1
|
Kala S, Aggarwal A, Singh Rajput B, Kala C, Barman SK. Safety and Efficacy of Autologous Bone Marrow Derived Mononuclear Cell Transplant in the Management of Various Neurological Disorders. Cureus 2024; 16:e75617. [PMID: 39803099 PMCID: PMC11725325 DOI: 10.7759/cureus.75617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Cerebral palsy (CP), traumatic spinal cord injury (SCI), and muscular dystrophy (MD), among the various other neurological disorders, are major global health problems because they are chronic disorders with no curative treatments at present. Current interventions aim to relieve symptoms alone and therefore emphasize the necessity for new approaches. OBJECTIVE This study aims to assess the safety and efficacy of autologous bone marrow-derived mononuclear cell (BM-MNC) therapy in patients with CP, traumatic SCI, and MD. Functional improvement and safety are the primary outcomes, while secondary outcomes include patient-reported improvement in quality of life. METHODS This was a single-arm, open-label prospective study conducted on 100 patients with CP, SCI, and MD at the GSVM Medical College, Kanpur, India. Bone marrow aspirates were processed via centrifugation, and autologous BM-MNCs were administered intrathecally or intramuscularly. Gross motor function classification system (GMFCS) for CP, the American spinal injury association (ASIA) motor score for SCI, and the north star assessment for limb girdle type dystrophies (NSAD) for MD were used for functional outcome assessment at baseline and at post-treatment cycles. Informed consent was obtained, and the study was approved by the ethics committee. Paired t-tests were used to analyze statistical significance (p<0.05). RESULTS Functional improvements were significant with autologous BM-MNC therapy. Improved motor and cognitive function were shown in CP patients with reduced GMFCS scores (p<0.001). Upper and lower extremity ASIA motor scores improved markedly (p<0.001) in SCI patients. Stabilized muscle strength was seen in MD patients, with increased NSAD and activities of daily living (ADL) scores, suggesting slowing of the disease progression (p<0.019). Side effects were mild and transient. CONCLUSION Autologous BM-MNC therapy appears to be a promising, minimally invasive option for patients with CP, SCI, and MD, which appears to markedly improve functional outcomes and quality of life and may therefore be relevant to clinical practice.
Collapse
Affiliation(s)
- Sanjay Kala
- Department of General Surgery, GSVM Medical College, Kanpur, IND
| | - Anchal Aggarwal
- Department of General Surgery, GSVM Medical College, Kanpur, IND
| | - Bhagat Singh Rajput
- Department of Regenerative Medicine and Cell Based Therapies, GSVM Medical College, Kanpur, IND
| | - Chayanika Kala
- Department of Pathology, GSVM Medical College, Kanpur, IND
| | - Santosh K Barman
- Department of Community Medicine, GSVM Medical College, Kanpur, IND
| |
Collapse
|
2
|
Naeimi A, Mousavi SF, Amini N, Golipoor M, Ghasemi Hamidabadi H. Therapeutic potential of melatonin-pretreated human dental pulp stem cells (hDPSCs) in an animal model of spinal cord injury. Sci Rep 2024; 14:28174. [PMID: 39548147 PMCID: PMC11568238 DOI: 10.1038/s41598-024-78077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Dental pulp stem cells (DPSCs) show potential for treating neurodegenerative and traumatic diseases due to their neural crest origin. Melatonin (MT), an endogenous neurohormone with well-documented anti-inflammatory and antioxidant properties, has shown promising results with MSCs in terms of engraftment, proliferation, and neuronal differentiation in animal SCI models. However, the effects of melatonin preconditioning on human dental pulp stem cells (hDPSCs) for SCI treatment remain unclear. This study investigates the impact of melatonin preconditioning on hDPSCs engraftment, neural differentiation, and neurological function in rats with SCI. Forty-two male Sprague-Dawley rats were divided into six groups: Control, Sham, Model, Vehicle, Lesion Treatment A (SCI + hDPSCs), and Lesion Treatment B (SCI + MT-hDPSCs). After obtaining hDPSCs, stem cells were evaluated using flow cytometry. Cell viability was assessed using the MTT assay. SCI was induced in the Model, Vehicle, Lesion Treatment A, and Lesion Treatment B groups. The Lesion Treatment A and B groups received hDPSCs and hDPSCs pretreated with melatonin, respectively, 1 week after SCI, while the Vehicle group received only an intravenous injection of DMEM to simulate treatment. The other groups were used for behavioral testing. Immunohistochemistry (IHC) was employed to assess hDPSCs engraftment and differentiation at the SCI site. Motor function across the six groups was evaluated using the Basso, Beattie, and Bresnahan (BBB) score. Histological studies and cell counts confirmed hDPSCs implantation at the injury site, with a significantly higher presence in the MT-hDPSCs compared to hDPSCs (p < 0.01). IHC revealed that hDPSCs and MT-hDPSCs differentiated into neurons and astrocytes, with greater differentiation observed in the MT-hDPSCs compared to the hDPSCs (p < 0.01 and p < 0.05, respectively). Functional improvement was noted in both SCI + hDPSCs and SCI + MT-hDPSCs groups compared to SCI and Vehicle groups from Week 4 onward (p < 0.001). Significant differences were also observed between the SCI + hDPSCs and SCI + MT-hDPSCs groups starting from Week 7 (p < 0.01). Preconditioning hDPSCs with melatonin enhances engraftment, neuronal differentiation, and greater performance improvement compared to hDPSCs alone in the SCI animal model.
Collapse
Affiliation(s)
- Arvin Naeimi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Fatemeh Mousavi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mandana Golipoor
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
3
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
4
|
Hersh AM, Weber-Levine C, Jiang K, Theodore N. Spinal Cord Injury: Emerging Technologies. Neurosurg Clin N Am 2024; 35:243-251. [PMID: 38423740 DOI: 10.1016/j.nec.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The mainstay of treatment for spinal cord injury includes decompressive laminectomy and elevation of mean arterial pressure. However, outcomes often remain poor. Extensive research and ongoing clinical trials seek to design new treatment options for spinal cord injury, including stem cell therapy, scaffolds, brain-spine interfaces, exoskeletons, epidural electrical stimulation, ultrasound, and cerebrospinal fluid drainage. Some of these treatments are targeted at the initial acute window of injury, during which secondary damage occurs; others are designed to help patients living with chronic injuries.
Collapse
Affiliation(s)
- Andrew M Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA. https://twitter.com/AndrewMHersh
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA. https://twitter.com/kellyjjiang
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 7-113, Baltimore, MD 21287, USA; Orthopaedic Surgery & Biomedical Engineering, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Yuan H, Chen L, Zhang LC, Shi LL, Han XF, Liu S, Xiong LL, Wang TH. Microarray analysis of lncRNAs and mRNAs in spinal cord contusion rats with iPSC-derived A2B5 + oligodendrocyte precursor cells transplantation. Heliyon 2024; 10:e22808. [PMID: 38169755 PMCID: PMC10758718 DOI: 10.1016/j.heliyon.2023.e22808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a severe complication of spinal trauma with high disability and mortality rates. Effective therapeutic methods to alleviate neurobehavioural deficits in patients with SCI are still lacking. In this study, we established a spinal cord contusion (SCC) model in adult Sprague Dawley rats. Induced pluripotent stem cell-derived A2B5+ oligodendrocyte precursor cells (iP-A2B5+OPCs) were obtained from mouse embryonic fibroblasts and injected into the lesion sites of SCC rats. Serological testing and magnetic resonance imaging were employed to determine the effect of iP-A2B5+OPCs cell therapy. The Basso-Beattie-Bresnahan score and inclined plane test were performed on days 1, 3, 7, and 14 after cell transplantation, respectively. Differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were detected by microarray analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyse the biological functions of these lncRNAs and mRNAs. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify variations in the expression of crucial target genes. The results demonstrated that induced pluripotent stem cells exhibited embryonic stem cell-like morphology and could differentiate into diverse neural cells dominated by oligodendrocytes. The neurobehavioural performance of rats treated with iP-A2B5+OPCs transplantation was better than that of rats with SCC without cell transplantation. Notably, we found that 22 lncRNAs and 42 mRNAs were concurrently altered after cell transplantation, and the key lncRNA (NR_037671) and target gene (Cntnap5a) were identified in the iP-A2B5+OPCs group. Moreover, RT-qPCR revealed that iP-A2B5+OPCs transplantation reversed the downregulation of NR_037671 induced by SCC. Our findings indicated that iP-A2B5+OPCs transplantation effectively improves neurological function recovery after SCC, and the mechanism might be related to alterations in the expression of lncRNAs and mRNAs, such as NR_037671 and Cntnap5a.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Li Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lan-Chun Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Lan-Lan Shi
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Xue-Fei Han
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Su Liu
- Internal Center of Spinal Cord Injury, Johns Hopkins School of Medicine, Baltimore, 21250, Maryland, USA
- Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, 21250, Maryland, USA
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ting-Hua Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neuroscience, Kunming Medical University, Kunming, 650031, Yunnan, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
6
|
Hu Y, Zhao H, Shi S, Zhao Y, Gao X, Sun J, Li Z, Yao H. Effects of electroacupuncture on glial scar generation in SCI model rats. Anat Rec (Hoboken) 2023; 306:3156-3168. [PMID: 36866416 DOI: 10.1002/ar.25132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 03/04/2023]
Abstract
Spinal cord injury (SCI) is a commonly occurring and severe form of central nervous system (CNS) injury. Previous studies have demonstrated that electroacupuncture (EA) therapy promotes recovery from SCI. In this study, we observed changes in the glial scars of rats with SCI to gain insight into how EA therapy positively influences locomotor function. The experimental rats were randomly divided into three groups: the sham group, the SCI group and the SCI + EA group. Rats in the SCI + EA group received a 28-day treatment course using the Dazhui (GV14) acupoint and the Mingmen (GV4) acupoint for 20 min/day. The Basso-Beattie-Bresnahan (BBB) score was used to estimate the neural function of rats in all groups. We found that before sacrifice on Day 28, the BBB score was significantly improved in the SCI + EA group, which was higher than that observed in the SCI group. Hematoxylin-eosin staining revealed morphological improvements in spinal cord tissues of the rats in the EA + SCI group with reduced glial scars and cavities. Based on immunofluorescence staining, reactive astrocytes overpopulated both the SCI and SCI + EA groups following SCI. Moreover, improved generation of reactive astrocytes at lesions was observed in the SCI + EA group compared with the SCI group. After treatment, EA inhibited glial scar generation. EA effectively downregulated fibrillary acidic protein (GFAP) and vimentin protein and mRNA expression levels, according to the results from Western blot assays and reverse transcription-polymerase chain reaction (RT-PCR). We hypothesized that these findings described might represent the mechanism underlying EA inhibition of glial scar generation, morphological improvements in tissues and promotion of neural recovery from SCI in rats.
Collapse
Affiliation(s)
- Yu Hu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haobin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Suhua Shi
- Department of Rehabilitation, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yali Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiaoming Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Jingwen Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zhigang Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Haijiang Yao
- Treatment Center of Traditional Chinese Medicine, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
7
|
Kurahashi T, Nishime C, Nishinaka E, Komaki Y, Seki F, Urano K, Harada Y, Yoshikawa T, Dai P. Transplantation of Chemical Compound-Induced Cells from Human Fibroblasts Improves Locomotor Recovery in a Spinal Cord Injury Rat Model. Int J Mol Sci 2023; 24:13853. [PMID: 37762156 PMCID: PMC10530737 DOI: 10.3390/ijms241813853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of regenerative medicine using cell therapy is eagerly awaited for diseases such as spinal cord injury (SCI), for which there has been no radical cure. We previously reported the direct conversion of human fibroblasts into neuronal-like cells using only chemical compounds; however, it is unclear whether chemical compound-induced neuronal-like (CiN) cells are clinically functional. In this study, we partially modified the method of inducing CiN cells (termed immature CiN cells) and examined their therapeutic efficacy, in a rat model of SCI, to investigate whether immature CiN cells are promising for clinical applications. Motor function recovery, after SCI, was assessed using the Basso, Beattie, and Bresnahan (BBB) test, as well as the CatWalk analysis. We found that locomotor recovery, after SCI in the immature CiN cell-transplanted group, was partially improved compared to that in the control group. Consistent with these results, magnetic resonance imaging (MRI) and histopathological analyses revealed that nerve recovery or preservation improved in the immature CiN cell-transplanted group. Furthermore, transcriptome analysis revealed that immature CiN cells highly express hepatocyte growth factor (HGF), which has recently been shown to be a promising therapeutic agent against SCI. Our findings suggest that immature CiN cells may provide an alternative strategy for the regenerative therapy of SCI.
Collapse
Affiliation(s)
- Toshihiro Kurahashi
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| | - Chiyoko Nishime
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Eiko Nishinaka
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Fumiko Seki
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Koji Urano
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; (C.N.); (E.N.); (Y.K.); (F.S.); (K.U.)
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Toshikazu Yoshikawa
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
- Louis Pasteur Center for Medical Research, 103-5 Tanaka-Monzen-cho, Sakyo-ku, Kyoto 606-8225, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (T.K.); (T.Y.)
| |
Collapse
|
8
|
da Silva VA, Bobotis BC, Correia FF, Lima-Vasconcellos TH, Chiarantin GMD, De La Vega L, Lombello CB, Willerth SM, Malmonge SM, Paschon V, Kihara AH. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int J Mol Sci 2023; 24:13642. [PMID: 37686446 PMCID: PMC10488158 DOI: 10.3390/ijms241713642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Tissue engineering for spinal cord injury (SCI) remains a complex and challenging task. Biomaterial scaffolds have been suggested as a potential solution for supporting cell survival and differentiation at the injury site. However, different biomaterials display multiple properties that significantly impact neural tissue at a cellular level. Here, we evaluated the behavior of different cell lines seeded on chitosan (CHI), poly (ε-caprolactone) (PCL), and poly (L-lactic acid) (PLLA) scaffolds. We demonstrated that the surface properties of a material play a crucial role in cell morphology and differentiation. While the direct contact of a polymer with the cells did not cause cytotoxicity or inhibit the spread of neural progenitor cells derived from neurospheres (NPCdn), neonatal rat spinal cord cells (SCC) and NPCdn only attached and matured on PCL and PLLA surfaces. Scanning electron microscopy and computational analysis suggested that cells attached to the material's surface emerged into distinct morphological populations. Flow cytometry revealed a higher differentiation of neural progenitor cells derived from human induced pluripotent stem cells (hiPSC-NPC) into glial cells on all biomaterials. Immunofluorescence assays demonstrated that PCL and PLLA guided neuronal differentiation and network development in SCC. Our data emphasize the importance of selecting appropriate biomaterials for tissue engineering in SCI treatment.
Collapse
Affiliation(s)
- Victor A. da Silva
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Bianca C. Bobotis
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Felipe F. Correia
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Théo H. Lima-Vasconcellos
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Gabrielly M. D. Chiarantin
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Laura De La Vega
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Christiane B. Lombello
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sônia M. Malmonge
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, São Bernardo do Campo 09606-070, SP, Brazil
| | - Vera Paschon
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| | - Alexandre H. Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, Alameda da Universidade s/n, São Bernardo do Campo 09606-070, SP, Brazil
| |
Collapse
|
9
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Keikhaei R, Abdi E, Darvishi M, Ghotbeddin Z, Hamidabadi HG. Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats. Brain Behav 2023; 13:e3043. [PMID: 37165750 PMCID: PMC10338768 DOI: 10.1002/brb3.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) leads to inflammation, axonal degeneration, and gliosis. A combined treatment of exercise and neural stem cells (NSC) has been proposed to improve neural repair. This study evaluated a combined treatment of high-intensity interval training (HIIT) with NSC generation from adipose-derived stem cells (ADSCs) on a contusive model of SCI in rats. MATERIALS AND METHODS In vitro, rat ADSCs were isolated from the perinephric regions of Sprague-Dawley rats using enzymatic digestion. The ADSCs were transdifferentiated into neurospheres using B27, EGF, and bFGF. After production of NSC, they were labeled using green fluorescent protein (GFP). For the in vivo study, rats were divided into eight groups: control group, sham operation group, sham operation + HIIT group, sham operation + NSC group, SCI group, SCI + HIIT group, SCI + NSC group, and SCI/HIIT/NSC group. Laminectomy was carried out at the T12 level using the impactor system. HIIT was performed three times per week. To assess behavioral function, the Basso-Beattie-Bresnahan (BBB) locomotor test and H-reflex was carried out once a week for 12 weeks. We examined glial fibrillary acidic protein (GFAP), S100β, and NF200 expression. RESULTS NSC transplantation, HIIT and combined therapy with NSC transplantation, and the HIIT protocol improved locomotor function with decreased maximum H to maximum M reflexes (H/M ratio) and increased the Basso-Beattie-Bresnahan score. CONCLUSION Combined therapy in contused rats using the HIIT protocol and neurosphere-derived NSC transplantation improves functional and histological outcomes.
Collapse
Affiliation(s)
- Reza Keikhaei
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Elahe Abdi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Marzieh Darvishi
- Shefa Neuroscience Research CenterKhatam Alanbia HospitalTehranIran
- Department of Anatomy, Faculty of MedicineIlam University of Medical SciencesIlamIran
| | - Zohreh Ghotbeddin
- Department of Physiology, Faculty of Veterinary MedicineShahid Chamran University of AhvazAhvazIran
- Stem Cell and Transgenic Technology Research CenterShahid Chamran University of AhvazAhvazIran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Immunogenetic Research CenterDepartment of Anatomy & Cell Biology, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| |
Collapse
|
11
|
Jeong SY, Lee HL, Wee S, Lee H, Hwang G, Hwang S, Yoon S, Yang YI, Han I, Kim KN. Co-Administration of Resolvin D1 and Peripheral Nerve-Derived Stem Cell Spheroids as a Therapeutic Strategy in a Rat Model of Spinal Cord Injury. Int J Mol Sci 2023; 24:10971. [PMID: 37446149 DOI: 10.3390/ijms241310971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Spinal cord injury (SCI), primarily caused by trauma, leads to permanent and lasting loss of motor, sensory, and autonomic functions. Current therapeutic strategies are focused on mitigating secondary injury, a crucial aspect of SCI pathophysiology. Among these strategies, stem cell therapy has shown considerable therapeutic potential. This study builds on our previous work, which demonstrated the functional recovery and neuronal regeneration capabilities of peripheral nerve-derived stem cell (PNSC) spheroids, which are akin to neural crest stem cells, in SCI models. However, the limited anti-inflammatory capacity of PNSC spheroids necessitates a combined therapeutic approach. As a result, we investigated the potential of co-administering resolvin D1 (RvD1), known for its anti-inflammatory and neuroprotective properties, with PNSC spheroids. In vitro analysis confirmed RvD1's anti-inflammatory activity and its inhibitory effect on pro-inflammatory cytokines. In vivo studies involving a rat SCI model demonstrated that combined therapy of RvD1 and PNSC spheroids outperformed monotherapies, exhibiting enhanced neuronal regeneration and anti-inflammatory effects as validated through behavior tests, quantitative reverse transcription polymerase chain reaction, and immunohistochemistry. Thus, our findings suggest that the combined application of RvD1 and PNSC spheroids may represent a novel therapeutic approach for SCI management.
Collapse
Affiliation(s)
- Seung-Young Jeong
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Lan Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SungWon Wee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - HyeYeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - GwangYong Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - SaeYeon Hwang
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
- Graduate Program in Bioindustrial Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - SolLip Yoon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Il Yang
- Paik Imje Memorial Institute for Clinical Research, InJe University College of Medicine, Busan 47392, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Keung-Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023; 12:cells12060853. [PMID: 36980193 PMCID: PMC10046908 DOI: 10.3390/cells12060853] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Spinal cord injury (SCI) is a complex tissue injury resulting in permanent and degenerating damage to the central nervous system (CNS). Detrimental cellular processes occur after SCI, including axonal degeneration, neuronal loss, neuroinflammation, reactive gliosis, and scar formation. The glial scar border forms to segregate the neural lesion and isolate spreading inflammation, reactive oxygen species, and excitotoxicity at the injury epicenter to preserve surrounding healthy tissue. The scar border is a physicochemical barrier composed of elongated astrocytes, fibroblasts, and microglia secreting chondroitin sulfate proteoglycans, collogen, and the dense extra-cellular matrix. While this physiological response preserves viable neural tissue, it is also detrimental to regeneration. To overcome negative outcomes associated with scar formation, therapeutic strategies have been developed: the prevention of scar formation, the resolution of the developed scar, cell transplantation into the lesion, and endogenous cell reprogramming. This review focuses on cellular/molecular aspects of glial scar formation, and discusses advantages and disadvantages of strategies to promote regeneration after SCI.
Collapse
|
13
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
14
|
Shi Y, Liu Y, Zhang B, Li X, Lin J, Yang C. Human Menstrual Blood-Derived Endometrial Stem Cells Promote Functional Recovery by Improving the Inflammatory Microenvironment in a Mouse Spinal Cord Injury Model. Cell Transplant 2023; 32:9636897231154579. [PMID: 36786359 PMCID: PMC9932767 DOI: 10.1177/09636897231154579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Spinal cord injury (SCI) is a traumatic injury of the central nervous system. Because neurons are damaged and difficult to regenerate after SCI, its repair remains challenging. However, recent research on stem cell therapy have favored its use after SCI. In this study, based on the establishment of a mouse SCI model, human menstrual blood-derived endometrial stem cells (MenSCs) were intrathecally injected to explore the role and molecular mechanism of MenSCs in SCI. MenSCs were transplanted following SCI in the animal model, and behavioral evaluations showed that MenSC transplantation improved functional recovery. Therefore, samples were collected after 7 days, and transcriptome sequencing was performed. Gene Ontology (GO) enrichment analysis revealed that SCI is closely related to immune system processes. After transplantation of MenSCs, the immune response was significantly activated. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, MenSC transplantation was found to be closely related to Th1, Th2, and Th17 cell differentiation pathways. Neuronal damage and glial cell proliferation and activation in the different groups were detected by fluorescence immunohistochemistry and Western blotting 7 days after SCI. Simultaneously, the activation of different types of microglia was detected and the expression of pro-inflammatory and anti-inflammatory factors was quantitatively analyzed. The results showed that MenSC transplantation and sonic hedgehog (Shh)-induced MenSCs accelerated neuronal recovery at the injured site, inhibited the formation of glial cells and microglial activation at the injured site, inhibited the expression of inflammatory factors, and improved the inflammatory microenvironment to achieve functional recovery of SCI. This study provides an experimental basis for the study of the role and molecular mechanism of MenSCs in SCI repair, and a reference for the role of Shh-induced MenSCs in SCI repair.
Collapse
Affiliation(s)
- Yaping Shi
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China
| | - Yunfei Liu
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China
| | - Bichao Zhang
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China,Henan Key Laboratory of Medical Tissue
Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Ciqing Yang
- Stem Cells and Biotherapy Engineering
Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and
Biotherapy, School of Life Science and Technology, Xinxiang Medical University,
Xinxiang, China,Henan Key Laboratory of Medical Tissue
Regeneration, Xinxiang Medical University, Xinxiang, China,Henan Key Laboratory of
Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University,
Xinxiang, China,Ciqing Yang, Stem Cells and Biotherapy
Engineering Research Center of Henan, National Joint Engineering Laboratory of
Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang
Medical University, Xinxiang 453003, China.
| |
Collapse
|
15
|
Sterner RC, Sterner RM. Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 2023; 13:1084101. [PMID: 36685598 PMCID: PMC9853461 DOI: 10.3389/fimmu.2022.1084101] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition that is often associated with significant loss of function and/or permanent disability. The pathophysiology of SCI is complex and occurs in two phases. First, the mechanical damage from the trauma causes immediate acute cell dysfunction and cell death. Then, secondary mechanisms of injury further propagate the cell dysfunction and cell death over the course of days, weeks, or even months. Among the secondary injury mechanisms, inflammation has been shown to be a key determinant of the secondary injury severity and significantly worsens cell death and functional outcomes. Thus, in addition to surgical management of SCI, selectively targeting the immune response following SCI could substantially decrease the progression of secondary injury and improve patient outcomes. In order to develop such therapies, a detailed molecular understanding of the timing of the immune response following SCI is necessary. Recently, several studies have mapped the cytokine/chemokine and cell proliferation patterns following SCI. In this review, we examine the immune response underlying the pathophysiology of SCI and assess both current and future therapies including pharmaceutical therapies, stem cell therapy, and the exciting potential of extracellular vesicle therapy.
Collapse
Affiliation(s)
- Robert C. Sterner
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rosalie M. Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States,*Correspondence: Rosalie M. Sterner,
| |
Collapse
|
16
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
17
|
Luo S, Wu J, Qiu Y, Xiao B, Xi Y, Yang C, Shi Z, Wang W. Hydrogen Promotes the Effectiveness of Bone Mesenchymal Stem Cell Transplantation in Rats with Spinal Cord Injury. Stem Cells Int 2023; 2023:8227382. [PMID: 37181828 PMCID: PMC10175019 DOI: 10.1155/2023/8227382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Although bone mesenchymal stem cell (BMSC) transplantation has been applied to the treatment of spinal cord injury (SCI), the effect is unsatisfactory due to the specific microenvironment (inflammation and oxidative stress) in the SCI area, which leads to the low survival rate of transplanted cells. Thus, additional strategies are required to improve the efficacy of transplanted cells in the treatment of SCI. Hydrogen possesses antioxidant and anti-inflammatory properties. However, whether hydrogen can enhance the effect of BMSC transplantation in the treatment of SCI has not yet been reported. This study was aimed at investigating whether hydrogen promotes the therapeutic effect of BMSC transplantation in the treatment of SCI in rats. In vitro, BMSCs were cultured in a normal medium and a hydrogen-rich medium to study the effect of hydrogen on the proliferation and migration of BMSCs. BMSCs were treated with a serum-deprived medium (SDM), and the effects of hydrogen on the apoptosis of BMSCs were studied. In vivo, BMSCs were injected into the rat model of SCI. Hydrogen-rich saline (5 ml/kg) and saline (5 ml/kg) were given once a day via intraperitoneal injection. Neurological function was evaluated using the Basso, Beattie, and Bresnahan (BBB) and CatWalk gait analyses. Histopathological analysis, oxidative stress, inflammatory factors (TNF-α, IL-1β, and IL-6), and transplanted cell viability were detected at 3 and 28 days after SCI. Hydrogen can significantly enhance BMSC proliferation and migration and tolerance to SDM. Hydrogen and BMSC codelivery can significantly enhance neurological function recovery by improving the transplant cell survival rate and migration. Hydrogen can enhance the migration and proliferation capacity of BMSCs to repair SCI by reducing the inflammatory response and oxidative stress in the injured area. Hydrogen and BMSC codelivery is an effective method to improve BMSC transplantation in the treatment of SCI.
Collapse
Affiliation(s)
- Shengchang Luo
- Department of Orthopaedics, The First People's Hospital of Huzhou, No. 158, Plaza Back Road, Huzhou, 313099 Zhejiang Province, China
| | - Jianxin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Yuanyuan Qiu
- School Hospital of Shanghai University of Sport, No. 399, Changhai Road, Shanghai 200433, China
| | - Bing Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Yanhai Xi
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| | - Chengwei Yang
- Department of Spinal Surgery, The 940th Hospital of Joint Logistics Support Force of People's Liberation Army, No. 333 South Binhe Road, Lanzhou, 730050 Gansu Province, China
| | - Zhicai Shi
- Department of Orthopaedics, The First Affiliated Hospital of Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Weiheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Naval Medical University, No. 415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
18
|
Molecular Characterization and Clinical Characteristics of m5C-Based RNA Methylation in Spinal Cord Injury: Validated by qPCR. Int J Genomics 2022; 2022:5433860. [PMID: 36582430 PMCID: PMC9794433 DOI: 10.1155/2022/5433860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 12/03/2022] [Indexed: 12/31/2022] Open
Abstract
Aberrant patterns of 5-methylcytosine (m5C)-based ribonucleic acid (RNA) methylation have critical roles in various human diseases, but their importance in spinal cord injury (SCI) is largely unknown. We explore the expression patterns and potential roles of m5C-based regulators of RNA modification after SCI. We analyzed 16 m5C-based regulators of RNA modification in tissues with SCI and normal rats from the Gene Expression Omnibus database. We constructed a "gene signature" of m5C-based regulators of RNA modification to predict the prognosis of SCI using least absolute shrinkage and selection operator regression and random-forest strategy. We found that the m5C-related genes, deoxyribonucleic acid (DNA) methyltransferase1 (Dnmt1), methyl-CpG binding domain protein 2 (Mbd2), ubiquitin-like with PHD and ring finger domains 1 (Uhrf1), uracil-N-glycosylase (Ung), and zinc finger and BTB(brica-brac, tramtrack, and broad) domain containing 38 (Zbtb38) had high expression, and zinc finger and BTB domain containing 4 (Zbtb4) had low expression in SCI. Analysis of the correlation between the gene sets of m5C-based regulators of RNA modification and immune-cell infiltration and immune response revealed Dnmt1, DNA methyltransferases 3A (Dnmt3a), Mbd2, and Ung to be positive regulators of the immune microenvironment, and Zbtb4 may negatively regulate the immune environment. Then, two molecular subtypes were identified based on 16 m5C-regulated genes. Functional-enrichment analysis of differentially expressed genes between different patterns of m5C-based modification was undertaken. Through the creation of a protein-protein interaction network, we screened 11 hub genes. We demonstrated their importance between SCI group and sham group using real-time reverse transcription-quantitative polymerase chain reaction in rat model. Expression of hub genes did not correlate with mitophagy but was positively correlated with endoplasmic reticulum stress (ERS), which suggested that there may be differences in ERS between different patterns of m5C-based modification. This present study explored and discovered the close link between m5C regulators-related genes and SCI. We also hope our findings may contribute to further mechanistic and therapeutic research on the role of key m5C regulators after SCI.
Collapse
|
19
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Curcumin-Primed Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles Improve Motor Functional Recovery of Mice with Complete Spinal Cord Injury by Reducing Inflammation and Enhancing Axonal Regeneration. Neurochem Res 2022; 48:1334-1346. [PMID: 36449198 DOI: 10.1007/s11064-022-03832-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022]
Abstract
Background Transplantation of extracellular vesicles (EVs) from stem cells is a feasible scheme for traumatic spinal cord injury (SCI). However, there is no relevant report about stem cells derived EVs loaded with curcumin for SCI treatment. Methods Mouse umbilical cord mesenchymal stem cells (MUMSCs) were incubated in the medium containing curcumin (20 µM) for 48 h. Extracellular vesicles (EVs) and curcumin-primed EVs (Cur-EVs) were collected by ultracentrifugation. Characterizations of EVs/Cur-EVs were analyzed by western blotting with CD9 and CD81 antibodies, transmission electron microscopy and nano-tracking analysis. Curcumin in the Cur-EVs was analyzed by high performance liquid phase chromatography at 430 nm wavelength. Immunofluorescence and in vivo imaging methods were used to confirm biocompatibility of EVs/Cur-EVs in vitro and in vivo. Mice with complete SCI were treated with EVs/Cur-EVs to compare the differences of locomotor function, inflammation, histological changes and remyelination. Results The isolated EVs and Cur-EVs from MUMSCs have good biocompatibility. Compared with the model mice, the locomotor function, inflammation and axonal regeneration of mice were significantly improved after injection of Cur-EVs/EVs. Furthermore, it is more effective for structural and functional recovery of complete SCI after the Cur-EVs treatment compared with the EVs treatment. In the lesioned regions, the macrophage polarization from M1 to M2 phenotype and axonal regeneration were significantly improved in the Cur-EVs group compared with the EVs group. Conclusions Our data suggested that EVs from MUMSCs might be a promising drug delivery vehicle of curcumin for the efficient and biocompatible treatment of severe SCI.
Collapse
|
21
|
Naeimi A, Zaminy A, Amini N, Balabandi R, Golipoor Z. Effects of melatonin-pretreated adipose-derived mesenchymal stem cells (MSC) in an animal model of spinal cord injury. BMC Neurosci 2022; 23:65. [PMCID: PMC9667651 DOI: 10.1186/s12868-022-00752-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background One of the most serious nervous system diseases is spinal cord injury(SCI), which is increasing for various reasons. Although no definitive treatment has yet been identified for SCI, one possible treatment is adipose-derived stem cells(ADSCs). However, a key issue in transplantation is improving cells’ survival and function in the target tissue. Melatonin(MT) hormone with antioxidant properties can prolong cell survival and improve cell function. This study investigates the pre-conditioning of ADSCs with melatonin for enhancing the engraftment and neurological function of rats undergoing SCI. Methods 42 male Sprague–Dawley rats were divided into six groups, including Control, Sham, Model, Vehicle, and Lesion treatments A and B. After acquiring white adipose tissue, stem cells were evaluated by flow cytometry. SCI was then applied in Model, Vehicle, A, and B groups. Group A and B received ADSCs and ADSCs + melatonin, respectively, 1 week after SCI, but the vehicle received only an intravenous injection for simulation; The other groups were recruited for the behavioral test. Immunohistochemistry(IHC) was used to assess the engraftment and differentiation of ADSCs in the SCI site. Basso, Beattie, and Bresnahan's score was used to evaluate motor function between the six groups. Results Histological studies and cell count confirmed ADSCs implantation at the injury site, which was higher in the MT-ADSCs (P < 0.001). IHC revealed the differentiation of ADSCs and MT-ADSCs into neurons, astrocytes, and oligodendrocyte lineage cells, which were higher in MT-ADSCs. Functional improvement was observed in SCI + ADSCs and SCI + MT-ADSCs groups. Conclusion The pre-conditioning of ADSCs with melatonin positively affects engraftment and neuronal differentiation in SCI but does not impact performance improvement compared to the ADSCs.
Collapse
Affiliation(s)
- Arvin Naeimi
- grid.411874.f0000 0004 0571 1549Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Zaminy
- grid.411874.f0000 0004 0571 1549Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Naser Amini
- grid.411746.10000 0004 4911 7066Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raziye Balabandi
- grid.411874.f0000 0004 0571 1549Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zoleikha Golipoor
- grid.411874.f0000 0004 0571 1549Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
22
|
Zhang Y, Cao L, Du R, Tian F, Li X, Yuan Y, Wang C. MiR-31 improves spinal cord injury in mice by promoting the migration of bone marrow mesenchymal stem cells. PLoS One 2022; 17:e0272499. [PMID: 36067193 PMCID: PMC9447891 DOI: 10.1371/journal.pone.0272499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Stem cell transplantation therapy is a potential approach for the repair of spinal cord injuries and other neurodegenerative diseases, but its effectiveness is hampered by the low rate of targeted migration of cells to the area of injury. The aim of this study was to investigate the effects of miR-31 on the migration of bone marrow mesenchymal stem cells (BMSCs) and the regulation of MMP-2 and CXCR4 expression in vitro and in vivo.
Methods
eGFP-expressing BMSCs were isolated and cultured for subsequent experiments. The experiments were divided into three groups: control group, miR-31agomir group, and miR-31antagomir group. Proliferation was analyzed using CCK-8 and flow cytometry; cell migration in vitro was analyzed using wound-healing and transwell assays. The mouse SCI model was prepared by the impact method, and cells were transplanted (3 groups, 12 per group). Relevant inflammatory factors were detected by ELISA. The BMS score was used to evaluate the functional recovery of the mouse spinal cord and the frozen section was used to analyze the cell migration ability in vivo. The in vitro and in vivo expression levels of MMP-2 and CXCR4 were evaluated by Western blot and immunohistochemical staining.
Results
In vitro experiments showed that cells in the miR-31agomir group exhibited enhanced cell proliferation (P<0.05, P<0.001) and migration (P<0.001) and upregulated protein expression levels of CXCR4 (P<0.01) and MMP-2 (P<0.001) compared with cells in the control group. The results of in vivo experiments showed that the expression of pro-inflammatory factors was reduced after cell transplantation treatment. Cells in the miR-31agomir group showed enhanced cell-targeted migration ability (P<0.001), improved the function of damaged tissues (P<0.001), and upregulated CXCR4 and MMP-2 expression compared to the control group (P<0.001).
Conclusion
Our experiment demonstrated that miR-31 could promote the migration of BMSCs and miR-31 could repair and improve the function of damaged tissues in SCI.
Collapse
Affiliation(s)
- Yujuan Zhang
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Cao
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Key Laboratory of Oral Disease Prevention and New Materials, Taiyuan, Shanxi, China
- Department of Dental Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruochen Du
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Tian
- Department of Key Laboratory of Oral Disease Prevention and New Materials, Taiyuan, Shanxi, China
| | - Xiao Li
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yitong Yuan
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail: (CW); (YY)
| | - Chunfang Wang
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, China
- * E-mail: (CW); (YY)
| |
Collapse
|
23
|
Saini R, Pahwa B, Agrawal D, Singh P, Gujjar H, Mishra S, Jagdevan A, Misra M. Efficacy and outcome of bone marrow derived stem cells transplanted via intramedullary route in acute complete spinal cord injury – A randomized placebo controlled trial. J Clin Neurosci 2022; 100:7-14. [DOI: 10.1016/j.jocn.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
24
|
Wang H, Xia Y, Li B, Li Y, Fu C. Reverse Adverse Immune Microenvironments by Biomaterials Enhance the Repair of Spinal Cord Injury. Front Bioeng Biotechnol 2022; 10:812340. [PMID: 35646849 PMCID: PMC9136098 DOI: 10.3389/fbioe.2022.812340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a severe and traumatic disorder that ultimately results in the loss of motor, sensory, and autonomic nervous function. After SCI, local immune inflammatory response persists and does not weaken or disappear. The interference of local adverse immune factors after SCI brings great challenges to the repair of SCI. Among them, microglia, macrophages, neutrophils, lymphocytes, astrocytes, and the release of various cytokines, as well as the destruction of the extracellular matrix are mainly involved in the imbalance of the immune microenvironment. Studies have shown that immune remodeling after SCI significantly affects the survival and differentiation of stem cells after transplantation and the prognosis of SCI. Recently, immunological reconstruction strategies based on biomaterials have been widely explored and achieved good results. In this review, we discuss the important factors leading to immune dysfunction after SCI, such as immune cells, cytokines, and the destruction of the extracellular matrix. Additionally, the immunomodulatory strategies based on biomaterials are summarized, and the clinical application prospects of these immune reconstructs are evaluated.
Collapse
|
25
|
Chen L, Wang W, Lin Z, Lu Y, Chen H, Li B, Li Z, Xia H, Li L, Zhang T. Conducting molybdenum sulfide/graphene oxide/polyvinyl alcohol nanocomposite hydrogel for repairing spinal cord injury. J Nanobiotechnology 2022; 20:210. [PMID: 35524268 PMCID: PMC9074236 DOI: 10.1186/s12951-022-01396-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
A sort of composite hydrogel with good biocompatibility, suppleness, high conductivity, and anti-inflammatory activity based on polyvinyl alcohol (PVA) and molybdenum sulfide/graphene oxide (MoS2/GO) nanomaterial has been developed for spinal cord injury (SCI) restoration. The developed (MoS2/GO/PVA) hydrogel exhibits excellent mechanical properties, outstanding electronic conductivity, and inflammation attenuation activity. It can promote neural stem cells into neurons differentiation as well as inhibit the astrocytes development in vitro. In addition, the composite hydrogel shows a high anti-inflammatory effect. After implantation of the composite hydrogel in mice, it could activate the endogenous regeneration of the spinal cord and inhibit the activation of glial cells in the injured area, thus resulting in the recovery of locomotor function. Overall, our work provides a new sort of hydrogels for SCI reparation, which shows great promise for improving the dilemma in SCI therapy.
Collapse
Affiliation(s)
- Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Wanshun Wang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China.,The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Yao Lu
- Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.,Department of Orthopedics, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, Guangdong, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China.,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Zhan Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China
| | - Hong Xia
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China. .,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.
| | - Lihua Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China.
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Orthopedic Center, General Hospital of Southern Theater Command of PLA, Guangzhou, 510010, Guangdong, China. .,Southern Medical University, 1023 South Shatai Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
26
|
Modification of the alginate hydrogel with fibroblast‐ and Schwann cell‐derived extracellular matrix potentiates differentiation of mesenchymal stem cells toward neuron‐like cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Jing J, Jiang H, Zhang L. Endothelial progenitor cells promote neural stem cell proliferation in hypoxic conditions through VEGF via the PI3K/AKT pathway. J Recept Signal Transduct Res 2022; 42:479-485. [PMID: 35042445 DOI: 10.1080/10799893.2021.2019275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neurons and vascular cells compose neurovascular niches in the central nervous system where endothelial cells can promote neurogenesis via direct and indirect effects. Neurocytes and vascular cells are gravely destroyed upon spinal cord injury, which severely affects spinal motor functions. Neurogenesis originates from neural stem cells (NSCs) and endothelial cells derived from endothelial progenitor cells (EPCs) in the spinal cord. To demonstrate whether EPCs promote NSC proliferation, we cultured NSCs with EPC-conditioned medium from hypoxic conditions (CM) and EPC-unconditioned medium (UCM), i.e. endothelial cell basal medium-2, as a control. The number of S-phase cells in CM were 54.73 ± 0.67 whereas those in UCM were 26.30 ± 0.43, and the number of cells in CM was higher than that in UCM (0.32 ± 0.0019 vs. 0.55 ± 0.0029). We hypothesized that the cell proliferation was promoted by vascular endothelial growth factor A (VEGFA), which is secreted by EPCs in hypoxic conditions. We then used VEGF shRNA to decrease VEGFA secretion by EPCs. NSCs were cultured in conditioned medium from shRNA transfected EPCs under hypoxia (shRNA-CM) and EPC-conditioned medium under hypoxia (CM). The number of S-phase cells in the shRNA-CM was 36.86 ± 0.49 whereas that in CM was 53.61 ± 0.89, and the number of cells in the shRNA-CM was lower than that in CM (0.55 ± 0.0032 vs. 0.34 ± 0.0029). These data indicate that EPCs could promote NSC proliferation in hypoxic condition through VEGFA secretion.
Collapse
Affiliation(s)
- Jingti Jing
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haoming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lin Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
28
|
METTL14 promotes apoptosis of spinal cord neurons by inducing EEF1A2 m6A methylation in spinal cord injury. Cell Death Dis 2022; 8:15. [PMID: 35013140 PMCID: PMC8748977 DOI: 10.1038/s41420-021-00808-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Spinal cord injury (SCI) is a devastating traumatic condition. METTL14-mediated m6A modification is associated with SCI. This study was intended to investigate the functional mechanism of RNA methyltransferase METTL14 in spinal cord neuron apoptosis during SCI. The SCI rat model was established, followed by evaluation of pathological conditions, apoptosis, and viability of spinal cord neurons. The neuronal function of primary cultured spinal motoneurons of rats was assessed after hypoxia/reoxygenation treatment. Expressions of EEF1A2, Akt/mTOR pathway-related proteins, inflammatory cytokines, and apoptosis-related proteins were detected. EEF1A2 was weakly expressed and Akt/mTOR pathway was inhibited in SCI rat models. Hypoxia/Reoxygenation decreased the viability of spinal cord neurons, promoted LDH release and neuronal apoptosis. EEF1A2 overexpression promoted the viability of spinal cord neurons, inhibited neuronal apoptosis, and decreased inflammatory cytokine levels. Silencing METTL14 inhibited m6A modification of EEF1A2 and increased EEF1A2 expression while METTL14 overexpression showed reverse results. EEF1A2 overexpression promoted viability and inhibited apoptosis of spinal cord neurons and inflammation by activating the Akt/mTOR pathway. In conclusion, silencing METTL14 repressed apoptosis of spinal cord neurons and attenuated SCI by inhibiting m6A modification of EEF1A2 and activating the Akt/mTOR pathway.
Collapse
|
29
|
Pang QM, Chen SY, Xu QJ, Fu SP, Yang YC, Zou WH, Zhang M, Liu J, Wan WH, Peng JC, Zhang T. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol 2021; 12:751021. [PMID: 34925326 PMCID: PMC8674561 DOI: 10.3389/fimmu.2021.751021] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow. Over the past few decades, studies have found that the interaction between immune cells at the damaged site results in a robust and persistent inflammatory response. Current therapy strategies focus primarily on the inhibition of subacute and chronic neuroinflammation after the acute inflammatory response was executed. Growing evidences have documented that mesenchymal stem cells (MSCs) engraftment can be served as a promising cell therapy for SCI. Numerous studies have shown that MSCs transplantation can inhibit the excessive glial scar formation as well as inflammatory response, thereby facilitating the anatomical and functional recovery. Here, we will review the effects of inflammatory response and glial scar formation in spinal cord injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation after SCI will be reviewed as well.
Collapse
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi-Jing Xu
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Chun Yang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wang-Hui Zou
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Chen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
30
|
Kim GU, Sung SE, Kang KK, Choi JH, Lee S, Sung M, Yang SY, Kim SK, Kim YI, Lim JH, Seo MS, Lee GW. Therapeutic Potential of Mesenchymal Stem Cells (MSCs) and MSC-Derived Extracellular Vesicles for the Treatment of Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222413672. [PMID: 34948463 PMCID: PMC8703906 DOI: 10.3390/ijms222413672] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a life-threatening condition that leads to permanent disability with partial or complete loss of motor, sensory, and autonomic functions. SCI is usually caused by initial mechanical insult, followed by a cascade of several neuroinflammation and structural changes. For ameliorating the neuroinflammatory cascades, MSC has been regarded as a therapeutic agent. The animal SCI research has demonstrated that MSC can be a valuable therapeutic agent with several growth factors and cytokines that may induce anti-inflammatory and regenerative effects. However, the therapeutic efficacy of MSCs in animal SCI models is inconsistent, and the optimal method of MSCs remains debatable. Moreover, there are several limitations to developing these therapeutic agents for humans. Therefore, identifying novel agents for regenerative medicine is necessary. Extracellular vesicles are a novel source for regenerative medicine; they possess nucleic acids, functional proteins, and bioactive lipids and perform various functions, including damaged tissue repair, immune response regulation, and reduction of inflammation. MSC-derived exosomes have advantages over MSCs, including small dimensions, low immunogenicity, and no need for additional procedures for culture expansion or delivery. Certain studies have demonstrated that MSC-derived extracellular vesicles (EVs), including exosomes, exhibit outstanding chondroprotective and anti-inflammatory effects. Therefore, we reviewed the principles and patho-mechanisms and summarized the research outcomes of MSCs and MSC-derived EVs for SCI, reported to date.
Collapse
Affiliation(s)
- Gang-Un Kim
- Department of Orthopedic Surgery, Hanil General Hospital, 308 Uicheon-ro, Dobong-gu, Seoul 01450, Korea;
| | - Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Sijoon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Minkyoung Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
| | - Seung Yun Yang
- Department of Biomaterials Science, Life and Industry Convergence Institute, Pusan National University, Miryang 50463, Korea;
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD, 61Heolleungro 8-gil, Seocho-gu, Seoul 06800, Korea;
| | | | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.)
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| | - Gun Woo Lee
- Cellexobio, Co. Ltd., Daegu 42415, Korea;
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea
- Correspondence: (M.-S.S.); (G.W.L.); Tel.: +82-53-7905727 (M.S.S.); +82-53-6203642 (G.W.L.)
| |
Collapse
|
31
|
Martín-López M, González-Muñoz E, Gómez-González E, Sánchez-Pernaute R, Márquez-Rivas J, Fernández-Muñoz B. Modeling chronic cervical spinal cord injury in aged rats for cell therapy studies. J Clin Neurosci 2021; 94:76-85. [PMID: 34863466 DOI: 10.1016/j.jocn.2021.09.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022]
Abstract
With an expanding elderly population, an increasing number of older adults will experience spinal cord injury (SCI) and might be candidates for cell-based therapies, yet there is a paucity of research in this age group. The objective of the present study was to analyze how aged rats tolerate behavioral testing, surgical procedures, post-operative complications, intra-spinal cell transplantation and immunosuppression, and to examine the effectiveness of human iPSC-derived Neural Progenitor Cells (IMR90-hiPSC-NPCs) in a model of SCI. We performed behavioral tests in rats before and after inducing cervical hemi-contusions at C4 level with a fourth-generation Ohio State University Injury Device. Four weeks later, we injected IMR90-hiPSC-NPCs in animals that were immunosuppressed by daily cyclosporine injection. Four weeks after injection we analyzed locomotor behavior and mortality, and histologically assessed the survival of transplanted human NPCs. As rats aged, their success at completing behavioral tests decreased. In addition, we observed high mortality rates during behavioral training (41.2%), after cervical injury (63.2%) and after cell injection (50%). Histological analysis revealed that injected cells survived and remained at and around the grafted site and did not cause tumors. No locomotor improvement was observed in animals four weeks after IMR90-hiPSC-NPC transplantation. Our results show that elderly rats are highly vulnerable to interventions, and thus large groups of animals must be initially established to study the potential efficacy of cell-based therapies in age-related chronic myelopathies.
Collapse
Affiliation(s)
- María Martín-López
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain; Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Programa de Doctorado en Biología Molecular, Biomedicina e Investigación Clínica, Universidad de Sevilla, Sevilla, Spain.
| | - Elena González-Muñoz
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Málaga, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 29071 Málaga, Spain.
| | - Emilio Gómez-González
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Grupo de Física Interdisciplinar, Departamento de Física Aplicada III, ETS Ingeniería, Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Rosario Sánchez-Pernaute
- Unidad de Coordinación, Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| | - Javier Márquez-Rivas
- Grupo de Neurociencia Aplicada, Instituto de Investigaciones Biomédicas de Sevilla (IBIS), 41013 Sevilla, Spain; Departamento de Neurocirugía, Hospital Universitario Virgen del Rocío, 41013 Sevilla, Spain.
| | - Beatriz Fernández-Muñoz
- Unidad de Producción y Reprogramación celular (UPRC), Red Andaluza de Diseño y Traslación de Terapias Avanzadas (RAdytTA), 41092 Sevilla, Spain.
| |
Collapse
|
32
|
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.
DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.
CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.
Collapse
|
33
|
Preclinical Assessment of Mesenchymal-Stem-Cell-Based Therapies in Spinocerebellar Ataxia Type 3. Biomedicines 2021; 9:biomedicines9121754. [PMID: 34944570 PMCID: PMC8698556 DOI: 10.3390/biomedicines9121754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies for neurodegenerative diseases, including spinocerebellar ataxias. Spinocerebellar ataxia type 3 (SCA3)—or Machado–Joseph disease (MJD)—is the most common dominant ataxia, being mainly characterized by motor deficits; however, SCA3/MJD has a complex and heterogeneous pathophysiology, involving many CNS brain regions, contributing to the lack of effective therapies. Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for CNS disorders. Beyond their differentiation potential, MSCs secrete a broad range of neuroregulatory factors that can promote relevant neuroprotective and immunomodulatory actions in different pathophysiological contexts. The objective of this work was to study the effects of (1) human MSC transplantation and (2) human MSC secretome (CM) administration on disease progression in vivo, using the CMVMJD135 mouse model of SCA3/MJD. Our results showed that a single CM administration was more beneficial than MSC transplantation—particularly in the cerebellum and basal ganglia—while no motor improvement was observed when these cell-based therapeutic approaches were applied in the spinal cord. However, the effects observed were mild and transient, suggesting that continuous or repeated administration would be needed, which should be further tested.
Collapse
|
34
|
Deng J, Li M, Meng F, Liu Z, Wang S, Zhang Y, Li M, Li Z, Zhang L, Tang P. 3D spheroids of human placenta-derived mesenchymal stem cells attenuate spinal cord injury in mice. Cell Death Dis 2021; 12:1096. [PMID: 34803160 PMCID: PMC8606575 DOI: 10.1038/s41419-021-04398-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cell (MSC) is an absorbing candidate for cell therapy in treating spinal cord injury (SCI) due to its great potential for multiple cell differentiation, mighty paracrine secretion as well as vigorous immunomodulatory effect, of which are beneficial to the improvement of functional recovery post SCI. However, the therapeutic effects of MSC on SCI have been limited because of the gradual loss of MSC stemness in the process of expanding culture. Therefore, in this study, we aimed to maintain those beneficial properties of MSC via three-dimensional spheroid cell culture and then compared them with conventionally-cultured MSCs in the treatment of SCI both in vitro and in vivo with the aid of two-photon microscope. We found that 3D human placenta-derived MSCs (3D-HPMSCs) demonstrated a significant increase in secretion of anti-inflammatory factors and trophic factors like VEGF, PDGF, FGF via QPCR and Bio-Plex assays, and showed great potentials on angiogenesis and neurite morphogenesis when co-cultured with HUVECs or DRGs in vitro. After transplantation into the injured spinal cord, 3D-HPMSCs managed to survive for the entire experiment and retained their advantageous properties in secretion, and exhibited remarkable effects on neuroprotection by minimizing the lesion cavity, inhibiting the inflammation and astrogliosis, and promoting angiogenesis. Further investigation of axonal dieback via two-photon microscope indicated that 3D-HPMSCs could effectively alleviate axonal dieback post injury. Further, mice only treated with 3D-HPMSCs obtained substantial improvement of functional recovery on electrophysiology, BMS score, and Catwalk analysis. RNA sequencing suggested that the 3D-HPMSCs structure organization-related gene was significantly changed, which was likely to potentiate the angiogenesis and inflammation regulation after SCI. These results suggest that 3D-HPMSCs may hold great potential for the treatment of SCI.
Collapse
Affiliation(s)
- Junhao Deng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Miao Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA
| | - Fanqi Meng
- Department of Spine Surgery, Peking University People's hospital, Beijing, 100044, China
| | - Zhongyang Liu
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Wang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
- Medical college, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- IBM Research-China, Beijing, 100193, China
| | - Ming Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhirui Li
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Licheng Zhang
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| | - Peifu Tang
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Zhao YJ, Qiao H, Liu DF, Li J, Li JX, Chang SE, Lu T, Li FT, Wang D, Li HP, He XJ, Wang F. Lithium promotes recovery after spinal cord injury. Neural Regen Res 2021; 17:1324-1333. [PMID: 34782578 PMCID: PMC8643056 DOI: 10.4103/1673-5374.327348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lithium is associated with oxidative stress and apoptosis, but the mechanism by which lithium protects against spinal cord injury remains poorly understood. In this study, we found that intraperitoneal administration of lithium chloride (LiCl) in a rat model of spinal cord injury alleviated pathological spinal cord injury and inhibited expression of tumor necrosis factor α, interleukin-6, and interleukin 1 β. Lithium inhibited pyroptosis and reduced inflammation by inhibiting Caspase-1 expression, reducing the oxidative stress response, and inhibiting activation of the Nod-like receptor protein 3 inflammasome. We also investigated the neuroprotective effects of lithium intervention on oxygen/glucose-deprived PC12 cells. We found that lithium reduced inflammation, oxidative damage, apoptosis, and necrosis and up-regulated nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 in PC12 cells. All-trans retinoic acid, an Nrf2 inhibitor, reversed the effects of lithium. These results suggest that lithium exerts anti-inflammatory, anti-oxidant, and anti-pyroptotic effects through the Nrf2/heme oxygenase-1 pathway to promote recovery after spinal cord injury. This study was approved by the Animal Ethics Committee of Xi’an Jiaotong University (approval No. 2018-2053) on October 23, 2018.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong-Fan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jia-Xi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Su-E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Teng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Feng-Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao-Peng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine; Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
36
|
Zarepour A, Hooshmand S, Gökmen A, Zarrabi A, Mostafavi E. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells 2021; 10:cells10113189. [PMID: 34831412 PMCID: PMC8620694 DOI: 10.3390/cells10113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) has a major impact on affected patients due to its pathological consequences and absence of capacity for self-repair. Currently available therapies are unable to restore lost neural functions. Thus, there is a pressing need to develop novel treatments that will promote functional repair after SCI. Several experimental approaches have been explored to tackle SCI, including the combination of stem cells and 3D bioprinting. Implanted multipotent stem cells with self-renewing capacity and the ability to differentiate to a diversity of cell types are promising candidates for replacing dead cells in injured sites and restoring disrupted neural circuits. However, implanted stem cells need protection from the inflammatory agents in the injured area and support to guide them to appropriate differentiation. Not only are 3D bioprinted scaffolds able to protect stem cells, but they can also promote their differentiation and functional integration at the site of injury. In this review, we showcase some recent advances in the use of stem cells for the treatment of SCI, different types of 3D bioprinting methods, and the combined application of stem cells and 3D bioprinting technique for effective repair of SCI.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| |
Collapse
|
37
|
Fang Y, Shi L, Duan Z, Rohani S. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: A review. Int J Biol Macromol 2021; 189:554-566. [PMID: 34437920 DOI: 10.1016/j.ijbiomac.2021.08.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
Stem cell-based therapies offer numerous potentials to repair damaged or defective organs. The therapeutic outcomes of human studies, however, fall far short from what is expected. Enhancing stem cells local density and longevity would possibly maximize their healing potential. One promising strategy is to administer stem cells via injectable hydrogels. However, stem cells differentiation process is a delicate matter which is easily affected by various factors such as their interaction with their surrounding materials. Among various biomaterial options for hydrogels' production, hyaluronic acid (HA) has shown great promise. HA is a naturally occurring biological macromolecule, a polysaccharide of large molecular weight which is involved in cell proliferation, cell migration, angiogenesis, fetal development, and tissue function. In the current study we will discuss the applications, prospects, and challenges of HA-based hydrogels in stem cell delivery and fate control.
Collapse
Affiliation(s)
- Yu Fang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Lele Shi
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Zhiwei Duan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Saeed Rohani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Lale Ataei M, Karimipour M, Shahabi P, Pashaei-Asl R, Ebrahimie E, Pashaiasl M. The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury. Cells 2021; 10:cells10102565. [PMID: 34685545 PMCID: PMC8534241 DOI: 10.3390/cells10102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition within the neural system which is clinically manifested by sensory-motor dysfunction, leading, in some cases, to neural paralysis for the rest of the patient’s life. In the current study, mesenchymal stem cells (MSCs) were isolated from the human amniotic fluid, in order to study their juxtacrine and paracrine activities. Flow cytometry analysis was performed to identify the MSCs. A conditioned medium (CM) was collected to measure the level of BDNF, IL-1β, and IL-6 proteins using the ELISA assay. Following the SCI induction, MSCs and CM were injected into the lesion site, and also CM was infused intraperitoneally in the different groups. Two weeks after SCI induction, the spinal cord samples were examined to evaluate the expression of the doublecortin (DCX) and glial fibrillary acid protein (GFAP) markers using immunofluorescence staining. The MSCs’ phenotype was confirmed upon the expression and un-expression of the related CD markers. Our results show that MSCs increased the expression level of the DCX and decreased the level of the GFAP relative to the injury group (p < 0.001). Additionally, the CM promoted the DCX expression rate (p < 0.001) and decreased the GFAP expression rate (p < 0.01) as compared with the injury group. Noteworthily, the restorative potential of the MSCs was higher than that of the CM (p < 0.01). Large-scale meta-analysis of transcriptomic data highlighted PAK5, ST8SIA3, and NRXN1 as positively coexpressed genes with DCX. These genes are involved in neuroactive ligand–receptor interaction. Overall, our data revealed that both therapeutic interventions could promote the regeneration and restoration of the damaged neural tissue by increasing the rate of neuroblasts and decreasing the astrocytes.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| | - Roghiyeh Pashaei-Asl
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran 1417653911, Iran;
| | - Esmaeil Ebrahimie
- School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia;
- Genomics Research Platform, Research & Industry Engagement, La Trobe University, Melbourne, VIC 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran;
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz 5166614766, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: ; Tel.: +98-41-33348573
| |
Collapse
|
39
|
Huang F, Gao T, Wang W, Wang L, Xie Y, Tai C, Liu S, Cui Y, Wang B. Engineered basic fibroblast growth factor-overexpressing human umbilical cord-derived mesenchymal stem cells improve the proliferation and neuronal differentiation of endogenous neural stem cells and functional recovery of spinal cord injury by activating the PI3K-Akt-GSK-3β signaling pathway. Stem Cell Res Ther 2021; 12:468. [PMID: 34419172 PMCID: PMC8379754 DOI: 10.1186/s13287-021-02537-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Objectives To investigate the safety for clinic use and therapeutic effects of basic fibroblast growth factor (bFGF)-overexpressing human umbilical cord-derived mesenchymal stem cells (HUCMSCs) in mice with completely transected spinal cord injury (SCI). Methods Stable bFGF-overexpressing HUCMSCs clones were established by electrotransfection and then subjected to systematic safety evaluations. Then, bFGF-overexpressing and control HUCMSCs were used to treat mice with completely transected SCI by tail intravenous injection. Therapeutic outcomes were then investigated, including functional recovery of locomotion, histological structures, nerve regeneration, and recovery mechanisms. Results Stable bFGF-overexpressing HUCMSCs met the standards and safety of MSCs for clinic use. In the mouse SCI model, stable bFGF-overexpressing HUCMSCs markedly improved therapeutic outcomes such as reducing glial scar formation, improving nerve regeneration and proliferation of endogenous neural stem cells (NSCs), and increasing locomotion functional recovery of posterior limbs compared with the control HUCMSCs group. Furthermore, bFGF-overexpressing HUCMSCs promoted the proliferation and neuronal differentiation of NSCs in vitro through the PI3K-Akt-GSK-3β pathway. Conclusion bFGF-overexpressing HUCMSCs meet the requirements of clinical MSCs and improve evident therapeutic outcomes of mouse SCI treatment, which firmly supports the safety and efficacy of gene-modified MSCs for clinical application.
Collapse
Affiliation(s)
- Feifei Huang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Tianyun Gao
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Wenqing Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Liudi Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chenxun Tai
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Shuo Liu
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China.
| | - Bin Wang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
40
|
Oraee-Yazdani S, Akhlaghpasand M, Golmohammadi M, Hafizi M, Zomorrod MS, Kabir NM, Oraee-Yazdani M, Ashrafi F, Zali A, Soleimani M. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes. Stem Cell Res Ther 2021; 12:445. [PMID: 34372939 PMCID: PMC8351425 DOI: 10.1186/s13287-021-02515-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
Background Cellular transplantations have promising effects on treating spinal cord injury (SCI) patients. Mesenchymal stem cells (MSCs) and Schwann cells (SCs), which have safety alongside their complementary characteristics, are suggested to be the two of the best candidates in SCI treatment. In this study, we assessed the safety and possible outcomes of intrathecal co-transplantation of autologous bone marrow MSC and SC in patients with subacute traumatic complete SCI. Methods Eleven patients with complete SCI (American Spinal Injury Association Impairment Scale (AIS); grade A) were enrolled in this study during the subacute period of injury. The patients received an intrathecal autologous combination of MSC and SC and were followed up for 12 months. We assessed the neurological changes by the American Spinal Injury Association’s (ASIA) sensory-motor scale, functional recovery by spinal cord independence measure (SCIM-III), and subjective changes along with adverse events (AE) with our checklist. Furthermore, electromyography (EMG), nerve conduction velocity (NCV), magnetic resonance imaging (MRI), and urodynamic study (UDS) were conducted for all the patients at the baseline, 6 months, and 1 year after the intervention. Results Light touch AIS score alterations were approximately the same as the pinprick changes (11.6 ± 13.1 and 12 ± 13, respectively) in 50% of the cervical and 63% of the lumbar-thoracic patients, and both were more than the motor score alterations (9.5 ± 3.3 in 75% of the cervical and 14% of the lumbar-thoracic patients). SCIM III total scores (21.2 ± 13.3) and all its sub-scores (“respiration and sphincter management” (15 ± 9.9), “mobility” (9.5 ± 13.3), and “self-care” (6 ± 1.4)) had statistically significant changes after cell injection. Our findings support that the most remarkable positive, subjective improvements were in trunk movement, equilibrium in standing/sitting position, the sensation of the bladder and rectal filling, and the ability of voluntary voiding. Our safety evaluation revealed no systemic complications, and radiological images showed no neoplastic overgrowth, syringomyelia, or pseudo-meningocele. Conclusion The present study showed that autologous SC and bone marrow-derived MSC transplantation at the subacute stage of SCI could reveal statistically significant improvement in sensory and neurological functions among the patients. It appears that using this combination of cells is safe and effective for clinical application to spinal cord regeneration during the subacute period.
Collapse
Affiliation(s)
- Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Mohammadhosein Akhlaghpasand
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Golmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Maryam Hafizi
- Stem Cell Technology Research Centre, Tehran, Iran.,Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mina Soufi Zomorrod
- Applied cell Sciences Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nima Mohseni Kabir
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, 1988873554, Iran.
| | - Masoud Soleimani
- Department of Hematology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
41
|
Zhang A, Bai Z, Yi W, Hu Z, Hao J. Overexpression of miR-338-5p in exosomes derived from mesenchymal stromal cells provides neuroprotective effects by the Cnr1/Rap1/Akt pathway after spinal cord injury in rats. Neurosci Lett 2021; 761:136124. [PMID: 34302891 DOI: 10.1016/j.neulet.2021.136124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 01/18/2023]
Abstract
Growing evidence has shown that microRNAs (miRNAs) play crucial roles in the physiopathology of spinal cord injury (SCI). Recent studies have confirmed that miR-338-5p regulates myelination, suggesting a potential role in the treatment of SCI. However, the molecular mechanism of miR-338-5p on SCI is still unknown. Recently, exosomes have emerged as an ideal vector to deliver therapeutic molecules such as miRNAs. Here, we explored the effects of miR-338-5p-overexpressing exosomes derived from bone marrow-derived mesenchymal stromal cells (BMSCs) on SCI. In vivo, a model of contusion SCI in rats was established, and we observed that overexpression of miR-338-5p in exosomes profoundly increased the expression levels of neurofilament protein-M and growth-associated protein-43 and decreased those of myelin-associated glycoprotein and glial fibrillary acidic protein, which provided neuroprotective effects after acute SCI. In an in vitro study, we found that overexpression of miR-338-5p in exosomes repressed cell apoptosis following H2O2-induced oxidative stress injury in PC12 cells. Additionally, we confirmed that cannabinoid receptor 1 (Cnr1) was the target gene of miR-338-5p by dual-luciferase reporter assays and that Rap1 was the downstream gene by the KEGG pathway analysis. We found that miR-338-5p increased cAMP accumulation as a consequence of downregulated expression of the target gene Cnr1, and then, Rap1 was activated by cAMP. Eventually, the activation of the PI3K/Akt pathway attenuated cell apoptosis and promoted neuronal survival by cAMP-mediated Rap1 activation. In brief, these findings showed that exosomes overexpressing miR-338-5p were a promising treatment strategy for SCI.
Collapse
Affiliation(s)
- Anwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhibiao Bai
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang 325000, PR China
| | - Weiwei Yi
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Zhenming Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China.
| |
Collapse
|
42
|
Alavi SNR, Neishaboori AM, Yousefifard M. Extracorporeal shockwave therapy in spinal cord injury, early to advance to clinical trials? A systematic review and meta-analysis on animal studies. Neuroradiol J 2021; 34:552-561. [PMID: 34224252 DOI: 10.1177/19714009211026899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND As there is no consensus over the efficacy of extracorporeal shockwave therapy in the management of spinal cord injury complications, the current meta-analysis aims to investigate preclinical evidence on the matter. METHODS The search strategy was developed based on keywords related to 'spinal cord injury' and 'extracorporeal shockwave therapy'. A primary search was conducted in Medline, Embase, Scopus and Web of Science until the end of 2020. Studies which administered extracorporeal shockwave therapy on spinal cord injury animal models and evaluated motor function and/or histological findings were included. The standardised mean difference with a 95% confidence interval (CI) were calculated. RESULTS Seven articles were included. Locomotion was significantly improved in the extracorporeal shockwave therapy treated group (standardised mean difference 1.68, 95% CI 1.05-2.31, P=0.032). It seems that the efficacy of extracorporeal shockwave therapy with an energy flux density of 0.1 mJ/mm2 is higher than 0.04 mJ/mm2 (P=0.044). Shockwave therapy was found to increase axonal sprouting (standardised mean difference 1.31, 95% CI 0.65, 1.96), vascular endothelial growth factor tissue levels (standardised mean difference 1.36, 95% CI 0.54, 2.18) and cell survival (standardised mean difference 2.49, 95% CI 0.93, 4.04). It also significantly prevents axonal degeneration (standardised mean difference 2.25, 95% CI 1.47, 3.02). CONCLUSION Extracorporeal shockwave therapy significantly improves locomotor recovery in spinal cord injury animal models through neural tissue regeneration. Nonetheless, in spite of the promising results and clinical application of extracorporeal shockwave therapy in various conditions, current evidence implies that designing clinical trials on extracorporeal shockwave therapy in the management of spinal cord injury may not be soon. Hence, further preclinical studies with the effort to reach the safest and the most efficient treatment protocol are needed.
Collapse
Affiliation(s)
| | | | - Mahmoud Yousefifard
- Physiology Research Center, 440827Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, Niu X, Xiao Z, Zhao Y, Zhou Y, Dai J, Chu T. NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study. Cell Transplant 2021; 29:963689720950637. [PMID: 32862715 PMCID: PMC7784506 DOI: 10.1177/0963689720950637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) remains among the most challenging pathologies worldwide and has limited therapeutic possibilities and a very bleak prognosis. Biomaterials and stem cell transplantation are promising treatments for functional recovery in SCI. Seven patients with acute complete SCI diagnosed by a combination of methods were included in the study, and different lengths (2.0–6.0 cm) of necrotic spinal cord tissue were surgically cleaned under intraoperative neurophysiological monitoring. Subsequently, NeuroRegen scaffolds loaded with autologous bone marrow mononuclear cells (BMMCs) were implanted into the cleaned site. All patients participated in 6 months of rehabilitation and at least 3 years of clinical follow-up. No adverse symptoms associated with stem cell or functional scaffold implantation were observed during the 3-year follow-up period. Additionally, partial shallow sensory and autonomic nervous functional improvements were observed in some patients, but no motor function recovery was observed. Magnetic resonance imaging suggested that NeuroRegen scaffold implantation supported injured spinal cord continuity after treatment. These findings indicate that implantation of NeuroRegen scaffolds combined with stem cells may serve as a safe and promising clinical treatment for patients with acute complete SCI. However, determining the therapeutic effects and exact application methods still requires further study.
Collapse
Affiliation(s)
- Wugui Chen
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China.,* Both the authors contributed equally as first author
| | - Ying Zhang
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China.,* Both the authors contributed equally as first author
| | - Sizhen Yang
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Jing Sun
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Hao Qiu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Xu Hu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Xiaojian Niu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhou
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, 53019Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tongwei Chu
- 105785Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China
| |
Collapse
|
44
|
Srivastava E, Singh A, Kumar A. Spinal cord regeneration: A brief overview of the present scenario and a sneak peek into the future. Biotechnol J 2021; 16:e2100167. [PMID: 34080314 DOI: 10.1002/biot.202100167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) portrays appreciable complexity in developing from a neural tube to controlling major functions of the body and orchestrated co-ordination in maintaining its homeostasis. Any insult or pathology to such an organized tissue leads to a plethora of events ranging from local hypoxia, ischemia, oxidative stress to reactive gliosis and scarring. Despite unravelling the pathophysiology of spinal cord injury (SCI) and linked cellular and molecular mechanism, the over exhaustive inflammatory response at the site of injury, limited intrinsic regeneration capability of CNS, and the dual role of glial scar halts the expected accomplishment. The review discusses major current treatment approaches for traumatic SCI, addressing their limitation and scope for further development in the field under three main categories- neuroprotection, neuro-regeneration, and neuroplasticity. We further propose that a multi-disciplinary combinatorial treatment approach exploring any two or all three heads simultaneously might alleviate the inhibitory milieu and ameliorate functional recovery.
Collapse
Affiliation(s)
- Ekta Srivastava
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anamika Singh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
45
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
46
|
Darvishi M, Hamidabadi HG, Bojnordi MN, Saeednia S, Zahiri M, Niapour A, Alizadeh R. Differentiation of human dental pulp stem cells into functional motor neuron: In vitro and ex vivo study. Tissue Cell 2021; 72:101542. [PMID: 33964606 DOI: 10.1016/j.tice.2021.101542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
There are several therapeutic options for spinal cord injury (SCI), among these strategies stem cell therapy is a potential treatment. The stem cells based therapies have been investigating in acute phase of clinical trials for promoting spinal repair in humans through replacement of functional neuronal and glial cells. The aim of this study was to evaluate the differentiation of Human Dental Pulp Stem Cells (hDPSCs) into functional motor neuron like cells (MNLCs) and promote neuroregeneration by stimulating local neurogenesis in the adult spinal cord slice culture. The immunocytochemistry analysis demonstrated that hDPSCs were positive for mesenchymal stem cell markers (CD73, CD90 and CD105) and negative for the hematopoietic markers (CD34 and CD45). hDPSCs were induced to neurospheres (via implementing B27, EGF, and bFGF) and then neural stem cells (NSC). The NSC differentiated into MNLCs in two steps: first by Shh and RA and ; then with GDNF and BDNF administration. The NS and the NSC were assessed for Oct4, nestin, Nanog, Sox2 expression while the MNLCs were evaluated by ISLET1, Olig2, and HB9 genes. Our results showed that hDPSC can be differentiated into motor neuron phenotype with expression of the motor neuron genes. The functionality of MNLCs was demonstrated by FM1-43, intracellular calcium ion shift and co- culture with C2C12. We co-cultivated hDPSCs with adult rat spinal slices in vitro. Immunostaining and hoechst assay showed that hDPSCs were able to migrate, proliferate and integrate in both the anterolateral zone and the edges of the spinal slices.
Collapse
Affiliation(s)
- Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Saeednia
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Ebrahimi T, Abasi M, Seifar F, Eyvazi S, Hejazi MS, Tarhriz V, Montazersaheb S. Transplantation of Stem Cells as a Potential Therapeutic Strategy in Neurodegenerative Disorders. Curr Stem Cell Res Ther 2021; 16:133-144. [PMID: 32598273 DOI: 10.2174/1574888x15666200628141314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 11/22/2022]
Abstract
Stem cells are considered to have significant capacity to differentiate into various cell types in humans and animals. Unlike specialized cells, these cells can proliferate several times to produce millions of cells. Nowadays, pluripotent stem cells are important candidates to provide a renewable source for the replacement of cells in tissues of interest. The damage to neurons and glial cells in the brain or spinal cord is present in neurological disorders such as Amyotrophic lateral sclerosis, stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, Huntington's disease, spinal cord injury, lysosomal storage disorder, epilepsy, and glioblastoma. Therefore, stem cell transplantation can be used as a novel therapeutic approach in cases of brain and spinal cord damage. Recently, researchers have generated neuron-like cells and glial-like cells from embryonic stem cells, mesenchymal stem cells, and neural stem cells. In addition, several experimental studies have been performed for developing stem cell transplantation in brain tissue. Herein, we focus on stem cell therapy to regenerate injured tissue resulting from neurological diseases and then discuss possible differentiation pathways of stem cells to the renewal of neurons.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- Department of Biotechnology research center, Pasteur institute of Iran, Tehran, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Seifar
- Stem Cell Research Center, Aging Research institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammas Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Liu WZ, Ma ZJ, Li JR, Kang XW. Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res Ther 2021; 12:102. [PMID: 33536064 PMCID: PMC7860030 DOI: 10.1186/s13287-021-02153-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/07/2021] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) often leads to serious motor and sensory dysfunction of the limbs below the injured segment. SCI not only results in physical and psychological harm to patients but can also cause a huge economic burden on their families and society. As there is no effective treatment method, the prevention, treatment, and rehabilitation of patients with SCI have become urgent problems to be solved. In recent years, mesenchymal stem cells (MSCs) have attracted more attention in the treatment of SCI. Although MSC therapy can reduce injured volume and promote axonal regeneration, its application is limited by tumorigenicity, a low survival rate, and immune rejection. Accumulating literature shows that exosomes have great potential in the treatment of SCI. In this review, we summarize the existing MSC-derived exosome studies on SCI and discuss the advantages and challenges of treating SCI based on exosomes derived from MSCs.
Collapse
Affiliation(s)
- Wen-Zhao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China
| | - Jie-Ru Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xue-Wen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, China.
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
49
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
50
|
Cellular therapy for treatment of spinal cord injury in Zebrafish model. Mol Biol Rep 2021; 48:1787-1800. [PMID: 33459959 DOI: 10.1007/s11033-020-06126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/24/2020] [Indexed: 02/08/2023]
Abstract
Spinal cord injury is a serious problem with a high rate of morbidity and mortality for all persons, especially young people (15-25 years old). Due to the large burden and the costs incurred on the government, finding the best therapeutic approach is necessary. In this respect, treatment strategies based on the disease mechanism can be effective. After the first trauma of spinal cord cascades, cellular events happen one after the other known as secondary trauma. The mechanism of secondary events of spinal cord injury could be helpful for target therapy as trying to stop the secondary trauma. Herein, some medical and surgical therapy has been introduced and cell therapy strategy was considered as a recent method. Actually, cell therapy is defined as the application of different cells including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and some others to replace or reconstruct the damaged tissues and restore their functions. However, as a newly emerged therapeutic method, cell therapy should be used through various subclinical studies in animal models to assess the efficacy of the treatment under controlled conditions. In this review, the role of Zebrafish as a recommended model has been discussed and combinatory approach as the probably most useful treatment has been suggested.
Collapse
|