1
|
Tan Y, Xu L, Zhu M, Zhao Y, Wei H, Wei W. Unraveling Morphological, Physiological, and Transcriptomic Alterations Underlying the Formation of Little Leaves in Phytoplasma-Infected Sweet Cherry Trees. PLANT DISEASE 2025; 109:373-383. [PMID: 39295135 DOI: 10.1094/pdis-04-24-0862-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Phytoplasmas are minute phytopathogenic bacteria that induce excessive vegetative growth, known as witches' broom (WB), in many infected plant species during the later stages of infection. The WB structure is characterized by densely clustered little (small) leaves, which are frequently accompanied by chlorosis (yellowing). The mechanisms behind the formation of little leaves within WB structures (LL-WB) are poorly understood. To address this gap, the LL-WB formation was extensively studied using sweet cherry virescence (SCV) phytoplasma-infected sweet cherry plants. Based on morphological examinations, signs of premature leaf senescence were observed in LL-WB samples, including reduced leaf size, chlorosis, and alterations in shape. Subsequent physiological analyses indicated decreased sucrose and glucose levels and changes in hormone concentrations in LL-WB samples. Additionally, the transcriptomic analysis revealed impaired ribosome biogenesis and DNA replication. As an essential process in protein production, the compromised ribosome biogenesis and the inhibited DNA replication led to cell cycle arrest, thus affecting leaf morphogenesis and further plant development. Moreover, the expression of marker genes involved in premature leaf senescence was significantly altered. These results indicate a complicated interplay between the development of leaves, premature leaf senescence, and pathogen-induced stress responses in SCV phytoplasma-infected sweet cherry trees. The results of this study provide insight into understanding the underlying molecular mechanisms driving the formation of little leaves and interactions between plants and pathogens. The findings might help control phytoplasma diseases in sweet cherry cultivation.
Collapse
Affiliation(s)
- Yue Tan
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Li Xu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Min Zhu
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| | - Hairong Wei
- State Key Laboratory of Nutrient Use and Management, Shandong Institute of Pomology, Taian, China
| | - Wei Wei
- Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, U.S.A
| |
Collapse
|
2
|
Li W, Cheng W, Jiang H, Fang C, Peng L, Tao L, Zhan Y, Huang X, Ma B, Chen X, Wu Y, Liu B, Fu X, Wu K, Ye Y. Mutation of rice EARLY LEAF LESION AND SENESCENCE 1 (ELS1), which encodes an anthranilate synthase α-subunit, induces ROS accumulation and cell death through activating the tryptophan synthesis pathway in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2723-2737. [PMID: 39540877 DOI: 10.1111/tpj.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Lesion-mimic mutants (LMMs) serve as valuable resources for uncovering the molecular mechanisms that govern programmed cell death (PCD) in plants. Despite extensive research, the regulatory mechanisms of PCD and lesion formation in various LMMs remain to be fully elucidated. In this study, we identified a rice LMM named early leaf lesion and senescence 1 (els1), cloned the causal gene through map-based cloning, and confirmed its function through complementation. ELS1 encodes an anthranilate synthase α-subunit involved in anthranilate biosynthesis. It is predominantly localized in chloroplasts and is primarily expressed in light-exposed tissues. Mutation of ELS1 triggers upregulation of its homologous gene, ASA1, via a genetic compensation response, leading to the activation of the tryptophan (Trp) synthesis pathway and amino acid metabolism. The accumulation of abnormal Trp-derived intermediate metabolites results in reactive oxygen species (ROS) production and abnormal PCD in the els1 mutant, ultimately causing the leaf lesion phenotype. The els1 mutant also exhibits reduced chlorophyll content, upregulation of genes related to chloroplast degradation and leaf senescence, and decreased activity of photosynthetic proteins, indicating that ELS1 plays a role in chloroplast development. These factors collectively contribute to the premature leaf senescence observed in the els1 mutant. Our findings shed light on the role of ELS1 in regulating ROS accumulation and PCD in rice, providing further genetic insights into the molecular mechanisms governing leaf lesions and senescence.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Weimin Cheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongrui Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingling Peng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liangzhi Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yue Zhan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
3
|
Yin W, Huang Z, Zhong Q, Tang L, Wu R, Li S, Mao Y, Zhu X, Wang C, Rao Y, Wang Y. The Mining of Genetic Loci and the Analysis of Candidate Genes to Identify the Physical and Chemical Markers of Anti-Senescence in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3812. [PMID: 38005709 PMCID: PMC10674301 DOI: 10.3390/plants12223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Premature senescence is a common occurrence in rice production, and seriously affects rice plants' nutrient utilization and growth. A total of 120 recombinant inbred lines (RILs) were obtained from successive self-crossing of F12 generations derived from Huazhan and Nekken2. The superoxide dismutase (SOD) activity, malondialdehyde (MDA), content and catalase (CAT) activity related to the anti-senescence traits and enzyme activity index of rice were measured for QTL mapping using 4858 SNPs. Thirteen QTLs related to anti-senescence were found, among which the highest LOD score was 5.70. Eighteen anti-senescence-related genes were found in these regions, and ten of them differed significantly between the parents. It was inferred that LOC_Os01g61500, LOC_Os01g61810, and LOC_Os04g40130 became involved in the regulation of the anti-senescence molecular network upon upregulation of their expression levels. The identified anti-senescence-related QTLs and candidate genes provide a genetic basis for further research on the mechanism of the molecular network that regulates premature senescence.
Collapse
Affiliation(s)
- Wenjing Yin
- National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 310006, China; (W.Y.); (S.L.); (Y.M.); (X.Z.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Zhao Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Luyao Tang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Richeng Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Sanfeng Li
- National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 310006, China; (W.Y.); (S.L.); (Y.M.); (X.Z.)
| | - Yijian Mao
- National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 310006, China; (W.Y.); (S.L.); (Y.M.); (X.Z.)
| | - Xudong Zhu
- National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 310006, China; (W.Y.); (S.L.); (Y.M.); (X.Z.)
| | - Changchun Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.H.); (Q.Z.); (L.T.); (R.W.)
| | - Yuexing Wang
- National Key Laboratory of Rice Biological Breeding, China National Rice Research Institute, Hangzhou 310006, China; (W.Y.); (S.L.); (Y.M.); (X.Z.)
| |
Collapse
|
4
|
Hu J, Chen J, Wang W, Zhu L. Mechanism of growth inhibition mediated by disorder of chlorophyll metabolism in rice (Oryza sativa) under the stress of three polycyclic aromatic hydrocarbons. CHEMOSPHERE 2023; 329:138554. [PMID: 37037159 DOI: 10.1016/j.chemosphere.2023.138554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Photosynthesis mediated by chlorophyll metabolism is the basis for plant growth, and also the important regulatory mechanism of carbon pool in cropland ecosystems. Soil organic pollutants induced growth inhibition in crop plants, herein, we conducted an in-depth investigation on the effects of three representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP) on rice (Oryza sativa) growth and photosynthesis. PAHs were absorbed via root uptake and accumulated in leaves, causing the swelling of thylakoids and the increase of osmiophilic granules in chloroplasts. The actual quantum efficiency of PSII was significantly decreased under the stress of PHE, PYR, and BaP by 29.9%, 11.9%, and 24.1% respectively, indicating the inhibition in photon absorption and transfer, which was consistent with the decrease of chlorophyll a (22.3%-32.2% compared to the control) in rice leaves. Twenty-two encoding genes involved in chlorophyll metabolism were determined and the results indicated that the expression of chlorophyll synthetases was downregulated by over 50% whereas the degradation process was promoted. Consequently, the production of carbohydrates and the carbon fixation were inhibited, which revealed by the downregulation of intermediate metabolites in Calvin cycle and the declined carboxylation rate. The disturbed photosynthesis resulted in the decrease of the biomasses of both roots (21.0%-42.7%) and leaves (6.4%-22.1%) under the tested PAH stresses. The findings of this study implied that the photosynthetic inhibition was possibly attributed to the disorder of chlorophyll metabolism, thus providing novel insights into the mechanism of growth inhibition induced by organic pollutants and theoretical basis for the estimation of cropland carbon sequestration potential.
Collapse
Affiliation(s)
- Jingyi Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
5
|
Ren H, Bao J, Gao Z, Sun D, Zheng S, Bai J. How rice adapts to high temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1137923. [PMID: 37008476 PMCID: PMC10063981 DOI: 10.3389/fpls.2023.1137923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
High-temperature stress affects crop yields worldwide. Identifying thermotolerant crop varieties and understanding the basis for this thermotolerance would have important implications for agriculture, especially in the face of climate change. Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high temperature, with different thermotolerance levels. In this review, we examine the morphological and molecular effects of heat on rice in different growth stages and plant organs, including roots, stems, leaves and flowers. We also explore the molecular and morphological differences among thermotolerant rice lines. In addition, some strategies are proposed to screen new rice varieties for thermotolerance, which will contribute to the improvement of rice for agricultural production in the future.
Collapse
Affiliation(s)
- Huimin Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jingpei Bao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhenxian Gao
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Wheat Research Center, Shijiazhuang, China
| | - Daye Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
6
|
Integrated ATAC-Seq and RNA-Seq Data Analysis to Reveal OsbZIP14 Function in Rice in Response to Heat Stress. Int J Mol Sci 2023; 24:ijms24065619. [PMID: 36982696 PMCID: PMC10057503 DOI: 10.3390/ijms24065619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Transcription factors (TFs) play critical roles in mediating the plant response to various abiotic stresses, particularly heat stress. Plants respond to elevated temperatures by modulating the expression of genes involved in diverse metabolic pathways, a regulatory process primarily governed by multiple TFs in a networked configuration. Many TFs, such as WRKY, MYB, NAC, bZIP, zinc finger protein, AP2/ERF, DREB, ERF, bHLH, and brassinosteroids, are associated with heat shock factor (Hsf) families, and are involved in heat stress tolerance. These TFs hold the potential to control multiple genes, which makes them ideal targets for enhancing the heat stress tolerance of crop plants. Despite their immense importance, only a small number of heat-stress-responsive TFs have been identified in rice. The molecular mechanisms underpinning the role of TFs in rice adaptation to heat stress still need to be researched. This study identified three TF genes, including OsbZIP14, OsMYB2, and OsHSF7, by integrating transcriptomic and epigenetic sequencing data analysis of rice in response to heat stress. Through comprehensive bioinformatics analysis, we demonstrated that OsbZIP14, one of the key heat-responsive TF genes, contained a basic-leucine zipper domain and primarily functioned as a nuclear TF with transcriptional activation capability. By knocking out the OsbZIP14 gene in the rice cultivar Zhonghua 11, we observed that the knockout mutant OsbZIP14 exhibited dwarfism with reduced tiller during the grain-filling stage. Under high-temperature treatment, it was also demonstrated that in the OsbZIP14 mutant, the expression of the OsbZIP58 gene, a key regulator of rice seed storage protein (SSP) accumulation, was upregulated. Furthermore, bimolecular fluorescence complementation (BiFC) experiments uncovered a direct interaction between OsbZIP14 and OsbZIP58. Our results suggested that OsbZIP14 acts as a key TF gene through the concerted action of OsbZIP58 and OsbZIP14 during rice filling under heat stress. These findings provide good candidate genes for genetic improvement of rice but also offer valuable scientific insights into the mechanism of heat tolerance stress in rice.
Collapse
|
7
|
Huangfu L, Chen R, Lu Y, Zhang E, Miao J, Zuo Z, Zhao Y, Zhu M, Zhang Z, Li P, Xu Y, Yao Y, Liang G, Xu C, Zhou Y, Yang Z. OsCOMT, encoding a caffeic acid O-methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1122-1139. [PMID: 35189026 PMCID: PMC9129082 DOI: 10.1111/pbi.13794] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/15/2022] [Indexed: 05/15/2023]
Abstract
Melatonin, a natural phytohormone in plants, plays multiple critical roles in plant growth and stress responses. Although melatonin biosynthesis-related genes have been suggested to possess diverse biological functions, their roles and functional mechanisms in regulating rice grain yield remain largely unexplored. Here, we uncovered the roles of a caffeic acid O-methyltransferase (OsCOMT) gene in mediating rice grain yield through dual regulation of leaf senescence and vascular development. In vitro and in vivo evidence revealed that OsCOMT is involved in melatonin biosynthesis. Transgenic assays suggested that OsCOMT significantly delays leaf senescence at the grain filling stage by inhibiting degradation of chlorophyll and chloroplast, which, in turn, improves photosynthesis efficiency. In addition, the number and size of vascular bundles in the culms and leaves were significantly increased in the OsCOMT-overexpressing plants, while decreased in the knockout plants, suggesting that OsCOMT plays a positive role in vascular development of rice. Further evidence indicated that OsCOMT-mediated vascular development might owe to the crosstalk between melatonin and cytokinin. More importantly, we found that OsCOMT is a positive regulator of grain yield, and overexpression of OsCOMT increase grain yield per plant even in a high-yield variety background, suggesting that OsCOMT can be used as an important target for enhancing rice yield. Our findings shed novel insights into melatonin-mediated leaf senescence and vascular development and provide a possible strategy for genetic improvement of rice grain yield.
Collapse
Affiliation(s)
- Liexiang Huangfu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Rujia Chen
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yue Lu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Enying Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Agricultural CollegeQingdao Agricultural UniversityQingdaoChina
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
| | - Zhihao Zuo
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yu Zhao
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Minyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zihui Zhang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and PhysiologyKey Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genomics and Molecular BreedingAgricultural College of Yangzhou UniversityYangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
8
|
Zhang X, Liu N, Lu H, Zhu L. Molecular Mechanism of Organic Pollutant-Induced Reduction of Carbon Fixation and Biomass Yield in Oryza sativa L. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4162-4172. [PMID: 35324172 DOI: 10.1021/acs.est.1c07835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photosynthetic carbon fixation is fundamental for plant growth and is a key process driving the global carbon cycle. This study explored the mechanism of disturbed carbon fixation in Oryza sativa L. by organic pollutants 2,3,4,5-tetrachlorobiphenyl (CB 61), 4'-hydroxy-2,3,4,5-tetrachlorobiphenyl (4'-OH-CB 61), 2,2',4,4'-tetrabromo diphenyl ether (BDE 47), tricyclazole (TRI), and pyrene. The biomass of rice exposed to 4'-OH-CB 61, TRI, and BDE 47 was on average 80.63% of that of the control (p < 0.05), and the inhibition of net photosynthetic rate was 59.15% by 4'-OH-CB 61. Proteomics confirmed that 4'-OH-CB 61 significantly downregulated the enzymes in the photosynthetic carbon fixation pathway, which was attributed to the decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the rate-limiting enzyme in the Calvin cycle. In detail, decreased Rubisco activity (6.96-33.44%) and downregulated OsRBCS2-5 encoding small Rubisco subunits (-6.80 < log2FC < -2.13) by 4'-OH-CB 61, TRI, and BDE 47 were in line with biomass yield reduction. Molecular docking and dynamic simulation suggested that the three pollutants potentially competed with CO2 for binding to the active sites in Rubisco, leading to reduced CO2 capture efficiency. These results revealed the molecular mechanism of organic pollution-induced rice yield reduction, contributing to improving the understanding of crop growth and carbon sequestration capacity of organics-contaminated soils globally.
Collapse
Affiliation(s)
- Xinru Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
9
|
Xia S, Liu H, Cui Y, Yu H, Rao Y, Yan Y, Zeng D, Hu J, Zhang G, Gao Z, Zhu L, Shen L, Zhang Q, Li Q, Dong G, Guo L, Qian Q, Ren D. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. THE NEW PHYTOLOGIST 2022; 233:344-359. [PMID: 34610140 DOI: 10.1111/nph.17768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 05/25/2023]
Abstract
High-temperature stress inhibits normal cellular processes and results in abnormal growth and development in plants. However, the mechanisms by which rice (Oryza sativa) copes with high temperature are not yet fully understood. In this study, we identified a rice high temperature enhanced lesion spots 1 (hes1) mutant, which displayed larger and more dense necrotic spots under high temperature conditions. HES1 encoded a UDP-N-acetylglucosamine pyrophosphorylase, which had UGPase enzymatic activity. RNA sequencing analysis showed that photosystem-related genes were differentially expressed in the hes1 mutant at different temperatures, indicating that HES1 plays essential roles in maintaining chloroplast function. HES1 expression was induced under high temperature conditions. Furthermore, loss-of-function of HES1 affected heat shock factor expression and its mutation exhibited greater vulnerability to high temperature. Several experiments revealed that higher accumulation of reactive oxygen species occurred in the hes1 mutant at high temperature. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and comet experiments indicated that the hes1 underwent more severe DNA damage at high temperature. The determination of chlorophyll content and chloroplast ultrastructure showed that more severe photosystem defects occurred in the hes1 mutant under high temperature conditions. This study reveals that HES1 plays a key role in adaptation to high-temperature stress in rice.
Collapse
Affiliation(s)
- Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Haiping Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuping Yan
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qing Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guojun Dong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
10
|
Kampire MG, Sanglou RK, Wang H, Kazeem BB, Wu JL, Zhang X. A Novel Allele Encoding 7-Hydroxymethyl Chlorophyll a Reductase Confers Bacterial Blight Resistance in Rice. Int J Mol Sci 2021; 22:ijms22147585. [PMID: 34299202 PMCID: PMC8303675 DOI: 10.3390/ijms22147585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
Rice spotted leaf mutants are helpful to investigate programmed cell death (PCD) and defense response pathways in plants. Using a map-based cloning strategy, we characterized novel rice spotted leaf mutation splHM143 that encodes a 7-hydroxymethyl chlorophyll a reductase (OsHCAR). The wild-type (WT) allele could rescue the mutant phenotype, as evidenced by complementation analysis. OsHCAR was constitutively expressed at all rice tissues tested and its expression products localized to chloroplasts. The mutant exhibited PCD and leaf senescence with increased H2O2 (hydrogen peroxide) accumulation, increased of ROS (reactive oxygen species) scavenging enzymes activities and TUNEL (terminal deoxyribonucleotidyl transferase-mediated dUTP nick-end labeling) -positive nuclei, upregulation of PCD related genes, decreased chlorophyll (Chl) contents, downregulation of photosynthesis-related genes, and upregulation of senescence-associated genes. Besides, the mutant exhibited enhanced bacterial blight resistance with significant upregulation of defense response genes. Knockout lines of OsHCAR exhibited spotted leaf phenotype, cell death, leaf senescence, and showed increased resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) coupled with upregulation of five pathogenesis-related marker genes. The overexpression of OsHCAR resulted in increased susceptibility to Xoo with decreased expression of pathogenesis-related marker genes. Altogether, our findings revealed that OsHCAR is involved in regulating cell death and defense response against bacterial blight pathogen in rice.
Collapse
Affiliation(s)
- Marie Gorette Kampire
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (M.G.K.); (R.K.S.); (H.W.)
| | - Ringki Kuinamei Sanglou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (M.G.K.); (R.K.S.); (H.W.)
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (M.G.K.); (R.K.S.); (H.W.)
| | | | - Jian-li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (M.G.K.); (R.K.S.); (H.W.)
- Correspondence: (J.-l.W.); (X.Z.); Tel.: +86-571-63370326 (J.-l.W.); +86-571-63370295 (X.Z.)
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (M.G.K.); (R.K.S.); (H.W.)
- Correspondence: (J.-l.W.); (X.Z.); Tel.: +86-571-63370326 (J.-l.W.); +86-571-63370295 (X.Z.)
| |
Collapse
|
11
|
He Y, Zhang X, Shi Y, Xu X, Li L, Wu JL. PREMATURE SENESCENCE LEAF 50 Promotes Heat Stress Tolerance in Rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2021; 14:53. [PMID: 34117939 PMCID: PMC8197683 DOI: 10.1186/s12284-021-00493-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/13/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Heat stress is a major environmental factor that could induce premature leaf senescence in plants. So far, a few rice premature senescent leaf mutants have been reported to involve in heat tolerance. FINDINGS We identified a premature senescence leaf 50 (psl50) mutant that exhibited a higher heat susceptibility with decreased survival rate, over-accumulated hydrogen peroxide (H2O2) content and increased cell death under heat stress compared with the wild-type. The causal gene PREMATURE SENESCENCE LEAF 50 (PSL50) was isolated by using initial map-based resequencing (IMBR) approach, and we found that PSL50 promoted heat tolerance probably by acting as a modulator of H2O2 signaling in response to heat stress in rice (Oryza sativa L.). CONCLUSIONS PSL50 negatively regulates heat-induced premature leaf senescence in rice.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
12
|
Li L, He Y, Zhang Z, Shi Y, Zhang X, Xu X, Wu JL, Tang S. OsNAC109 regulates senescence, growth and development by altering the expression of senescence- and phytohormone-associated genes in rice. PLANT MOLECULAR BIOLOGY 2021; 105:637-654. [PMID: 33543390 PMCID: PMC7985107 DOI: 10.1007/s11103-021-01118-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/13/2021] [Indexed: 05/11/2023]
Abstract
We demonstrate that OsNAC109 regulates senescence, growth and development via binding to the cis-element CNTCSSNNSCAVG and altering the expression of multiple senescence- and hormone-associated genes in rice. The NAC family is one of the largest transcripton factor families in plants and plays an essential role in plant development, leaf senescence and responses to biotic/abiotic stresses through modulating the expression of numerous genes. Here, we isolated and characterized a novel yellow leaf 3 (yl3) mutant exhibiting arrested-growth, increased accumulation of reactive oxygen species (ROS), decreased level of soluble proteins, increased level of malondialdehyde (MDA), reduced activities of ROS scavenging enzymes, altered expression of photosynthesis and senescence/hormone-associated genes. The yellow leaf and arrested-growth trait was controlled by a single recessive gene located to chromosome 9. A single nucleotide substitution was detected in the mutant allele leading to premature termination of its coding protein. Genetic complementation could rescue the mutant phenotype while the YL3 knockout lines displayed similar phenotype to WT. YL3 was expressed in all tissues tested and predicted to encode a transcriptional factor OsNAC109 which localizes to the nucleus. It was confirmed that OsNAC109 could directly regulate the expression of OsNAP, OsNYC3, OsEATB, OsAMTR1, OsZFP185, OsMPS and OsGA2ox3 by targeting to the highly conserved cis-element CNTCSSNNSCAVG except OsSAMS1. Our results demonstrated that OsNAC109 is essential to rice leaf senescence, growth and development through regulating the expression of senescence- and phytohormone-associated genes in rice.
Collapse
Affiliation(s)
- Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 359 Tiyuchang Road, Hangzhou, 310006, China.
| |
Collapse
|
13
|
He Y, Shi Y, Zhang X, Xu X, Wang H, Li L, Zhang Z, Shang H, Wang Z, Wu JL. The OsABCI7 Transporter Interacts with OsHCF222 to Stabilize the Thylakoid Membrane in Rice. PLANT PHYSIOLOGY 2020; 184:283-299. [PMID: 32661060 PMCID: PMC7479889 DOI: 10.1104/pp.20.00445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/23/2020] [Indexed: 05/05/2023]
Abstract
The thylakoid membrane is a highly complex membrane system in plants and plays crucial roles in the biogenesis of the photosynthetic apparatus and plant development. However, the genetic factors involved in chloroplast development and its relationship with intracellular metabolites are largely unknown. Here, a rice (Oryza sativa) chlorotic and necrotic leaf1 (cnl1) mutant was identified and map-based cloning revealed that a single base substitution followed by a 6-bp deletion in the ATP-binding cassette transporter I family member7 (OsABCI7) resulted in chlorotic and necrotic leaves with thylakoid membrane degradation, chlorophyll breakdown, photosynthesis impairment, and cell death in cnl1 Furthermore, the expression of OsABCI7 was inducible under lower temperatures, which severely affected cnl1 chloroplast development, and etiolated cnl1 seedlings were unable to recover to a normal green state under light conditions. Functional complementation and overexpression showed that OsABCI7 could rescue the cnl1 chlorotic and necrotic phenotype. OsABCI7 interacted with HIGH CHLOROPHYLL FLUORESCENCE222 (OsHCF222) to regulate cellular reactive oxygen species (ROS) homeostasis for thylakoid membrane stability. OsABCI7 localized to thylakoid membranes, while OsHCF222 targeted to endoplasmic reticulum and chloroplasts. Exogenous application of ascorbic acid eased the yellowish leaf phenotype by increasing chlorophyll content and alleviating ROS stress in cnl1 Unlike cnl1, the CRISPR/Cas9-mediated OsHCF222 knockout lines showed chlorotic leaves but were seedling lethal. Our results provide insight into the functions of ABC transporters in rice, especially within the relationship between ROS homeostasis and stability of thylakoid membranes.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Xiaobo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Huimei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Liangjian Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Zhihong Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Huihui Shang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Zhonghao Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| |
Collapse
|
14
|
Kong W, Wang L, Cao P, Li X, Ji J, Dong P, Yan X, Wang C, Wang H, Sun J. Identification and genetic analysis of EMS-mutagenized wheat mutants conferring lesion-mimic premature aging. BMC Genet 2020; 21:88. [PMID: 32807077 PMCID: PMC7430028 DOI: 10.1186/s12863-020-00891-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Lesion-mimic and premature aging (lmpa) mutant lmpa1 was identified from the ethyl methane sulfonate (EMS) mutant library in the bread wheat variety Keda 527 (KD527) background. To reveal the genetic basis of lmpa1 mutant, phenotypic observations and analyses of chlorophyll content and photosynthesis were carried out in lmpa1, KD527 and their F1 and F2 derivatives. Further, bulked segregation analysis (BSA) in combination with a 660 K SNP array were conducted on the F2 segregation population of lmpa1/Chinese spring (CS) to locate the lmpa1 gene. RESULTS Most agronomic traits of lmpa1 were similar to those of KD527 before lesion-like spots appeared. Genetic analysis indicated that the F1 plants from the crossing of lmpa1 and KD527 exhibited the lmpa phenotype and the F2 progenies showed a segregation of normal (wild type, WT) and lmpa, with the ratios of lmpa: WT = 124:36(χ2 = 1.008 < =3.841), indicating that lmpa is a dominant mutation. The combination of BSA and the SNP array analysis of CS, lmpa1 and lmpa1/CS F2 WT pool (50 plants) and lmpa pool (50 plants) showed that polymorphic SNPs were enriched on chromosome 5A, within a region of 30-40 Mb, indicating that the wheat premature aging gene Lmpa1 was probably located on the short arm of chromosome 5A. CONCLUSIONS EMS-mutagenized mutant lmpa1 deriving from elite wheat line KD527 conferred lmpa. Lmpa phenotype of lmpa1 mutant is controlled by a single dominant allele designated as Lmpa1, which affected wheat growth and development and reduced the thousand grain weight (tgw) of single plant in wheat. The gene Lmpa1 was tentatively located within the region of 30-40 Mb near to the short arm of chromosome 5A.
Collapse
Affiliation(s)
- Weiwei Kong
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Liming Wang
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Pei Cao
- Institute of Botany, Chinese Academy of Sciences, Beijing, 10093, China
| | - Xingfeng Li
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultrual University, Taian, 271018, Shandong, China
| | - Jingjing Ji
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Puhui Dong
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Xuefang Yan
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Chunping Wang
- Agronomy College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultrual University, Taian, 271018, Shandong, China
| | - Jiaqiang Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 10081, China.
| |
Collapse
|
15
|
Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H. Stay-Green Trait: A Prospective Approach for Yield Potential, and Drought and Heat Stress Adaptation in Globally Important Cereals. Int J Mol Sci 2019; 20:E5837. [PMID: 31757070 PMCID: PMC6928793 DOI: 10.3390/ijms20235837] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
The yield losses in cereal crops because of abiotic stress and the expected huge losses from climate change indicate our urgent need for useful traits to achieve food security. The stay-green (SG) is a secondary trait that enables crop plants to maintain their green leaves and photosynthesis capacity for a longer time after anthesis, especially under drought and heat stress conditions. Thus, SG plants have longer grain-filling period and subsequently higher yield than non-SG. SG trait was recognized as a superior characteristic for commercially bred cereal selection to overcome the current yield stagnation in alliance with yield adaptability and stability. Breeding for functional SG has contributed in improving crop yields, particularly when it is combined with other useful traits. Thus, elucidating the molecular and physiological mechanisms associated with SG trait is maybe the key to defeating the stagnation in productivity associated with adaptation to environmental stress. This review discusses the recent advances in SG as a crucial trait for genetic improvement of the five major cereal crops, sorghum, wheat, rice, maize, and barley with particular emphasis on the physiological consequences of SG trait. Finally, we provided perspectives on future directions for SG research that addresses present and future global challenges.
Collapse
Affiliation(s)
- Nasrein Mohamed Kamal
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Yasir Serag Alnor Gorafi
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Agricultural Research Corporation, Wad-Medani P.O. Box 126, Sudan
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| | - Eltayb Abdellatef
- Commission for Biotechnology and Genetic Engineering, National Center for Research, Khartoum P.O. Box 6096, Sudan;
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan; (Y.S.A.G.); (M.A.)
| |
Collapse
|
16
|
Wang B, Zhang Y, Bi Z, Liu Q, Xu T, Yu N, Cao Y, Zhu A, Wu W, Zhan X, Anis GB, Yu P, Chen D, Cheng S, Cao L. Impaired Function of the Calcium-Dependent Protein Kinase, OsCPK12, Leads to Early Senescence in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:52. [PMID: 30778363 PMCID: PMC6369234 DOI: 10.3389/fpls.2019.00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 05/21/2023]
Abstract
Premature leaf senescence affects plant yield and quality, and numerous researches about it have been conducted until now. In this study, we identified an early senescent mutant es4 in rice (Oryza sativa L.); early senescence appeared approximately at 60 dps and became increasingly senescent with the growth of es4 mutant. We detected that content of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as activity of superoxide dismutase (SOD) were elevated, while chlorophyll content, soluble protein content, activity of catalase (CAT), activity of peroxidase (POD) and photosynthetic rate were reduced in the es4 mutant leaves. We mapped es4 in a 33.5 Kb physical distance on chromosome 4 by map-based cloning. Sequencing analysis in target interval indicated there was an eight bases deletion mutation in OsCPK12 which encoded a calcium-dependent protein kinase. Functional complementation of OsCPK12 in es4 completely restored the normal phenotype. We used CRISPR/Cas9 for targeted disruption of OsCPK12 in ZH8015 and all the mutants exhibited the premature senescence. All the results indicated that the phenotype of es4 was caused by the mutation of OsCPK12. Overexpression of OsCPK12 in ZH8015 enhanced the net photosynthetic rate (P n) and chlorophyll content. OsCPK12 was mainly expressed in green organs. The results of qRT-PCR analysis showed that the expression levels of some key genes involved in senescence, chlorophyll biosynthesis, and photosynthesis were significantly altered in the es4 mutant. Our results demonstrate that the mutant of OsCPK12 triggers the premature leaf senescence; however, the overexpression of OsCPK12 may delay its growth period and provide the potentially positive effect on productivity in rice.
Collapse
Affiliation(s)
- Beifang Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhenzhen Bi
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Xu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yongrun Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Aike Zhu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Galal Bakr Anis
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Rice Research and Training Center, Field Crops Research Institute, Agriculture Research Center, Kafr El Sheikh, Egypt
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
17
|
Asad MAU, Zakari SA, Zhao Q, Zhou L, Ye Y, Cheng F. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. Int J Mol Sci 2019; 20:E256. [PMID: 30634648 PMCID: PMC6359161 DOI: 10.3390/ijms20020256] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Shamsu Ado Zakari
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yu Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210000, China.
| |
Collapse
|
18
|
Huang L, Gao B, Wu M, Wang F, Zhang C. Comparative transcriptome analysis of a long-time span two-step culture process reveals a potential mechanism for astaxanthin and biomass hyper-accumulation in Haematococcus pluvialis JNU35. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:18. [PMID: 30705704 PMCID: PMC6348685 DOI: 10.1186/s13068-019-1355-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/09/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Among all organisms tested, Haematococcus pluvialis can accumulate the highest levels of natural astaxanthin. Nitrogen starvation and high irradiance promote the accumulation of starch, lipid, and astaxanthin in H. pluvialis, yet their cell division is significantly retarded. Accordingly, adaptive regulatory mechanisms are very important and necessary to optimize the cultivation conditions enabling an increase in biomass; as well as promoting astaxanthin accumulation by H. pluvialis. To clarify the intrinsic mechanism of high-level astaxanthin and biomass accumulation in the newly isolated strain, H. pluvialis JNU35, nitrogen-sufficiency and nitrogen-depletion conditions were employed. Time-resolved comparative transcriptome analysis was also conducted by crossing the two-step culture process. RESULTS In the present study, we report the overall growth and physiological, biochemical, and transcriptomic characteristics of H. pluvialis JNU35 in response to nitrogen variation. From eight sampling time-points (2 days, 4 days, 8 days, 10 days, 12 days, 14 days, 16 days, and 20 days), 25,480 differentially expressed genes were found. These genes included the significantly responsive unigenes associated with photosynthesis, astaxanthin biosynthesis, and nitrogen metabolic pathways. The expressions of all key and rate-limiting genes involved in astaxanthin synthesis were significantly upregulated. The photosynthetic pathway was found to be attenuated, whereas the ferredoxin gene was upregulated, which might activate the cyclic electron-transport chain as compensation. Moreover, the expressions of genes related to nitrogen transport and assimilation were upregulated. The expressions of genes in the proteasome pathway were also upregulated. In contrast, the chloroplasts and nonessential proteins were gradually degraded, activating the specific ornithine-urea cycle pathway. These changes may promote the sustained accumulation of astaxanthin and biomass. CONCLUSIONS To the best of our knowledge, this paper is the first to investigate the long-term differences of gene expression from two-step culture process in the astaxanthin producer, H. pluvialis JNU35. According to our results, β-carotene ketolase (bkt1 and bkt2) serves as the key enzyme regulating astaxanthin accumulation in H. pluvialis JNU35. The cyclic electron-transport chain and novel nitrogen metabolic process were used adaptively as the regulatory mechanism compensating for different levels of stress. The in-depth study of these metabolic pathways and related key genes can reveal the underlying relationship between cell growth and astaxanthin accumulation in H. pluvialis JNU35.
Collapse
Affiliation(s)
- Luodong Huang
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, No.601 Huangpu Road, Tianhe District, Guangzhou, 510632 Guangdong People’s Republic of China
| | - Baoyan Gao
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, No.601 Huangpu Road, Tianhe District, Guangzhou, 510632 Guangdong People’s Republic of China
| | - Manman Wu
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, No.601 Huangpu Road, Tianhe District, Guangzhou, 510632 Guangdong People’s Republic of China
| | - Feifei Wang
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, No.601 Huangpu Road, Tianhe District, Guangzhou, 510632 Guangdong People’s Republic of China
| | - Chengwu Zhang
- Department of Ecology, Institute of Hydrobiology, College of Life Science and Technology, Jinan University, No.601 Huangpu Road, Tianhe District, Guangzhou, 510632 Guangdong People’s Republic of China
| |
Collapse
|
19
|
He Y, Ma Y, Du Y, Shen S. Differential gene expression for carotenoid biosynthesis in a green alga Ulva prolifera based on transcriptome analysis. BMC Genomics 2018; 19:916. [PMID: 30545298 PMCID: PMC6293516 DOI: 10.1186/s12864-018-5337-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carotenoids are widely distributed in plants and algae, and their biosynthesis has attracted widespread interest. Carotenoid-related research has mostly focused on model species, and there is a lack of data on the carotenoid biosynthetic pathway in U. prolifera that is the main species leading to green tide, a harmful plague of floating green algae. RESULTS The carotenoid content of U. prolifera samples, that is the main species leading to green tide, a harmful plague of floating green algae at different temperatures revealed that its terpenoid was highest in the samples subjected to high temperature at 28 °C (H), followed by the samples subjected to low temperature at 12 °C (L). Its terpenoid was lowest in the samples subjected to medium temperature at 20 °C (M). We conducted transcriptome sequencing (148.5 million raw reads and 49,676 unigenes in total) of samples that were subjected to different temperatures to study the carotenoid biosynthesis of U. prolifera. There were 1125-3164 significant differentially expressed genes between L, M and H incubation temperatures, of which 11-672 genes were upregulated and 453-3102 genes were downregulated. A total of 3164 genes were significantly differentially expressed between H and M, of which 62 genes were upregulated and 3102 genes were downregulated. A total of 2669 significant differentially expressed genes were observed between L and H, of which 11 genes were upregulated and 2658 genes were downregulated. A total of 13 genes were identified to be involved in carotenoid biosynthesis in U. prolifera, and the expression levels of the majority were highest at H and lowest at M of incubation temperature. Both the carotenoid concentrations and the expression of the analysed genes were lowest in the normal temperature group, while low temperature and high temperature seemed to activate the biosynthesis of carotenoids in U. prolifera. CONCLUSIONS In this study, transcriptome sequencing provided critical information for understanding the accumulation of carotenoids and will serve as an important reference for the study of other metabolic pathways in U. prolifera.
Collapse
Affiliation(s)
- Yuan He
- Department of Cell Biology, College of Biology and Basic Medical Sciences, Soochow University, No. 199 Renai Road, SIP, Suzhou, 215123 China
| | - Yafeng Ma
- Department of Cell Biology, College of Biology and Basic Medical Sciences, Soochow University, No. 199 Renai Road, SIP, Suzhou, 215123 China
| | - Yu Du
- Department of Cell Biology, College of Biology and Basic Medical Sciences, Soochow University, No. 199 Renai Road, SIP, Suzhou, 215123 China
| | - Songdong Shen
- Department of Cell Biology, College of Biology and Basic Medical Sciences, Soochow University, No. 199 Renai Road, SIP, Suzhou, 215123 China
| |
Collapse
|
20
|
Zhao Z, Li Y, Zhao S, Zhang J, Zhang H, Fu B, He F, Zhao M, Liu P. Transcriptome Analysis of Gene Expression Patterns Potentially Associated with Premature Senescence in Nicotiana tabacum L. Molecules 2018; 23:E2856. [PMID: 30400189 PMCID: PMC6278766 DOI: 10.3390/molecules23112856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023] Open
Abstract
Senescence affects the remobilization of nutrients and adaption of the plant to the environment. Combined stresses can result in premature senescence in plants which exist in the field. In this study, transcriptomic analysis was performed on mature leaves and leaves in three stages of premature senescence to understand the molecular mechanism. With progressive premature senescence, a declining chlorophyll (chl) content and an increasing malonaldehyde (MDA) content were observed, while plasmolysis and cell nucleus pyknosis occurred, mitochondria melted, thylakoid lamellae were dilated, starch grains in chloroplast decreased, and osmiophilic granules increased gradually. Moreover, in total 69 common differentially expressed genes (DEGs) in three stages of premature senescing leaves were found, which were significantly enriched in summarized Gene Ontology (GO) terms of membrane-bounded organelle, regulation of cellular component synthesis and metabolic and biosynthetic processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the plant hormone signal transduction pathway was significantly enriched. The common DEGs and four senescence-related pathways, including plant hormone signal transduction, porphyrin and chlorophyll metabolism, carotenoid biosynthesis, and regulation of autophagy were selected to be discussed further. This work aimed to provide potential genes signaling and modulating premature senescence as well as the possible dynamic network of gene expression patterns for further study.
Collapse
Affiliation(s)
- Zhe Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yifan Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Songchao Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Jiawen Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Hong Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bo Fu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Fan He
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingqin Zhao
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Pengfei Liu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
21
|
Lin W, Guo X, Pan X, Li Z. Chlorophyll Composition, Chlorophyll Fluorescence, and Grain Yield Change in esl Mutant Rice. Int J Mol Sci 2018; 19:E2945. [PMID: 30262721 PMCID: PMC6213484 DOI: 10.3390/ijms19102945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023] Open
Abstract
To evaluate the effect of changes in chlorophyll (Chl) composition and fluorescence on final yield formation, early senescence leaf (esl) mutant rice and its wild-type cultivar were employed to investigate the genotype-dependent differences in Chl composition, Chl fluorescence, and yield characteristics during the grain-filling stage. However, the temporal expression patterns of key genes involved in the photosystem II (PSII) reaction center in the leaves of two rice genotypes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that the seed-setting rate, 1000-grain weight, and yield per plant remarkably decreased, and the increase in the 1000-grain weight during the grain-filling stage was retarded in esl mutant rice. Chl composition, maximal fluorescence yield (Fm), variable fluorescence (Fv), a maximal quantum yield of PSII photochemistry (Fv/Fm), and net photosynthetic rate (Pn) in esl mutant rice considerably decreased, thereby indicating the weakened abilities of light energy harvesting and transferring in senescent leaves. The esl mutant rice showed an increase in the minimal fluorescence yield (F₀) and 1 - Fv/Fm and decreases in the expression levels of light-harvesting Chl a/b binding protein (Cab) and photosystem II binding protein A (PsbA), PsbB, PsbC, and PsbD encoding for the reaction center of the PSII complex during the grain-filling stage. These results indicated the PSII reaction centers were severely damaged in the mesophyll cells of senescent leaves, which resulted in the weakened harvesting quantum photon and transferring light energy to PSI and PSII for carbon dioxide assimilation, leading to enhanced heat dissipation of light energy and a decrease in Pn.
Collapse
Affiliation(s)
- Weiwei Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaodong Guo
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xinfeng Pan
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhaowei Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Genetic and Physio-Biochemical Characterization of a Novel Premature Senescence Leaf Mutant in Rice ( Oryza sativa L.). Int J Mol Sci 2018; 19:ijms19082339. [PMID: 30096885 PMCID: PMC6122088 DOI: 10.3390/ijms19082339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Premature senescence greatly affects the yield production and the grain quality in plants, although the molecular mechanisms are largely unknown. Here, we identified a novel rice premature senescence leaf 85 (psl85) mutant from ethyl methane sulfonate (EMS) mutagenesis of cultivar Zhongjian100 (the wild-type, WT). The psl85 mutant presented a distinct dwarfism and premature senescence leaf phenotype, starting from the seedling stage to the mature stage, with decreasing level of chlorophyll and degradation of chloroplast, declined photosynthetic capacity, increased content of malonaldehyde (MDA), upregulated expression of senescence-associated genes, and disrupted reactive oxygen species (ROS) scavenging system. Moreover, endogenous abscisic acid (ABA) level was significantly increased in psl85 at the late aging phase, and the detached leaves of psl85 showed more rapid chlorophyll deterioration than that of WT under ABA treatment, indicating that PSL85 was involved in ABA-induced leaf senescence. Genetic analysis revealed that the premature senescence leaf phenotype was controlled by a single recessive nuclear gene which was finally mapped in a 47 kb region on the short arm of chromosome 7, covering eight candidate open reading frames (ORFs). No similar genes controlling a premature senescence leaf phenotype have been identified in the region, and cloning and functional analysis of the gene is currently underway.
Collapse
|