10.1016/j.heliyon.2023.e18485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Oxidative stress plays an important role in the secondary neuronal damage after traumatic brain injury (TBI). Inhibition of histone deacetylases (HDACs) has been shown to reduce reactive oxygen species (ROS) production and NADPH oxidases (Nox) transcription. Vorinostat is an HDAC inhibitor. This study investigated the influence of vorinostat on neurological impairments in a rat model of TBI induced by lateral fluid percussion injury (LFPI). Different concentrations of vorinostat (5, 25, and 50 mg/kg) were administered via intraperitoneal injection. Neurological deficits were evaluated by modified neurological severity scoring (mNSS). Evans blue extravasation was performed to assess blood-brain barrier (BBB) permeability. Morris water maze assay was performed to evaluate cognitive impairments. Protein levels were evaluated through ELISA and Western blot. Vorinostat was found to attenuate TBI induced brain edema and BBB permeability in rats. Vorinostat also alleviated TBI-induced neurological impairments and anxiety-like behavior in rats. Vorinostat attenuated TBI induced apoptosis and oxidative stresses in ipsilateral injury cortical tissue. Vorinostat inhibited HDAC1, HDAC3, and Nox4 while activated AMPK signaling in ipsilateral injury cortical tissue. In conclusion, administration of vorinostat alleviates the secondary damage of TBI in rat model. The oxidative stress in the ipsilateral injury cortical tissues is decreased by the inhibition of Nox4 expression and the activation of AMPK.
Collapse
Affiliation(s)
| | | | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei Chen
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
33
|
Kwong JMK, Caprioli J, Lee JCY, Song Y, Yu FJ, Bian J, Sze YH, Li KK, Do CW, To CH, Lam TC. Differential Responses of Retinal Neurons and Glia Revealed via Proteomic Analysis on Primary and Secondary Retinal Ganglion Cell Degeneration. Int J Mol Sci 2023; 24:12109. [PMID: 37569482 PMCID: PMC10418669 DOI: 10.3390/ijms241512109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
To explore the temporal profile of retinal proteomes specific to primary and secondary retinal ganglion cell (RGC) loss. Unilateral partial optic nerve transection (pONT) was performed on the temporal side of the rat optic nerve. Temporal and nasal retinal samples were collected at 1, 4 and 8 weeks after pONT (n = 4 each) for non-biased profiling with a high-resolution hybrid quadrupole time-of-flight mass spectrometry running on label-free SWATHTM acquisition (SCIEX). An information-dependent acquisition ion library was generated using ProteinPilot 5.0 and OneOmics cloud bioinformatics. Combined proteome analysis detected 2531 proteins with a false discovery rate of <1%. Compared to the nasal retina, 10, 25 and 61 significantly regulated proteins were found in the temporal retina at 1, 4, and 8 weeks, respectively (p < 0.05, FC ≥ 1.4 or ≤0.7). Eight proteins (ALDH1A1, TRY10, GFAP, HBB-B1, ALB, CDC42, SNCG, NEFL) were differentially expressed for at least two time points. The expressions of ALDH1A1 and SNCG at nerve fibers were decreased along with axonal loss. Increased ALDH1A1 localization in the inner nuclear layer suggested stress response. Increased GFAP expression demonstrated regional reactivity of astrocytes and Muller cells. Meta-analysis of gene ontology showed a pronounced difference in endopeptidase and peptidase inhibitor activity. Temporal proteomic profiling demonstrates established and novel protein targets associated with RGC damage.
Collapse
Affiliation(s)
- Jacky M. K. Kwong
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joseph Caprioli
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Joanne C. Y. Lee
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Yifan Song
- Ophthalmology, Stein Eye Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.C.); (J.C.Y.L.); (Y.S.)
| | - Feng-Juan Yu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingfang Bian
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying-Hon Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - King-Kit Li
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
| | - Chi-Wai Do
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Chi-Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
| | - Thomas Chuen Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; (F.-J.Y.); (J.B.); (Y.-H.S.); (K.-K.L.); (C.-W.D.); (C.-H.T.)
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), The Hong Kong Polytechnic University, 17W, Hong Kong Science Park, Hong Kong, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518052, China
| |
Collapse
|
34
|
Torrens JN, Hetzer SM, Evanson NK. Brief Oxygen Exposure after Traumatic Brain Injury Hastens Recovery and Promotes Adaptive Chronic Endoplasmic Reticulum Stress Responses. Int J Mol Sci 2023; 24:9831. [PMID: 37372978 PMCID: PMC10298247 DOI: 10.3390/ijms24129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health concern, particularly in adolescents who have a higher mortality and incidence of visual pathway injury compared to adult patients. Likewise, we have found disparities between adult and adolescent TBI outcomes in rodents. Most interestingly, adolescents suffer a prolonged apneic period immediately post-injury, leading to higher mortality; therefore, we implemented a brief oxygen exposure paradigm to circumvent this increased mortality. Adolescent male mice experienced a closed-head weight-drop TBI and were then exposed to 100% O2 until normal breathing returned or recovered in room air. We followed mice for 7 and 30 days and assessed their optokinetic response; retinal ganglion cell loss; axonal degeneration; glial reactivity; and retinal ER stress protein levels. O2 reduced adolescent mortality by 40%, improved post-injury visual acuity, and reduced axonal degeneration and gliosis in optical projection regions. ER stress protein expression was altered in injured mice, and mice given O2 utilized different ER stress pathways in a time-dependent manner. Finally, O2 exposure may be mediating these ER stress responses through regulation of the redox-sensitive ER folding protein ERO1α, which has been linked to a reduction in the toxic effects of free radicals in other animal models of ER stress.
Collapse
Affiliation(s)
- Jordyn N. Torrens
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Shelby M. Hetzer
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nathan K. Evanson
- Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
35
|
Angelova P, Kehayov I, Ordonez-Rubiano EG, Figueredo LF, Zlatareva D. Long-term Tractography Evaluation of Corpus Callosum Impairment After Severe Traumatic Brain Injury in Patients With Isolated Intraventricular Hemorrhage on Admission CT: Two Illustrative Cases and a Literature Review. Korean J Neurotrauma 2023; 19:249-257. [PMID: 37431372 PMCID: PMC10329887 DOI: 10.13004/kjnt.2023.19.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/12/2023] Open
Abstract
Severe traumatic brain injury (TBI) is often associated with diffuse axonal injury. Diffuse axonal injury affecting the corpus callosum may present with intraventricular hemorrhage on baseline computed tomography (CT) scan. Posttraumatic corpus callosum damage is a chronic condition that can be diagnosed over the long term using various magnetic resonance imaging (MRI) sequences. Here, we present two cases of severe survivors of TBI with isolated intraventricular hemorrhage detected on an initial CT scan. After acute trauma management, long-term follow-up was performed. Diffusion tensor imaging and subsequent tractography revealed a significant decrease in the fractional anisotropy values and the number of corpus callosum fibers compared with those in healthy control patients. This study presents a possible correlation between traumatic intraventricular hemorrhage on admission CT and long-term corpus callosum impairment detected on MRI in patients with severe head injury by presenting demonstrative cases and conducting a literature review.
Collapse
Affiliation(s)
- Polina Angelova
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ivo Kehayov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Edgar G. Ordonez-Rubiano
- Department of Neurosurgery, Hospital de San José – Sociedad de Cirugía de Bogotá, Fundación Universitaria de Ciencias de la Salud, Bogotá D.C., Colombia
| | - Luisa F. Figueredo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Dora Zlatareva
- Department of Diagnostic Imaging, Medical University of Sofia, Sofia, Bulgaria
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
36
|
Brand J, McDonald SJ, Gawryluk JR, Christie BR, Shultz SR. Stress and traumatic brain injury: An inherent bi-directional relationship with temporal and synergistic complexities. Neurosci Biobehav Rev 2023; 151:105242. [PMID: 37225064 DOI: 10.1016/j.neubiorev.2023.105242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
Traumatic brain injury (TBI) and stress are prevalent worldwide and can both result in life-altering health problems. While stress often occurs in the absence of TBI, TBI inherently involves some element of stress. Furthermore, because there is pathophysiological overlap between stress and TBI, it is likely that stress influences TBI outcomes. However, there are temporal complexities in this relationship (e.g., when the stress occurs) that have been understudied despite their potential importance. This paper begins by introducing TBI and stress and highlighting some of their possible synergistic mechanisms including inflammation, excitotoxicity, oxidative stress, hypothalamic-pituitary-adrenal axis dysregulation, and autonomic nervous system dysfunction. We next describe different temporal scenarios involving TBI and stress and review the available literature on this topic. In doing so we find initial evidence that in some contexts stress is a highly influential factor in TBI pathophysiology and recovery, and vice versa. We also identify important knowledge gaps and suggest future research avenues that will increase our understanding of this inherent bidirectional relationship and could one day result in improved patient care.
Collapse
Affiliation(s)
- Justin Brand
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Stuart J McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Sandy R Shultz
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Neuroscience, Monash University, Melbourne, Victoria, Australia; Faculty of Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada.
| |
Collapse
|
37
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
38
|
Torrens JN, Hetzer SM, Evanson NK. Brief oxygen exposure after traumatic brain injury speeds recovery and promotes adaptive chronic endoplasmic reticulum stress responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540060. [PMID: 37214818 PMCID: PMC10197672 DOI: 10.1101/2023.05.09.540060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Traumatic brain injury (TBI) is a major public health concern particularly in adolescents who have a higher mortality and incidence of visual pathway injury compared to adult patients. Likewise, we have found disparities between adult and adolescent TBI outcomes in rodents. Most interestingly, adolescents suffer a prolonged apneic period immediately post injury leading to higher mortality; so, we implemented a brief oxygen exposure paradigm to circumvent this increased mortality. Adolescent male mice experienced a closed-head weight-drop TBI then were exposed to 100% O 2 until normal breathing returned or recovered in room air. We followed mice for 7- and 30-days and assessed their optokinetic response; retinal ganglion cell loss; axonal degeneration; glial reactivity; and retinal ER stress protein levels. O 2 reduced adolescent mortality by 40%, improved post-injury visual acuity, and reduced axonal degeneration and gliosis in optic projection regions. ER stress protein expression was altered in injured mice, and mice given O 2 utilized different ER-stress pathways in a time dependent manner. Finally, O 2 exposure may be mediating these ER stress responses through regulation of the redox-sensitive ER folding protein ERO1α, which has been linked to a reduction in the toxic effects of free radicals in other animal models of ER stress.
Collapse
|
39
|
Wang Y, Chen Q, Dang X, Lu W, Zhang X, Yan H, Niu S, Yan X, Yan J. A bibliometric analysis on traumatic brain injury in forensic medicine of a half-century (1972-2021). Front Neurol 2023; 14:913855. [PMID: 36816552 PMCID: PMC9932540 DOI: 10.3389/fneur.2023.913855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is among the most common injuries in forensic medicine, the identification of which is of particular importance in forensic practice. To reveal the circumstances and trends of TBI in the forensic field, we used the Web of Science (WoS) database for comprehensive retrieval. We made a metrological analysis of 1,089 papers in the past 50 years (1972-2021). The United States and Germany have the most forensic research on TBI. Diffuse axonal injury (DAI) has been the focus of attention for many years, and much effort has been devoted to its diagnosis in forensic pathology. Infants and children are the subgroups of most concern, especially in infant and child abuse cases. Research on identifying shaken baby syndrome has received increasing attention in recent years. Overall, our study provides a comprehensive list and analysis of the articles regarding TBI in legal medicine, which may shed light on recognizing the trends and research hotspots in this field.
Collapse
Affiliation(s)
- Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xingxing Dang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wanqing Lu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xinran Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China,School of Basic Medical Science, Xinjiang Medical University, Urumqi, China,*Correspondence: Jie Yan ✉
| |
Collapse
|
40
|
Nozari A, Sharma A, Wang Z, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Wiklund L, Sharma HS. Co-administration of Nanowired Oxiracetam and Neprilysin with Monoclonal Antibodies to Amyloid Beta Peptide and p-Tau Thwarted Exacerbation of Brain Pathology in Concussive Head Injury at Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:271-313. [PMID: 37480464 DOI: 10.1007/978-3-031-32997-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Environmental temperature adversely affects the outcome of concussive head injury (CHI)-induced brain pathology. Studies from our laboratory showed that animals reared at either cold environment or at hot environment exacerbate brain pathology following CHI. Our previous experiments showed that nanowired delivery of oxiracetam significantly attenuated CHI-induced brain pathology and associated neurovascular changes. Military personnel are the most susceptible to CHI caused by explosion, blasts, missile or blunt head trauma leading to lifetime functional and cognitive impairments affecting the quality of life. Severe CHI leads to instant death and/or lifetime paralysis. Military personnel engaged in combat operations are often subjected to extreme high or low environmental temperature zones across the globe. Thus, further exploration of novel therapeutic agents at cold or hot ambient temperatures following CHI are the need of the hour. CHI is also a major risk factor for developing Alzheimer's disease by enhancing amyloid beta peptide deposits in the brain. In this review, effect of hot environment on CHI-induced brain pathology is discussed. In addition, whether nanodelivery of oxiracetam together with neprilysin and monoclonal antibodies (mAb) to amyloid beta peptide and p-tau could lead to superior neuroprotection in CHI is explored. Our results show that co-administration of oxiracetam with neprilysin and mAb to AβP and p-tau significantly induced superior neuroprotection following CHI in hot environment, not reported earlier.
Collapse
Affiliation(s)
- Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Zhenguo Wang
- Shijiazhuang Pharma Group NBP Pharmaceutical Co., Ltd., Shijiazhuang, Hebei Province, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
NS1619 Alleviate Brain-Derived Extracellular Vesicle-Induced Brain Injury by Regulating BKca Channel and Nrf2/HO-1/NF-ĸB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2257427. [PMID: 36466093 PMCID: PMC9711983 DOI: 10.1155/2022/2257427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Brain induced extracellular vesicle (BDEV) elevates after traumatic brain injury (TBI) and contributes to secondary brain injury. However, the role of BDEV in TBI remains unclear. In this study, we determined the mechanisms of BDEV in brain injury and explored whether neuroprotective drug BKca channel opener NS1619 may attenuate BDEV-induced brain injury. We injected BDEV and lactadherin, respectively, to mimic the up and downregulation of BDEV after TBI and illustrated the role of BDEV in vivo. In vitro, the membrane potential and calcium concentration of HT-22, bEnd3, and BV-2 were measured by fluorescent staining. The effects of BDEV and NS1619 on HT-22 were evaluated by CCK-8, LDH release assay, Na+/k+-ATPase activity, JC-1 staining, DHE staining, and 4-HNE staining, respectively. The role of BDEV and NS1619 on the Nrf2/HO-1/p65 pathway was also evaluated in HT-22. Finally, we administrated TBI mice with NS1619 to clarify the role of NS1619 against BDEV in vivo. Our results suggested that BDEV aggravated and lactadherin mitigated TBI-induced EB leakage, brain edema, neuronal degeneration, apoptosis, ROS level, microgliosis, MMP-9 activity, and NF-κB activation. In vitro, BDEV-caused depolarized membrane potential and calcium overload were significantly attenuated by NS1619 in HT-22, bEnd3, and BV-2. BDEV markedly decreased cell viability, Na+/k+-ATPase activity, and caused mitochondrial dysregulation, oxidative stress, and NF-ĸB activation. NS1619 pretreatment alleviated above process and enhanced antioxidant system Nrf2/HO-1 in HT-22. Finally, NS1619 administration significantly inhibited neuroinflammation response and improved TBI outcome after TBI. NS1619 treatment also reduced 4-HNE content and NF-ĸB activation and enhanced Nrf2/HO-1 pathway. Our data showed that BDEV aggravated brain injury by perturbing cell membrane potential, calcium homeostasis, oxidative stress, and neuroinflammation. The BKca channel opener NS1619 attenuated BDEV-induced pathological process in vitro and in vivo by modulating the BKca channel and Nrf2/HO-1/NF-ĸB pathway.
Collapse
|
42
|
Fesharaki-Zadeh A. Oxidative Stress in Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232113000. [PMID: 36361792 PMCID: PMC9657447 DOI: 10.3390/ijms232113000] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI) remains a major cause of disability worldwide. It involves a complex neurometabolic cascade, including oxidative stress. The products of this manuscript is examining the underlying pathophysiological mechanism, including reactive oxygen species (ROS) and reactive nitrogen species (RNS). This process in turn leads to secondary injury cascade, which includes lipid peroxidation products. These reactions ultimately play a key role in chronic inflammation and synaptic dysfunction in a synergistic fashion. Although there are no FDA approved antioxidant therapy for TBI, there is a number of antioxidant therapies that have been tested and include free radical scavengers, activators of antioxidant systems, inhibitors of free radical generating enzymes, and antioxidant enzymes. Antioxidant therapies have led to cognitive and functional recovery post TBI, and they offer a promising treatment option for patients recovering from TBI. Current major challenges in treatment of TBI symptoms include heterogenous nature of injury, as well as access to timely treatment post injury. The inherent benefits of antioxidant therapies include minimally reported side effects, and relative ease of use in the clinical setting. The current review also provides a highlight of the more studied anti-oxidant regimen with applicability for TBI treatment with potential use in the real clinical setting.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Yale School of Medicine, Department of Neurology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
43
|
Li QY, Duan YW, Zhou YH, Chen SX, Li YY, Zang Y. NLRP3-Mediated Piezo1 Upregulation in ACC Inhibitory Parvalbumin-Expressing Interneurons Is Involved in Pain Processing after Peripheral Nerve Injury. Int J Mol Sci 2022; 23:13035. [PMID: 36361825 PMCID: PMC9655876 DOI: 10.3390/ijms232113035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The anterior cingulate cortex (ACC) is particularly critical for pain information processing. Peripheral nerve injury triggers neuronal hyper-excitability in the ACC and mediates descending facilitation to the spinal dorsal horn. The mechanically gated ion channel Piezo1 is involved in the transmission of pain information in the peripheral nervous system. However, the pain-processing role of Piezo1 in the brain is unknown. In this work, we found that spared (sciatic) nerve injury (SNI) increased Piezo1 protein levels in inhibitory parvalbumin (PV)-expressing interneurons (PV-INs) but not in glutaminergic CaMKⅡ+ neurons, in the bilateral ACC. A reduction in the number of PV-INs but not in the number of CaMKⅡ+ neurons and a significant reduction in inhibitory synaptic terminals was observed in the SNI chronic pain model. Further, observation of morphological changes in the microglia in the ACC showed their activated amoeba-like transformation, with a reduction in process length and an increase in cell body area. Combined with the encapsulation of Piezo1-positive neurons by Iba1+ microglia, the loss of PV-INs after SNI might result from phagocytosis by the microglia. In cellular experiments, administration of recombinant rat TNF-α (rrTNF) to the BV2 cell culture or ACC neuron primary culture elevated the protein levels of Piezo1 and NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3). The administration of the NLRP3 inhibitor MCC950 in these cells blocked the rrTNF-induced expression of caspase-1 and interleukin-1β (key downstream factors of the activated NLRP3 inflammasome) in vitro and reversed the SNI-induced Piezo1 overexpression in the ACC and alleviated SNI-induced allodynia in vivo. These results suggest that NLRP3 may be the key factor in causing Piezo1 upregulation in SNI, promoting an imbalance between ACC excitation and inhibition by inducing the microglial phagocytosis of PV-INs and, thereby, facilitating spinal pain transmission.
Collapse
Affiliation(s)
- Qiao-Yun Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Yi-Wen Duan
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Yao-Hui Zhou
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Shao-Xia Chen
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, 74 Zhongshan Road. 2, Guangzhou 510080, China
| |
Collapse
|
44
|
Costamagna D, Casters V, Beltrà M, Sampaolesi M, Van Campenhout A, Ortibus E, Desloovere K, Duelen R. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia. Cells 2022; 11:3351. [PMID: 36359747 PMCID: PMC9655384 DOI: 10.3390/cells11213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valérie Casters
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Els Ortibus
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
45
|
Ludwig R, Rippee M, D'Silva LJ, Radel J, Eakman AM, Morris J, Drerup M, Siengsukon C. Assessing Cognitive Behavioral Therapy for Insomnia to Improve Sleep Outcomes in Individuals With a Concussion: Protocol for a Delayed Randomized Controlled Trial. JMIR Res Protoc 2022; 11:e38608. [PMID: 36149737 PMCID: PMC9547332 DOI: 10.2196/38608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sleep disturbances post concussion have been associated with more frequent and severe concussion symptoms and may contribute to poorer recovery. Cognitive behavioral therapy for insomnia (CBT-I) is an effective treatment for insomnia; however, it remains unclear if this treatment method is effective in improving sleep outcomes and reducing concomitant postconcussion symptoms. OBJECTIVE The hypotheses for this study are that (1) CBT-I will improve sleep outcomes and (2) CBT-I will improve concomitant postconcussion symptoms. METHODS In total, 40 individuals who are within ≥4 weeks of postconcussion injury and have insomnia symptoms will be enrolled in this randomized controlled trial. Participants will be randomized into either a group that starts a 6-week CBT-I program immediately after baseline or a waitlist control group that starts CBT-I following a 6-week waiting period. All participants will be reassessed 6, 12, and 18 weeks after baseline. Standardized assessments measuring sleep outcomes, postconcussion symptoms, and mood will be used. Linear regression and t tests will be used for statistical analyses. RESULTS Enrollment of 40 participants was completed July 2022, data collection will be completed in November 2022, and publication of main findings is anticipated in May 2023. It is anticipated that participants experience reduced insomnia symptoms and postconcussion symptoms following CBT-I and these improvements will be retained for at least 12 weeks. Additionally, we expect to observe a positive correlation between sleep and postconcussion symptom improvement. CONCLUSIONS Successful completion of this pilot study will allow for a better understanding of the treatment of insomnia and postconcussion symptoms in individuals following a concussion. TRIAL REGISTRATION ClinicalTrials.gov NCT04885205; https://clinicaltrials.gov/ct2/show/NCT04885205. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38608.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael Rippee
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Linda J D'Silva
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jeff Radel
- Department of Occupational Therapy and Therapeutic Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron M Eakman
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States
| | - Jill Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michelle Drerup
- Cleveland Clinic, Neurological Institute, Sleep Disorders Center, Cleveland, OH, United States
| | - Catherine Siengsukon
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
46
|
UPLC/Q-TOF MS-Based Urine Metabonomics Study to Identify Diffuse Axonal Injury Biomarkers in Rat. DISEASE MARKERS 2022; 2022:2579489. [PMID: 36188427 PMCID: PMC9519327 DOI: 10.1155/2022/2579489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Diffuse axonal injury (DAI) represents a frequent traumatic brain injury (TBI) type, significantly contributing to the dismal neurological prognosis and high mortality in TBI patients. The increase in mortality can be associated with delayed and nonspecific initial symptoms in DAI patients. Additionally, the existing approaches for diagnosis and monitoring are either low sensitivity or high cost. Therefore, novel, reliable, and objective diagnostic markers should be developed to diagnose and monitor DAI prognosis. Urine is an optimal sample to detect biomarkers for DAI noninvasively. Therefore, the DAI rat model was established in this work. Meanwhile, the ultraperformance liquid chromatography quadrupole-time-of-flight hybrid mass spectrometry- (UPLC/Q-TOF MS-) untargeted metabolomics approach was utilized to identify the features of urine metabolomics to diagnose DAI. This work included 57 metabolites with significant alterations and 21 abnormal metabolic pathways from the injury groups. Three metabolites, viz., urea, butyric acid, and taurine, were identified as possible biomarkers to diagnose DAI based on the great fold changes (FCs) and biological functions during DAI. The present study detected several novel biomarkers for noninvasively diagnosing and monitoring DAI and helped understand the DAI-associated metabolic events.
Collapse
|
47
|
Ferrara M, Bertozzi G, Volonnino G, Di Fazio N, Frati P, Cipolloni L, La Russa R, Fineschi V. Glymphatic System a Window on TBI Pathophysiology: A Systematic Review. Int J Mol Sci 2022; 23:ijms23169138. [PMID: 36012401 PMCID: PMC9408940 DOI: 10.3390/ijms23169138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In recent years, the attention of the scientific world has focused on a clearance system of brain waste metabolites, called the glymphatic system, based on its similarity to the lymphatic system in peripheral tissue and the relevant role of the AQP4 glial channels and described for the first time in 2012. Consequently, numerous studies focused on its role in organ damage in cases of neuropathologies, including TBI. Methods: To evaluate the role that the glymphatic system has in the pathogenesis of TBI, on 23 March 2022, a systematic review of the literature according to PRISMA guidelines was carried out using the SCOPUS and Medline (via PubMed) databases, resulting in 12 articles after the selection process. Discussion and conclusion: The present review demonstrated that an alteration of AQP4 is associated with the accumulation of substances S100b, GFAP, and NSE, known markers of TBI in the forensic field. In addition, the alteration of the functionality of AQP4 favors edema, which, as already described, constitutes alterations of secondary brain injuries. Moreover, specific areas of the brain were demonstrated to be prone to alterations of the glymphatic pathway, suggesting their involvement in post-TBI damage. Therefore, further studies are mandatory. In this regard, a study protocol on cadavers is also proposed, based on the analyzed evidence.
Collapse
Affiliation(s)
- Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Bertozzi
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Cipolloni
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
| | - Raffaele La Russa
- Department of Clinical and Experimental Medicine, Section of Legal Medicine, University of Foggia, 71122 Foggia, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
48
|
Bruhns RP, Sulaiman MI, Gaub M, Bae EH, Davidson Knapp RB, Larson AR, Smith A, Coleman DL, Staatz WD, Sandweiss AJ, Joseph B, Hay M, Largent-Milnes TM, Vanderah TW. Angiotensin-(1-7) improves cognitive function and reduces inflammation in mice following mild traumatic brain injury. Front Behav Neurosci 2022; 16:903980. [PMID: 35990729 PMCID: PMC9386567 DOI: 10.3389/fnbeh.2022.903980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Traumatic brain injury (TBI) is a leading cause of disability in the US. Angiotensin 1-7 (Ang-1-7), an endogenous peptide, acts at the G protein coupled MAS1 receptors (MASR) to inhibit inflammatory mediators and decrease reactive oxygen species within the CNS. Few studies have identified whether Ang-(1-7) decreases cognitive impairment following closed TBI. This study examined the therapeutic effect of Ang-(1-7) on secondary injury observed in a murine model of mild TBI (mTBI) in a closed skull, single injury model. Materials and methods Male mice (n = 108) underwent a closed skull, controlled cortical impact injury. Two hours after injury, mice were administered either Ang-(1-7) (n = 12) or vehicle (n = 12), continuing through day 5 post-TBI, and tested for cognitive impairment on days 1-5 and 18. pTau, Tau, GFAP, and serum cytokines were measured at multiple time points. Animals were observed daily for cognition and motor coordination via novel object recognition. Brain sections were stained and evaluated for neuronal injury. Results Administration of Ang-(1-7) daily for 5 days post-mTBI significantly increased cognitive function as compared to saline control-treated animals. Cortical and hippocampal structures showed less damage in the presence of Ang-(1-7), while Ang-(1-7) administration significantly changed the expression of pTau and GFAP in cortical and hippocampal regions as compared to control. Discussion These are among the first studies to demonstrate that sustained administration of Ang-(1-7) following a closed-skull, single impact mTBI significantly improves neurologic outcomes, potentially offering a novel therapeutic modality for the prevention of long-term CNS impairment following such injuries.
Collapse
Affiliation(s)
- Ryan P. Bruhns
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Maha Ibrahim Sulaiman
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Michael Gaub
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Esther H. Bae
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Rachel B. Davidson Knapp
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Anna R. Larson
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Angela Smith
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Deziree L. Coleman
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - William D. Staatz
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Alexander J. Sandweiss
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Bellal Joseph
- Department of Surgery, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Meredith Hay
- Department of Physiology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine and Health Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
49
|
Xie N, Fan F, Jiang S, Hou Y, Zhang Y, Cairang N, Wang X, Meng X. Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154240. [PMID: 35691080 DOI: 10.1016/j.phymed.2022.154240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhodiola crenulate (R. crenulate), a famous Tibetan medicine, has been demonstrated to possess superiorly protective effects in high-altitude hypoxic brain injury (HHBI). However, its mechanisms on HHBI are still largely unknown. METHODS Herein, the protective effects and underlying mechanisms of R. crenulate on HHBI of BABL/c mice were explored through in vivo experiments. The mice model of HHBI was established using an animal hypobaric and hypoxic chamber. R. crenulate extract (RCE) (0.5, 1.0 and 2.0 g/kg) was given by gavage for 7 days. Pathological changes and neuronal viability of mice hippocampus and cortex were evaluated using H&E and Nissl staining, respectively. The brain water content (BWC) in mice was determined by calculating the ratio of dry to wet weight of brain tissue. And serum of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH-Px) and lactate dehydrogenase (LDH) were detected via commercial biochemical kits. Synchronously, the contents of total antioxidant capacity (T-AOC), lactic acid (LA), adenosine triphosphate (ATP), succinate dehydrogenase (SDH), pyruvate kinase (PK), Ca2+-Mg2+-ATPcase, Na+-K+-ATPcase, TNF-α, IL-1β and IL-6 in brain tissue were quantitative analysis by corresponding ELISA assay. Subsequently, NLRP3, ZO-1, claudin-5, occluding, p-p65, p65, ASC, cleaved-caspase-1, caspase-1 and IL-18 were determined by immunofluorescent and western blot analyses. RESULTS The results demonstrated that RCE remarkably alleviated pathological damage, BWC, as well enhanced neuronal viability. Furthermore, the oxidative stress injuries were reversely abrogated after RCE treatment, evidenced by the increases of SOD, GSH-Px and T-AOC, while the decreases of MDA and LDH contents. Marvelously, the administration of RCE rectified and balanced the abnormal energy metabolism via elevating the levels of ATP, SDH, PK, Ca2+-Mg2+-ATPcase and Na+-K+-ATPcase, and lowering LA. Simultaneously, the expression of tight junction proteins (ZO-1, claudin-5 and occludin) was enhanced, illustrating RCE treatment might maintain the integrity of blood-brain barrier (BBB). Additionally, RCE treatment confined the contents of IL-6, IL-1β and TNF-α, and attenuated fluorescent signal of NLRP3 protein. Concurrently, the results of western blot indicated that RCE treatment dramatically restrained p-p65/p65, ASC, NLRP3, cleaved-caspase-1/caspase-1 and IL-18 protein expressions in brain tissues of mice. CONCLUSION RCE may afford a protectively intervention in HHBI of mice through suppressing the oxidative stress, improving energy metabolism and the integrity of BBB, and subsiding inflammatory responses via the NF-κB/NLRP3 signaling pathway. As a promising agent for the treatment of mice HHBI, the deep-crossing molecular mechanisms of R. crenulate still needs to be further elucidated to identify novel core hub targets.
Collapse
Affiliation(s)
- Na Xie
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fangfang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shengnan Jiang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Hou
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | | | - Xiaobo Wang
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xianli Meng
- School of Pharmacy, and Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
50
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|