1
|
Tolstova T, Dotsenko E, Luzgina N, Rusanov A. Preconditioning of Mesenchymal Stem Cells Enhances the Neuroprotective Effects of Their Conditioned Medium in an Alzheimer's Disease In Vitro Model. Biomedicines 2024; 12:2243. [PMID: 39457556 PMCID: PMC11504366 DOI: 10.3390/biomedicines12102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) develops as a result of oxidative damage to neurons and chronic inflammation of microglia. These processes can be influenced by the use of a conditioned medium (CM) derived from mesenchymal stem cells (MSCs). The CM contains a wide range of factors that have neurotrophic, antioxidant, and anti-inflammatory effects. In addition, the therapeutic potential of the CM can be further enhanced by pretreating the MSCs to increase their paracrine activity. The current study aimed to investigate the neuroprotective effects of CM derived from MSCs, which were either activated by a TLR3 ligand or exposed to CoCl2, a hypoxia mimetic (pCM or hCM, respectively), in an in vitro model of AD. METHODS We have developed a novel in vitro model of AD that allows us to investigate the neuroprotective and anti-inflammatory effects of MSCs on induced neurodegeneration in the PC12 cell line and the activation of microglia using THP-1 cells. RESULTS This study demonstrates for the first time that pCM and hCM exhibit more pronounced immunosuppressive effects on proinflammatory M1 macrophages compared to CM derived from untreated MSCs (cCM). This may help prevent the development of neuroinflammation by balancing the M1 and M2 microglial phenotypes via the decreased secretion of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and increased secretion of IL-4, as well as the expression of IL-10 and TGF-β by macrophages. Moreover, a previously unknown increase in the neurotrophic properties of hCM was discovered, which led to an increase in the viability of neuron-like PC12 cells under H2O2-induced oxidative-stress conditions. These results are likely associated with an increase in the production of growth factors, including vascular endothelial growth factor (VEGF). In addition, the neuroprotective effects of CM from preconditioned MSCs are also mediated by the activation of the Nrf2/ARE pathway in PC12 cells. CONCLUSIONS TLR3 activation in MSCs leads to more potent immunosuppressive effects of the CM against pro-inflammatory M1 macrophages, while the use of hCM led to increased neurotrophic effects after H2O2-induced damage to neuronal cells. These results are of interest for the potential treatment of AD with CM from preactivated MSCs.
Collapse
Affiliation(s)
- Tatiana Tolstova
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| | | | | | - Alexander Rusanov
- Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia
| |
Collapse
|
2
|
Xu C, Yao X, Kong W, Mu B, Duan G, Wang J, Xu Y, Li X. Ecotoxicological risk of co-exposure to fosthiazate and microplastics on earthworms (Eisenia fetida): Integrating biochemical and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125053. [PMID: 39357558 DOI: 10.1016/j.envpol.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Fosthiazate (FOS) is a widely used organophosphorus insecticide effective against soil root-knot nematodes. However, its ecotoxicity to non-target soil organisms, particularly in combination with microplastics (MPs), is unclear. This study explores the toxic-effects and molecular mechanisms of co-exposure to FOS and MPs on earthworms (Eisenia fetida) using multilevel toxicity endpoints and transcriptomics. Results showed that both FOS and MPs elevated the intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) in earthworms' cells. The superoxide dismutase (SOD) and catalase (CAT) activities followed a similar trend in all treatments, with changes observed at 14 and 28 days, indicating that co-exposure to FOS and MPs increased DNA oxidative damage. Notably, the co-exposure more significantly inhibited Ca2+-ATPase activity and exacerbated neurotoxicity compared to individual treatments, closely associated with changes in intracellular ROS levels that mediate neuroinhibition and lead to neurotoxicity. KEGG enrichment analysis revealed that MPs and FOS disrupted pathways related to metabolism, immunity, and apoptosis, while co-exposure primarily impaired endocrine and receptor pathways, showing higher toxicity. Our study offers novel insights into the ecotoxicological effects and mechanisms of pesticides and microplastics on earthworms, providing valuable data for evaluating the soil environmental health risks associated with compound pollution.
Collapse
Affiliation(s)
- Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Weizheng Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Baoyan Mu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yuxin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
3
|
Zhou X, Zhang X, Wang D, Luo R, Qin Z, Lin F, Xia X, Liu X, Hu G. Efficient Biosynthesis of Salidroside via Artificial in Vivo enhanced UDP-Glucose System Using Cheap Sucrose as Substrate. ACS OMEGA 2024; 9:22386-22397. [PMID: 38799314 PMCID: PMC11112596 DOI: 10.1021/acsomega.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Salidroside, a valuable phenylethanoid glycoside, is obtained from plants belonging to the Rhodiola genus, known for its diverse biological properties. At present, salidroside is still far from large-scale industrial production due to its lower titer and higher process cost. In this study, we have for the first time increased salidroside production by enhancing UDP-glucose supply in situ. We constructed an in vivo UDP-glucose regeneration system that works in conjunction with UDP-glucose transferase from Rhodiola innovatively to improve UDP-glucose availability. And a coculture was formed in order to enable de novo salidroside synthesis. Confronted with the influence of tyrosol on strain growth, an adaptive laboratory evolution strategy was implemented to enhance the strain's tolerance. Similarly, salidroside production was optimized through refinement of the fermentation medium, the inoculation ratio of the two microbes, and the inoculation size. The final salidroside titer reached 3.8 g/L. This was the highest titer achieved at the shake flask level in the existing reports. And this marked the first successful synthesis of salidroside in an in situ enhanced UDP-glucose system using sucrose. The cost was reduced by 93% due to the use of inexpensive substrates. This accomplishment laid a robust foundation for further investigations into the synthesis of other notable glycosides and natural compounds.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoxiao Zhang
- AgroParisTech, 22 place de l’Agronomie, 91120 Palaiseau, France
| | - Dan Wang
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ruoshi Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhao Qin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fanzhen Lin
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xue Xia
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Xuemei Liu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ge Hu
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
4
|
Xiong M, Yang X, Yao L, Li Z, Zhang J, Lv J. Bioassay-guided isolation of three new alkaloids from Suillus bovinus and preliminary mechanism against ginseng root rot. Front Microbiol 2024; 15:1408013. [PMID: 38756729 PMCID: PMC11096550 DOI: 10.3389/fmicb.2024.1408013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
In order to control the occurrence of ginseng root rot caused by Fusarium solani (Mart.) Sacc., the antifungal compounds of the mushroom Suillus bovinus were investigated. And three new alkaloids (1-3), named bovinalkaloid A-C, along with one known analog (4), were isolated and identified by bioassay-guided isolation and spectroscopic analyses. Compound 1 strongly inhibited the mycelial growth and spore germination of F. solani with minimum inhibitory concentration of 2.08 mM. Increases in electrical conductivity, nucleic acid, and protein contents, and decreases in lipid content showed that the membrane permeability and integrity were damaged by compound 1. Compound 1 also increased the contents of malondialdehyde and hydrogen peroxide and the activities of antioxidant enzymes, indicating that lipid peroxidation had taken place in F. solani. Compound 1 may serve as a natural alternative to synthetic fungicides for the control of ginseng root rot.
Collapse
Affiliation(s)
- Miaomiao Xiong
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaomin Yang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lan Yao
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, China
| | - Zhuang Li
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jinxiu Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Jianhua Lv
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
5
|
Lu J, He AX, Jin ZY, Zhang M, Li ZX, Zhou F, Ma L, Jin HM, Wang JY, Shen X. Desloratadine alleviates ALS-like pathology in hSOD1 G93A mice via targeting 5HTR 2A on activated spinal astrocytes. Acta Pharmacol Sin 2024; 45:926-944. [PMID: 38286832 PMCID: PMC11053015 DOI: 10.1038/s41401-023-01223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/25/2023] [Indexed: 01/31/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.
Collapse
Affiliation(s)
- Jian Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - An-Xu He
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhuo-Ying Jin
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Zhang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhong-Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhou
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Ma
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Ming Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, School of Medicine & Holistic Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Qi Y, Liu G, Jin S, Jian R, Zou Z, Wang C, Zhang Y, Zhao M, Zhu H, Yan P. Neuroprotective effect of acetoxypachydiol against oxidative stress through activation of the Keap1-Nrf2/HO-1 pathway. BMC Complement Med Ther 2024; 24:175. [PMID: 38664646 PMCID: PMC11044414 DOI: 10.1186/s12906-024-04474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.
Collapse
Affiliation(s)
- Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Ge Liu
- Department of pharmacy, Yongkang First People's Hospital Affiliated to Hangzhou Medical College, Yongkang, 321300, People's Republic of China
| | - Shengjie Jin
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Rong Jian
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Ziqiang Zou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Chenjing Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Haoru Zhu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China.
| |
Collapse
|
7
|
Liang J, Chen T, Xu H, Wang T, Gong Q, Li T, Liu X, Wang J, Wang Y, Xiong L. Echinacoside Exerts Antihepatic Fibrosis Effects in High-Fat Mice Model by Modulating the ACVR2A-Smad Pathway. Mol Nutr Food Res 2024; 68:e2300553. [PMID: 38366962 DOI: 10.1002/mnfr.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Indexed: 02/19/2024]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is an increasingly common chronic liver disease in which hepatic fibrosis is the major pathological change. The transforming growth factor β (TGF-β)/mall mothers against decapentaplegic (Smad) signaling is the main effector of fibrosis. Although the antifibrotic effect of echinacoside (Ech) on the liver has been indicated previously, the cellular and molecular mechanisms remain unclear. This study aims to investigate both in vivo and in vitro antifibrotic properties of Ech. METHODS AND RESULTS Cell viability and scratch/wound assays show that Ech significantly inhibits the proliferation, migration, and activation of human hepatic stellate LX-2 cells. In mice with high-fat diet-induced hepatic fibrosis, Ech treatment attenuates the progression of liver injury, inflammation, and fibrosis. Furthermore, transcriptome analysis and subsequent functional validation demonstrate that Ech achieves antifibrotic effects by the activin receptor type-2A (ACVR2A)-mediated TGF-β1/Smad signaling pathway; ultimately, ACVR2A is demonstrated to be an important target for hepatic fibrosis by inhibiting and inducing the expression of ACVR2A in LX-2 cells. CONCLUSION Ech exerts potent antifibrotic effects by inhibiting the ACVR2A-mediated TGF-β1/Smad signaling axis and may serve as an alternative treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Jie Liang
- Department of Medicine, Linfen Vocational and Technical College, Linfen, Shanxi, 041000, China
| | - Ting Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Honglei Xu
- Medical Security Center, The No. 983th Hospital of Joint Logistics Support Forces of Chinese PLA, Tianjin, 300142, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Qi Gong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaoyan Liu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Pongkitwitoon B, Putalun W, Triwitayakorn K, Kitisripanya T, Kanchanapoom T, Boonsnongcheep P. Anti-inflammatory activity of verbascoside- and isoverbascoside-rich Lamiales medicinal plants. Heliyon 2024; 10:e23644. [PMID: 38187323 PMCID: PMC10770615 DOI: 10.1016/j.heliyon.2023.e23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Verbascoside and isoverbascoside are two active phenylethanoid glycosides mainly found in plants of the order Lamiales. This study analyzes the verbascoside and isoverbascoside levels and the total phenolic contents in the water and ethanolic extracts of 20 medicinal plants of the order Lamiales commonly used in Thailand. The related bioactivities, including the antioxidant activity via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential assays and anti-tyrosinase and -inflammatory activities via the cyclooxygenase and nitric oxide assays are also investigated. The extracts of several plant species, including Barleria prionitis, B. lupulina, Rhinacanthus nasutus, Orthosiphon aristatus, and Nicoteba betonica, exhibit high verbascoside and isoverbascoside content levels. The correlation analysis between the bioactive activities and the active compounds demonstrates a significant association between the verbascoside level in the water extracts and both the DPPH antioxidant activity and the nitric oxide level in the anti-inflammatory assays. This study provides the first report on the verbascoside and isoverbascoside quantification of several plant samples. The findings provide valuable insights for future research on lesser-studied plants possessing high verbascoside and isoverbascoside levels, which exhibit promising anti-inflammatory activities.
Collapse
Affiliation(s)
- Benyakan Pongkitwitoon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
9
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Narayanan AC, Venkatesh R, Singh S, Singh G, Modi G, Singh S, Kandasamy J. Synthesis of phenylethanoid glycosides from acrylic esters of glucose and aryldiazonium salts via palladium-catalyzed cross-coupling reactions and evaluation of their anti-Alzheimer activity. Carbohydr Res 2023; 532:108920. [PMID: 37586143 DOI: 10.1016/j.carres.2023.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Cinnamic acid-containing sugar compounds such as phenylethanoid glycosides are widely present in nature and display various biological activities. In this work, the synthesis of trans-cinnamic acid containing phenylethanoid glycosides was achieved via palladium-catalyzed cross-coupling reactions between glycosyl acrylic esters and aryldiazonium salts. A wide range of functionalized aryldiazonium salts were successfully coupled with 6-O- and 4-O-acrylic esters of glucose under optimized conditions. The reactions proceeded at room temperature in the absence of additives and base. The desired products were obtained in good to excellent yields. Selected compounds from the library were screened for anti-Alzheimer activity, while compound 16 displayed significant inhibitory activities against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes.
Collapse
Affiliation(s)
- Aswathi C Narayanan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Shweta Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India; Department of Chemistry, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
11
|
Wang L, Liu Y, Gao H, Ge S, Yao X, Liu C, Tan X. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules 2023; 28:5132. [PMID: 37446793 PMCID: PMC10343525 DOI: 10.3390/molecules28135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acrylamide (ACR) is produced under high-temperature cooking of carbohydrate-rich foods via the Maillard reaction. It has been reported that ACR has hepatic toxicity and can induce liver circadian disorder. A high fat diet (HFD) could dysregulate liver detoxification. The current study showed that administration of ACR (100 mg/kg) reduced the survival rate in HFD-fed mice, which was more pronounced when treated during the night phase than during the day phase. Furthermore, ACR (25 mg/kg) treatment could cause chronotoxicity in mice fed a high-fat diet, manifested as more severe mitochondrial damage of liver during the night phase than during the day phase. Interestingly, HFD induced a higher CYP2E1 expressions for those treated during the night phase, leading to more severe DNA damage. Meanwhile, the expression of gut tight junction proteins also significantly decreases at night phase, leading to the leakage of LPSs and exacerbating the inflammatory response at night phase. These results indicated that a HFD could induce the chronotoxicity of ACR in mice liver, which may be associated with increases in CYP2E1 expression in the liver and gut leak during the night phase.
Collapse
Affiliation(s)
- Luanfeng Wang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China;
| | - Yanhong Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Huajing Gao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Shuqi Ge
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xinru Yao
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Chang Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| | - Xintong Tan
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; (Y.L.); (H.G.); (S.G.); (X.Y.); (C.L.)
| |
Collapse
|
12
|
Ji S, Wu Y, Zhu R, Guo D, Jiang Y, Huang L, Ma X, Yu L. Novel Phenylethanoid Glycosides Improve Hippocampal Synaptic Plasticity via the Cyclic Adenosine Monophosphate-CREB-Brain-Derived Neurotrophic Growth Factor Pathway in APP/PS1 Transgenic Mice. Gerontology 2023; 69:1065-1075. [PMID: 37285833 PMCID: PMC10568609 DOI: 10.1159/000531194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major public health concern worldwide, but there are still no drugs available that treat it effectively. Previous studies have shown that phenylethanoid glycosides have pharmacological effects, which include anti-AD properties, but the underlying mechanisms by which they ameliorate AD symptoms remain unknown. METHODS In this study, we used an APP/PS1 AD mouse model to explore the function and mechanisms underlying savatiside A (SA) and torenoside B (TB) in the treatment of AD. SA or TB (100 mg·kg-1·d-1) was orally administered to 7-month-old APP/PS1 mice for 4 weeks. Cognitive and memory functions were measured using behavioral experiments (including the Morris water maze test and the Y-maze spontaneous alternation test). Molecular biology experiments (including Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays) were used to detect any corresponding changes in signaling pathways. RESULTS The results showed that SA or TB treatment could significantly reduce cognitive impairment in APP/PS1 mice. We also showed that chronic treatment with SA/TB could prevent spine loss, synaptophysin immunoreactivity, and neuronal loss in mice, thereby improving synaptic plasticity and moderating learning and memory deficits. SA/TB administration also promoted the expression of synaptic proteins in APP/PS1 mouse brains and upregulated phosphorylation of proteins in the cyclic adenosine monophosphate (cAMP)/CREB/brain-derived neurotrophic growth factor (BDNF) pathway that are responsible for synaptic plasticity. Additionally, chronic SA/TB treatment increased the levels of BDNF and nerve growth factor (NGF) in the brains of APP/PS1 mice. Both astrocyte and microglia volumes, as well as the generation of amyloid β, were also decreased in SA/TB-treated APP/PS1 mice compared to control APP/PS1 mice. CONCLUSION In summary, SA/TB treatment was associated with activation of the cAMP/CREB/BDNF pathway and increased BDNF and NGF expression, indicating that SA/TB improves cognitive functioning via nerve regeneration. SA/TB is a promising candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yijie Wu
- Department of Neurology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Ruifang Zhu
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Dongkai Guo
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yiguo Jiang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Lifeng Huang
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xinwei Ma
- Department of Medical Imaging, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
He F, Liu R. Mechanistic insights into phenanthrene-triggered oxidative stress-associated neurotoxicity, genotoxicity, and behavioral disturbances toward the brandling worm (Eisenia fetida) brain: The need for an ecotoxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131072. [PMID: 36857826 DOI: 10.1016/j.jhazmat.2023.131072] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
In this study, earthworm (Eisenia fetida) brain was chosen as targeted receptors to probe the mechanisms of oxidative stress-related neurotoxicity, genotoxicity, and behavioral disturbances triggered by PHE. Results showed that PHE stress can initiate significant amounts of ROS, thus triggering oxidative stress in E. fetida brain. These effects were accompanied by a significant increase of damage to macromolecules DNA and lipids, resulting in severe oxidative effects. PHE exposure can induce AChE inhibition by ROS-induced injury and the accumulation of excess ACh at the nicotinic post-synaptic membrane, thus inducing aggravated neurological dysfunction and neurotoxicity of E. fetida through an oxidative stress pathway. Moreover, the burrowing behavior of earthworms was disturbed by oxidative stress-induced neurotoxicity after exposure to PHE. Furthermore, the abnormal mRNA expression profiles of oxidative stress- and neurotoxicity-related genes in worm brain were induced by PHE stress. The IBR results suggested that E. fetida brain was suffered more serious damage caused by PHE under higher doses and long-term exposure. Taken together, PHE exposure can trigger oxidative stress-mediated neurotoxicity and genotoxicity in worm brain and behavioral disorder through ROS-induced damage. This study is of great significance to evaluate the harmful effects of PHE and its mechanisms on soil ecological health.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
14
|
Chen P, Huang Y, Zhang X, Zhao Z, Sun Z, Cui H, Lin C, Peng G, Wu A, Zhu C. New chemical structures and liver-protective activity of the diterpenoids from Callicarpa rubella. Fitoterapia 2023; 165:105394. [PMID: 36526220 DOI: 10.1016/j.fitote.2022.105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Callicarpa rubella is a characteristic folk herb in the genus Callicarpa, and has abundant ethnobotanical usage as indigenous medicine in Lingnan area of P. R. China. However, the phytochemical and pharmacological properties of C. rubella was rarely investigated. Now, three new diterpenoids, named rubellapene A-C (1-3), along with five known analogues (4-8), were isolated from C. rubella. Their structures were determined by spectroscopic methods, quantum chemical electronic circular dichroism calculations and single-crystal X-ray diffraction analysis. Notably, the norditerpenoids C18 of clerodane type (rubellapene B) was rarely found in the genus Callicarpa. The liver protective effects of all of the isolates (1-8) were evaluated by the changes of cell viability and transaminase content of AST and ALT in H2O2-induced BRL cells. Compound 1, 3-8 exhibited that potent liver protective effects at different levels.
Collapse
Affiliation(s)
- Ping Chen
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Yimin Huang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Xueer Zhang
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China.
| | - Guangtian Peng
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| | - Aizhi Wu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, GuangZhou University of Chinese Medicine, GuangZhou 510006, China
| |
Collapse
|
15
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Amirova K, Dimitrova P, Koycheva I, Balcheva-Sivenova J, Georgiev MI. Modulation of Nrf2 expression in human neutrophils by Ballota nigra extract. MAKEDONSKO FARMACEVTSKI BILTEN 2022. [DOI: 10.33320/maced.pharm.bull.2022.68.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Kristiana Amirova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Petya Dimitrova
- Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria
| | - Ivanka Koycheva
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jivka Balcheva-Sivenova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
18
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J. The Relationship between Procyanidin Structure and Their Protective Effect in a Parkinson's Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155007. [PMID: 35956957 PMCID: PMC9370466 DOI: 10.3390/molecules27155007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
This study evaluated the effect of grape seed-derived monomer, dimeric, and trimeric procyanidins on rat pheochromocytoma cell line (PC12) cells and in a zebrafish Parkinson’s disease (PD) model. PC12 cells were cultured with grape seed-derived procyanidins or deprenyl for 24 h and then exposed to 1.5 mm 1-methyl-4-phenylpyridinium (MPP+) for 24 h. Zebrafish larvae (AB strain) 3 days post-fertilization were incubated with deprenyl or grape seed-derived procyanidins in 400 µM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 4 days. The results showed that the procyanidin dimers procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), procyanidin B2-3-O-gallate (B2-G), and the procyanidin trimer procyanidin C1 (C1) had a protective effect on PC12 cells, decreasing the damaged dopaminergic neurons and motor impairment in zebrafish. In PC12 cells and the zebrafish PD model, procyanidin (B1, B2, B3, B4, B1-G, B2-G, C1) treatment decreased the content of reactive oxygen species (ROS) and malondialdehyde (MDA), increased the activity of antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and upregulated the expression of nuclear factor-erythroid 2-related factor (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1). These results suggest that in PC12 cells and the zebrafish PD model, the neuroprotective effects of the procyanidins were positively correlated with their degree of polymerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiajin Zhu
- Correspondence: ; Tel./Fax: +86-571-8898-2191
| |
Collapse
|
20
|
Wu L, Liu J, Huang W, Wang Y, Chen Q, Lu B. Exploration of Osmanthus fragrans Lour.'s composition, nutraceutical functions and applications. Food Chem 2022; 377:131853. [PMID: 34990948 DOI: 10.1016/j.foodchem.2021.131853] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/04/2022]
Abstract
Osmanthus fragrans (Thunb.) Lour. has been cultivated in China for over 2500 years. Due to the unique and strong fragrance, O. fragrans flowers have long been added into food, tea, and beverages. Not only the O. fragrans flowers, but also leaves, barks, roots, and fruits possess some beneficial effects such as relieving pain and alleviating cough in Traditional Chinese Medicine. Modern pharmacological researches demonstrated that O. fragrans possesses a broad spectrum of biological activities including antioxidant, neuroprotective, antidiabetic and anticancer activities etc. A large number of phytochemicals identified in O. fragrans are responsible for its health promoting and disease preventing effects. The components of volatile compounds in O. fragrans are complex but the content is less abundant. The present review mainly focuses on the bioactive ingredients identified from O. fragrans, the therapeutic effects of O. fragrans and its applications in food, cosmetics and medicines.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Junyi Liu
- Xianning Academy of Forestry Sciences, Xianning 437100, China
| | - Weisu Huang
- Zhejiang Institute of Economics and Trade, Hangzhou 310058, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Qi Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
21
|
Echinacoside Induces Mitochondria-Mediated Pyroptosis through Raf/MEK/ERK Signaling in Non-Small Cell Lung Cancer Cells. J Immunol Res 2022; 2022:3351268. [PMID: 35571569 PMCID: PMC9106467 DOI: 10.1155/2022/3351268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Various natural compounds are effective in cancer prevention and treatment with fewer side effects than conventional radiotherapy and chemotherapy. Considering the uncertainty of the antitumor mechanism of Echinacoside (Ech) and the fact that no study on Ech against non-small cell lung cancer (NSCLC) has been explored previously, this study inquired into the anti-NSCLC effect of Ech and explored its potential mechanisms. Methods The IC50 to Ech of the NSCLC cells was calculated based on a series of cell viability assays. Different concentrations of Ech were used to treat the cells; the proliferation activity of the cells was evaluated using EdU staining. Mitochondrial membrane potential was detected by JC-1 staining. Levels of cytokines IL-1β and IL-18 were measured by ELISA. GSH and MDA levels were measured by microplate reader. Expression of cytochrome c, NLRP3, caspase-1, IL-1β, c-Myc, c-Fos, and Raf/MEK/ERK pathway proteins was evaluated by western blot. Meanwhile, we used xenograft, immunohistochemical staining, and H&E staining to evaluate the pharmacological effects of Ech in mice in vivo. Results ECH inhibited the proliferation of NSCLC cells. Ech increased the expression of pyroptosis-related proteins. Besides, Ech perturbed the mitochondrial membrane potential with the release of mitochondrial cytochrome c, accompanied by increased oxidative stress. Ech inhibited the phosphorylation levels of Raf/MEK/ERK signaling pathway and subsequently reduced c-myc and c-fos protein expression. In addition, Ech effectively restrained the growth of tumors in vivo. Conclusions Ech inhibited the Raf/MEK/ERK signaling. Impaired mitochondria activated inflammasome, which in turn led to the pyroptosis of NSCLC cells. These findings can provide some ideas on how to use pyroptosis to treat NSCLC.
Collapse
|
22
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J. Relationship between Neuroprotective Effects and Structure of Procyanidins. Molecules 2022; 27:molecules27072308. [PMID: 35408708 PMCID: PMC9000754 DOI: 10.3390/molecules27072308] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the relationship between the neuroprotective effects of procyanidins and their structural characteristics. In vitro, a rat pheochromocytoma cell line (PC12) was exposed to the grape seed-derived procyanidin monomers: catechin (C), epicatechin (EC), and epicatechin gallate (ECG); the procyanidin dimers: procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), and procyanidin B2-3-O-gallate (B2-G); and the procyanidin trimers: procyanidin C1 (C1) and N-acetyl-l-cysteine (NAC) for 24 h. Cells were then incubated with 200 μM H2O2 for 24 h. In vivo, zebrafish larvae (AB strain) 3 days post-fertilization were incubated with NAC or procyanidins (C, EC, ECG, B1, B2, B3, B4, B1-G, B2-G, C1) in 300 µM H2O2 for 4 days. Different grape seed procyanidins increased the survival of PC12 cells challenged with H2O2, improved the movement behavior disorder of zebrafish caused by H2O2, inhibited the increase of ROS and MDA and the decrease of GSH-Px, CAT, and SOD activities, and up-regulated the Nrf2/ARE pathway. The neuroprotective effects of the procyanidin trimer C1 treatment group were greater than the other treatment groups. These results suggest that the neuroprotective effect of procyanidins is positively correlated with their degree of polymerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiajin Zhu
- Correspondence: ; Tel./Fax: +86-571-8898-2191
| |
Collapse
|
23
|
Liu T, Yang L, Gao H, Zhuo Y, Tu Z, Wang Y, Xun J, Zhang Q, Zhang L, Wang X. 3,4-dihydroxyphenylethyl alcohol glycoside reduces acetaminophen-induced acute liver failure in mice by inhibiting hepatocyte ferroptosis and pyroptosis. PeerJ 2022; 10:e13082. [PMID: 35310165 PMCID: PMC8929172 DOI: 10.7717/peerj.13082] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 01/12/2023] Open
Abstract
APAP is one of the most commonly used antipyretic and pain medications, but excessive use can cause liver toxicity and damage. 3,4-dihydroxyphenylethyl alcohol glycoside (DAG) is a component isolated from Sargentodoxa cuneata known to have anti-apoptotic, anti-oxidation and anti-inflammatory effects. However, the effects of DAG on acute liver failure (ALF) are largely unknown. The purpose of this study is to study the protective effects and mechanism of DAG on APAP-induced ALF in mice. We established an ALF model in adult male pathogen-free C57BL/6 mice treated with APAP (300 mg/kg) by intraperitoneal injection and resolved by 24 h. Hematoxylin and eosin (HE) staining was used to evaluate the pathological changes in mouse liver tissue. The infiltration of neutrophils in liver tissue and reactive oxygen species (ROS) in AML12 cells were analyzed by flow cytometry. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutathione (GSH), malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) were analyzed using relevant kits. Our results show that DAG reduced APAP-induced serum ALT and AST levels, histopathological changes, liver neutrophil infiltration and proinflammatory cytokines production, also attenuated the accumulation of MDA and the exhaustion of GSH, CAT and SOD. In vitro experiment indicated that DAG dose-dependently inhibited APAP-induced the levels of pro-inflammatory factors (IL-1β and IL18), and reactive oxygen species (ROS) and preventing GSH depletion in mouse AML12 hepatocytes. More interestingly, DAG inhibited the expression of ERK, HO-1, NLRP3, Caspase1 (p20) and Gasdermin-D and upregulated the expression of GPX4 in liver tissues and AML12hepatocytes. Therefore, our results indicate that DAG may act as a potential agent to treat ALF induced by APAP by inhibiting hepatocyte ferroptosis and pyroptosis.
Collapse
Affiliation(s)
- Tianyu Liu
- Tianjin Medical University, Tianjin, China,Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Nankai Hospital, Tianjin, China
| | - Hejun Gao
- Tianjin Medical University, Tianjin, China,Tianjin Nankai Hospital, Tianjin, China
| | | | | | - Yongqin Wang
- The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Jing Xun
- Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin, China,Integrated Chinese and Western Medicine Hospital Of Tianjin University, Tianjin, China
| | | | - Ximo Wang
- Tianjin Medical University, Tianjin, China,Tianjin Nankai Hospital, Tianjin, China,Integrated Chinese and Western Medicine Hospital Of Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Huang J, Zhao D, Cui C, Hao J, Zhang Z, Guo L. Research Progress and Trends of Phenylethanoid Glycoside Delivery Systems. Foods 2022; 11:foods11050769. [PMID: 35267401 PMCID: PMC8909102 DOI: 10.3390/foods11050769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Phenylethanoid glycosides (PhGs) are obtained from a wide range of sources and show strong biological and pharmacological activities, such as antioxidant, antibacterial and neuroprotective effects. However, intestinal malabsorption and the low bioavailability of PhGs seriously affect their application. Delivery systems are an effective method to improve the bioavailability of active substances. Scope and approach: In this article, the biological activities of and delivery systems for PhGs are introduced. The application statuses of delivery systems for echinacoside, acteoside and salidroside are reviewed. Finally, the problems of the lack of uniform standards for delivery systems and the poor targeted delivery accuracy of PhGs in the current research are proposed and suggestions for future research are put forward based on those problems. Key findings and conclusions: Although there are still some problems in the delivery system of phenylethanoside, such as inconsistent standards and inaccurate delivery, phenylethanoside itself has been proven to have a variety of physiological activities. Therefore, the action mechanism and application of phenylethanoside and its delivery system should be studied further.
Collapse
Affiliation(s)
- Jin Huang
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
- Correspondence: (D.Z.); (L.G.)
| | - Chaojing Cui
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Jianxiong Hao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Zhentao Zhang
- Technical Institute of Physics and Chemistry CAS, Beijing 100190, China;
| | - Limin Guo
- Institute of Agro-Production Storage and Processing, Xinjiang Academy of Agricultural Sciences, Ürümqi 830091, China
- Correspondence: (D.Z.); (L.G.)
| |
Collapse
|
25
|
Yin L, Zhang Y, Wang L, Wu H, Azi F, Tekliye M, Zhou J, Liu X, Dong M, Xia X. Neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide-induced oxidative injury in PC12 cells. Eur J Nutr 2022; 61:779-792. [PMID: 34553258 DOI: 10.1007/s00394-021-02679-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Soy whey is a byproduct generated from the processing of several soybean products. Its valorization has continued to attract significant research interest in recent times due to the nutritional and bioactive potency of its chemical composition. Herein, the neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells was investigated. METHODS The phenolic compositions were analyzed by high-performance liquid chromatography. Antioxidant activities were assessed by ABTS•+ scavenging assay, DPPH radical scavenging assay, reducing power assay, and ferric reducing antioxidant power assay. The neuroprotective effects of fermented soy whey (FSW) were investigated based on the oxidative injury model in PC12 cells. RESULTS FSW possessed higher total phenolic content and antioxidant activities compared with unfermented soy whey (UFSW) and that most of the isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. The extract from FSW exhibited a greater protective effect on PC12 cells against oxidative injury by promoting cell proliferation, restoring cell morphology, inhibiting lactic dehydrogenase leakage, reducing reactive oxygen species levels, and enhancing antioxidant enzyme activities compared with that from UFSW. Additionally, cell apoptosis was significantly inhibited by FSW through down-regulation of caspase-3, caspase-9, and Bax and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was attenuated by FSW through increasing cyclin A, CDK1 and CDK2, and decreasing p21 protein. CONCLUSION Fermentation with C. militaris SN-18 could significantly improve the bioactivity of soy whey by enhancing the ability of nerve cells to resist oxidative damage.
Collapse
Affiliation(s)
- Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yongzhu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Lixia Wang
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Han Wu
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Fidelis Azi
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Jianzhong Zhou
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaoli Liu
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Liu Y, Huang W, Zhu Y, Zhao T, Xiao F, Wang Y, Lu B. Acteoside, the Main Bioactive Compound in Osmanthus fragrans Flowers, Palliates Experimental Colitis in Mice by Regulating the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1148-1162. [PMID: 35073073 DOI: 10.1021/acs.jafc.1c07583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The present study investigated the effects of Osmanthus fragrans flowers and acteoside on murine colitis and the underlying mechanisms. The O. fragrans flower extract (OFE) and acteoside were administrated to chemically induced colitic mice. The results showed that OFE or acteoside ameliorates intestinal inflammation, oxidative stress, and activation of nuclear factor-κB (NF-κB) in colitic mice. The dysbiosis of the gut microbiome in colitic mice was also partly restored by OFE or acteoside, which was characterized by the alteration of the gut microbiome structure and the enrichment of beneficial bacteria (Akkermansia muciniphila and Bacteroides thetaiotaomicron). Dextran sulfate sodium (DSS)-induced gut metabolome dysfunctions (e.g., sphingosine metabolism and amino acids metabolism) in colitic mice were also partly restored by OFE and acteoside. A fecal microbiota (FM) transplantation study suggested that, compared with the FM from the normal diet-dosed donor mice, the FM from the OFE- or acteoside-dosed donor mice significantly suppressed colitic symptoms.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Weisu Huang
- Department of Applied Technology, Zhejiang Institute of Economics & Trade, Hangzhou 310018, China
| | - Yuhang Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Tian Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yixuan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
27
|
Xu T, Huang W, Liang J, Zhong Y, Chen Q, Jie F, Lu B. Tuber flours improve intestinal health and modulate gut microbiota composition. FOOD CHEMISTRY-X 2021; 12:100145. [PMID: 34765968 PMCID: PMC8571703 DOI: 10.1016/j.fochx.2021.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
Tuber flours decreased the body weight gain in rats compared with starches. Gut integrity and digestive/absorptive function were improved by whole flour diets. Gut microbiota in cecum and colon were reshaped by different diets. Butyric acid content in ileum, cecum and colon were increased by tuber flours.
The different health effects between starch and whole flour from tubers are rarely studied. Here, we investigated the effects of cassava flour (CF), cassava starch (CS), potato flour (PF), and potato starch (PS) on gut health and gut microbiota of normal rats. Feed analysis showed that CF and PF diet provided significantly more slowly digestible and resistant starch, less rapidly digestible starch. Compared with rats fed with PS and CS diets, rats fed with PF and CF diets gained less body weight and have tighter intestinal barrier. Butyric acid contents were increased by tuber flours. CF and PF selectively promoted the relative abundance of Akkermansia and Eubacterium ruminantium in cecal and colonic content. In conclusion, tuber flour has intestinal protection, body weight control, and gut microbiota improving ability compared with starch. The different composition of starch might be the basis for these effects.
Collapse
Affiliation(s)
- Tao Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou 310018, China
| | - Jiajia Liang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yongheng Zhong
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Qi Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.,Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
28
|
Chao WW, Chan WC, Ma HT, Chou ST. Phenolic acids and flavonoids-rich Glechoma hederacea L. (Lamiaceae) water extract against H 2 O 2 -induced apoptosis in PC12 cells. J Food Biochem 2021; 46:e14032. [PMID: 34914114 DOI: 10.1111/jfbc.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress is reportedly associated with progressive neuronal cell damage. Glechoma hederacea L. (Lamiaceae), belonging to the Labiatae family, has demonstrated several biologic activities including depigmentation, antimelanogenic, antitumor, antioxidative, hepatoprotective, and anti-inflammatory activities. Previously, we reported that rosmarinic acid, chlorogenic acid, caffeic acid, rutin, genistin, and ferulic acids were the most abundant phytochemicals detected in hot water extracts of G. hederacea L. (HWG). This study aimed to study the neuroprotective effects of phenolic acids and flavonoid-rich HWG against hydrogen peroxide (H2 O2 )-induced oxidative damage in PC12 cells and its inhibitory effect on acetylcholinesterase (AChE). The experiment analyzed cytotoxicity, ROS production, mitochondrial transmembrane potential (MMP) level, and caspase-3 activity and used comet assay and antioxidant enzyme activity to determine the redox status of PC12 cells. Results showed that the inhibitory effect of HWG on AChE was in a competitive pattern (IC50 , 23.23 mg/ml). HWG antagonized H2 O2 -mediated cytotoxicity and DNA damage, reduced ROS production, stabilized MMP, and inhibited caspase-3 activity and apoptosis. Furthermore, HWG inhibited the release of cytochrome C and apoptosis-inducing factors (AIF) and decreased the malondialdehyde levels in PC12 cells. Collectively, HWG rich in antioxidant phenolic acids and flavonoids may have neuroprotective effects. PRACTICAL APPLICATIONS: Polyphenolic compounds are one of the most important natural products, known to possess a range of health-promoting effects. In this study, it was found that HWG, which is rich in antioxidant phenolic acids and flavonoids, can protect PC12 cells from oxidative stress induced by H2 O2 and may have neuroprotective effects.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Wan-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Ting Ma
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| |
Collapse
|
29
|
Acteoside isolated from Colebrookea oppositifolia attenuates I/R brain injury in Wistar rats via modulation of HIF-1α, NF-κB, and VEGF pathways. Inflammopharmacology 2021; 29:1565-1577. [PMID: 34365555 DOI: 10.1007/s10787-021-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
AIMS The objective of this study was to assess the anti-stroke activity of acteoside isolated from methanolic root extract of C. oppositifolia METHODS: Ischemia-reperfusion(I/R) brain injury was induced in Wistar rats to assess the anti-stroke activity of acteoside. Rats were pretreated with acteoside (10, 25 & 50 mg/kg, p.o.) before the induction of I/R injury. Parameters such as neurological, motor-cognitive functions were evaluated along with morphological (brain volume, infarct size), biochemical (SOD, Catalase, GSH, lipid peroxidation, TNF-α, IL-6, IL-10, ICAM-1, HIF-1α, VEGF, and NF-κB), histopathological, and gene expression studies (HIF-1α, VEGF) were performed to study the protective effect of acteoside against I/R induced brain injury. RESULTS I/R injury caused significant deterioration of neurological (p < 0.01), motor (p < 0.01) and cognitive (p < 0.01) functions, associated with increase in the brain volume (p < 0.01), and infarct size (p < 0.01); increase in the levels of MDA, TNF-α, IL-6, ICAM-1, HIF-1α, VEGF, and NF-κB along with significant decrease in SOD, catalase, GSH, and IL-10 (p < 0.01 for all parameters) compared to Sham control group. Histology of brain tissue of disease control group exhibited significant vascular changes, neutrophil infiltration, cerebral oedema, and necrosis of the neuronal cells. Further, the gene-expression studies showed significant increase in the HIF-1α (p < 0.01) and VEGF (p < 0.01) mRNA levels in the I/R control compared to Sham control. Interestingly, the acteoside (10, 25 & 50 mg/kg) has prevented the neurological, motor and cognitive dysfunctions, along with inhibiting the morphological, biochemical, histological and gene expression changes induced by I/R-injury (p < 0.05 for 10 mg; p < 0.01 for 25 & 50 mg/kg of acteoside for all the parameters). CONCLUSION These findings suggest that acteoside possess potent anti-stroke activity through modulation of HIF-1α, NF-κB, and VEGF pathway along with its potent antioxidant activity.
Collapse
|
30
|
Hong J, Shi Z, Li C, Ji X, Li S, Chen Y, Jiang G, Shi M, Wang W, Zhang Y, Hu B, Yan S. Virtual screening identified natural Keap1-Nrf2 PPI inhibitor alleviates inflammatory osteoporosis through Nrf2-mir214-Traf3 axis. Free Radic Biol Med 2021; 171:365-378. [PMID: 34000381 DOI: 10.1016/j.freeradbiomed.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Overactive osteoclastogenesis is involved in the inflammatory bone loss and could be target for therapy. Here, we applied transcription factor enrichment analysis using public inflammatory osteolysis datasets and identified Nrf2 as the potential therapeutic target. Additionally, in-silico screening was performed to dig out Nrf2-Keap1 PPI inhibitor and Forsythoside-β was found to be the best-performing PHG compound. We firstly tested the effect of Forsythoside-β in inflammatory osteoporosis models and found it was able to attenuate the bone loss by inhibiting osteoclastogenesis and activating Nrf2-signaling in vivo. Forsythoside-β was capable to suppress the differentiation of osteoclast in time and dose-dependent manners in vitro. Further, Forsythoside-β could inhibit the production of reactive oxygen species and induce Nrf2 nuclear-translocation by interrupting Nrf2-Keap1 PPI. Recently, Nrf2 was identified as the epigenetic regulator modulating levels of miRNA in various diseases. We discovered that Forsythoside-β could suppress the expression of mir-214-3p, one of most variable miRNAs during osteoclastogenesis. To clarify the undermining mechanism, by utilizing chip-seq dataset, we found that Nrf2 could bind to promoter of mir-214-3p and further regulate this miRNA. Collectively, Forsythoside-β was able to prevent bone loss through Nrf2-mir-214-3p-Traf3 axis, which could be a promising candidate for treating inflammatory bone loss in the future.
Collapse
Affiliation(s)
- Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China
| | - Yongxing Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| | - Bin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Orthopedic Research Institute of Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Effects of the Cistanche tubulosa Aqueous Extract on the Gut Microbiota of Mice with Intestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4936970. [PMID: 34335809 PMCID: PMC8294959 DOI: 10.1155/2021/4936970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Disorders of the gut microbiota are associated with many diseases. The aqueous extract from Cistanche tubulosa (CT), a traditional Chinese herbal formula, has been reported to play a role in protecting the human intestine. However, little is known about its effects on the gut microbiota. The present study was carried out to determine whether the CT aqueous extract can modulate the gut microbiome in mice with intestinal disorders. We found that the damaged intestinal morphology resulting from treatment with cefixime could be rescued using the CT aqueous extract. The comparison of microbial diversity between mice treated with the CT extract and control mice also indicated that the disorder in the microbiome community of model groups could be restored by treatment with high and medium concentrations of the CT aqueous extract. Treatment with cefixime led to a significant decrease in lactic acid bacteria; however, the supplementation of the CT aqueous extract recovered the growth of these lactic acid bacteria. Furthermore, the CT aqueous extract was able to moderate the dramatic changes in the metabolic pathways of the gut microbiome induced by cefixime. These findings provided an insight into the beneficial effects of the CT aqueous extract on gut microbiota, and they also provided an important reference for the development of related drugs in the future.
Collapse
|
32
|
The Protective Effect of Aspirin Eugenol Ester on Oxidative Stress to PC12 Cells Stimulated with H 2O 2 through Regulating PI3K/Akt Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5527475. [PMID: 34257805 PMCID: PMC8249132 DOI: 10.1155/2021/5527475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
Aspirin eugenol ester (AEE) is a new pharmaceutical compound esterified by aspirin and eugenol, which has anti-inflammatory, antioxidant, and other pharmacological activities. This study is aimed at identifying the protective effect of AEE against H2O2-induced apoptosis in rat adrenal pheochromocytoma PC12 cells and the possible mechanisms. The results of cell viability assay showed that AEE could increase the viability of PC12 cells stimulated by H2O2, while AEE alone had no significant effect on the viability of PC12 cells. Compared with the control group, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly decreased, and the content of malondialdehyde (MDA) was significantly increased in the H2O2 group. By AEE pretreatment, the level of MDA was reduced and the levels of SOD, CAT, and GSH-Px were increased in H2O2-stimulated PC12 cells. In addition, AEE could reduce the apoptosis of PC12 cells induced by H2O2 via reducing superoxide anion, intracellular ROS, and mitochondrial ROS (mtROS) and increasing the levels of mitochondrial membrane potential (ΔΨm). Furthermore, the results of western blotting showed that compared with the control group, the expression of p-PI3K, p-Akt, and Bcl-2 was significantly decreased, while the expression of Caspase-3 and Bax was significantly increased in the H2O2 group. In the AEE group, AEE pretreatment could upregulate the expression of p-PI3K, p-Akt, and Bcl-2 and downregulate the expression of Caspase-3 and Bax in PC12 cells stimulated with H2O2. The silencing of PI3K with shRNA and its inhibitor-LY294002 could abrogate the protective effect of AEE in PC12 cells. Therefore, AEE has a protective effect on H2O2-induced PC12 cells by regulating the PI3K/Akt signal pathway to inhibit oxidative stress.
Collapse
|
33
|
Liu YP, Yuan XY, Li XY, Wang Y, Sun ZB, Deng WH, Lei YD, Huang L, Jiang TY, Zhang ZH. Hydrogen sulfide alleviates apoptosis and autophagy induced by beryllium sulfate in 16HBE cells. J Appl Toxicol 2021; 42:230-243. [PMID: 34091916 DOI: 10.1002/jat.4205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Collapse
Affiliation(s)
- Yan-Ping Liu
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of public health, University of South China, Hengyang, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, China
| | - Zhan-Bing Sun
- School of public health, University of South China, Hengyang, China
| | - Wei-Hua Deng
- School of public health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of public health, University of South China, Hengyang, China
| | - Lian Huang
- School of public health, University of South China, Hengyang, China
| | - Tian-Yi Jiang
- School of public health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| |
Collapse
|
34
|
Yin L, Zhang Y, Azi F, Tekliye M, Zhou J, Liu X, Dong M, Xia X. Neuroprotective Potency of Tofu Bio-Processed Using Actinomucor elegans against Hypoxic Injury Induced by Cobalt Chloride in PC12 Cells. Molecules 2021; 26:molecules26102983. [PMID: 34069784 PMCID: PMC8157283 DOI: 10.3390/molecules26102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.
Collapse
Affiliation(s)
- Liqing Yin
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
| | - Yongzhu Zhang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China;
| | - Fidelis Azi
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Mekonen Tekliye
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
| | - Jianzhong Zhou
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xiaoli Liu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing 210095, China; (L.Y.); (F.A.); (M.T.); (J.Z.); (X.L.)
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Correspondence: (M.D.); (X.X.); Tel.: +86-25-8439-6989 (M.D.); +86-25-8439-1577 (X.X.)
| |
Collapse
|
35
|
Amirova KM, Dimitrova PA, Marchev AS, Krustanova SV, Simova SD, Alipieva KI, Georgiev MI. Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils. Int J Mol Sci 2021; 22:1759. [PMID: 33578811 PMCID: PMC7916618 DOI: 10.3390/ijms22041759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
The pathological manifestation of various diseases can be suppressed by the activation of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), a transcriptional regulator of the cellular redox balance. Haberlea rhodopensis Friv. is a resurrection plant species endemic for Bulgaria, containing biologically active phenylethanoid glycosides that might possess antioxidant or redox activity. This study aimed to analyze the metabolic profile of in vitro cultured H. rhodopensis and to identify molecules that increase Nrf2 expression in bone marrow neutrophils. Fractions B, D, and E containing myconoside, or myconoside and calceolarioside E in ratios 1:0.6 and 0.25:1 were found to be the most active ones. Fraction B (200 µg/mL) improved neutrophil survival and strongly increased the Nrf2 intracellular level, while D and E, as well as, myconoside and calceolarioside E at the same ratios had a superior effect. Calceolarioside E (32 µg/mL) had stronger activity than myconoside, the effect of which was very similar to that of 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me), used as a positive control. These data indicate that both molecules, used alone or in combination have stimulatory activity on the endogenous Nrf2 level, indicating their therapeutic potential to regulate the cellular redox homeostasis oxidative stress-associated pathologies.
Collapse
Affiliation(s)
- Kristiana M. Amirova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Petya A. Dimitrova
- Laboratory of Experimental Immunotherapy, Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Georgi Bonchev Str., 1113 Sofia, Bulgaria;
| | - Andrey S. Marchev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| | - Slaveya V. Krustanova
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Svetlana D. Simova
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Kalina I. Alipieva
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, 9 Georgi Bonchev Str., 1113 Sofia, Bulgaria; (S.V.K.); (S.D.S.); (K.I.A.)
| | - Milen I. Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; (K.M.A.); (A.S.M.)
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd, 4000 Plovdiv, Bulgaria
| |
Collapse
|
36
|
Lee GH, Kim JY, Jin SW, Pham TH, Park JS, Kim CY, Choi JH, Han EH, Kim YH, Jeong HG. Impressic Acid Attenuates the Lipopolysaccharide-Induced Inflammatory Response by Activating the AMPK/GSK3β/Nrf2 Axis in RAW264.7 Macrophages. Int J Mol Sci 2021; 22:ijms22020762. [PMID: 33466670 PMCID: PMC7828816 DOI: 10.3390/ijms22020762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory diseases are caused by excessive inflammation from pro-inflammatory mediators and cytokines produced by macrophages. The Nrf2 signaling pathway protects against inflammatory diseases by inhibiting excessive inflammation via the regulation of antioxidant enzymes, including HO-1 and NQO1. We investigated the anti-inflammatory effect of impressic acid (IPA) isolated from Acanthopanax koreanum on the lipopolysaccharide (LPS)-induced inflammation and the underlying molecular mechanisms in RAW264.7 cells. IPA attenuated the LPS-induced production of pro-inflammatory cytokines and reactive oxygen species, and the activation of the NF-κB signaling pathway. IPA also increased the protein levels of Nrf2, HO-1, and NQO1 by phosphorylating CaMKKβ, AMPK, and GSK3β. Furthermore, ML385, an Nrf2 inhibitor, reversed the inhibitory effect of IPA on LPS-induced production of pro-inflammatory cytokines in RAW264.7 cells. Therefore, IPA exerts an anti-inflammatory effect via the AMPK/GSK3β/Nrf2 signaling pathway in macrophages. Taken together, the findings suggest that IPA has preventive potential for inflammation-related diseases.
Collapse
Affiliation(s)
- Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Ji Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Thi Hoa Pham
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Jin Song Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Chae Yeon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Korea
| | - Eun Hee Han
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea;
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (G.H.L.); (J.Y.K.); (S.W.J.); (T.H.P.); (J.S.P.); (C.Y.K.); (J.H.C.); (Y.H.K.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
37
|
Fan F, Zou Y, Fang Y, Li P, Xia J, Shen X, Liu Q, Hu Q. Potential neuroprotection of wheat alkylresorcinols in hippocampal neurons via Nrf2/ARE pathway. Food Funct 2020; 11:10161-10169. [PMID: 33155602 DOI: 10.1039/d0fo02285c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
5-n-Alkylresorcinols (ARs) are abundant in wheat bran and potentially antioxidative, although the neuroprotective mechanism is not fully understood. The neuroprotective effect of wheat bran ARs on H2O2-induced neuronal cells and the relationship between neuroprotection and the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant-response element (ARE) pathway were investigated in this study. Seven homologs were identified in the purified ARs by high-performance liquid chromatography-tandem mass spectrometry. Pretreatment with 80 μg mL-1 ARs alleviated 23% HT22 cell death and the up-regulation of intracellular reactive oxygen species level and malondialdehyde under H2O2 stimulation. The neuroprotection effect was proved by the increase in the Nrf2 nuclear location and up-regulation of mRNA and protein expressions of heme oxygenase-1, NAD(P)H quinone dehydrogenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit l. Wheat bran ARs displayed a neuroprotective function, possibly by promoting the endogenous antioxidant defense system. ARs may be regarded as a functional food ingredient for preventing neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Key Laboratory of Grains and Oils Quality Control and Processing/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu A, Yang Z, Huang Y, Yuan H, Lin C, Wang T, Zhao Z, Zhou Y, Zhu C. Natural phenylethanoid glycosides isolated from Callicarpa kwangtungensis suppressed lipopolysaccharide-mediated inflammatory response via activating Keap1/Nrf2/HO-1 pathway in RAW 264.7 macrophages cell. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112857. [PMID: 32298752 DOI: 10.1016/j.jep.2020.112857] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa kwangtungensis, as a characteristic traditional herb in China, has been widely used as indigenous medicine for thousands of years in the treatment of upper respiratory tract infection, tonsillitis, pneumonia and traumatic bleeding in China. Phenylethanoid glycosides (PhGs), as natural polyphenols, are especially abundant in this herb and can be regarded as the representative active ingredients in C. kwangtungensis. AIM OF THIS STUDY This study was performed to investigate the anti-inflammatory pharmacodynamic basis of six PhGs (acteoside, forsythoside B, poliumoside, alyssonoside, parvifloroside A, and syringalide A 3'-α-L-rhanmnopyranoside) isolated from C. kwangtungensis from the perspective of antioxidation. MATERIALS AND METHODS Six PhGs were isolated from the anti-inflammatory extracts of C. kwangtungensis by various chromatographic techniques and their anti-inflammatory activity on RAW 264.7 murine macrophages induced by LPS was investigated by measuring the release of tumor necrosis factor (TNF-α), the colonic interleukin-6 (IL-6), nitric oxide (NO) and reactive oxygen species (ROS). Further, the underlying anti-inflammatory mechanism of two PhGs (forsythoside B and alyssonoside) was explored by determining the expression of Kelch-like ECH-association protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (OH-1) and quinone oxidoreductase 1 (NQO1). Besides, molecular simulation was also employed to evaluate the binding capacity of two PhGs with Keap1. RESULTS Compared with the model group, six PhGs revealed obviously inhibitory effects on TNF-α, IL-6, NO and the generation of ROS in RAW 264.7 macrophages. Moreover, forsythoside B and alyssonoside could act as the inhibitors of Keap1-Nrf2 interaction, then activated the nuclear translocation of Nrf2 and promoted the upregulated protein expression of HO-1 and NQO1, finally suppressed LPS-induced inflammatory response in RAW 264.7 macrophages. Molecular modeling exhibited hydrogen bonds played a crucial role for the binding of PhGs with the Nrf2 binding site in Keap1 protein. CONCLUSIONS Natural PhGs-induced protection against LPS-induced inflammatory response via activating Keap1/Nrf2/HO-1 signaling pathway in RAW 264.7 macrophages were confirmed, which provided experimental and theoretical basis for the deeper use of C. Kwangtungensis in the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Aizhi Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| | - Zhiying Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yimin Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Huan Yuan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Tao Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuan Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China.
| |
Collapse
|
39
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
40
|
Lycopene prevents lipid accumulation in hepatocytes by stimulating PPARα and improving mitochondrial function. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
41
|
Wang F, Li R, Tu P, Chen J, Zeng K, Jiang Y. Total Glycosides of Cistanche deserticola Promote Neurological Function Recovery by Inducing Neurovascular Regeneration via Nrf-2/Keap-1 Pathway in MCAO/R Rats. Front Pharmacol 2020; 11:236. [PMID: 32256351 PMCID: PMC7089931 DOI: 10.3389/fphar.2020.00236] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background The traditional Chinese medicine Cistanche deserticola has been reported to be valid for cardiovascular and cerebrovascular diseases. However, its active components for the protection of ischemic stroke are not clear. We aimed to explore the active components of C. deserticola against ischemic stroke as well as its potential mechanisms. Methods We investigated the brain protective effects of extracts from C. deserticola, total glycosides (TGs), polysaccharides (PSs), and oligosaccharides (OSs) in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining was used to assess the cerebral infarction volume, and Evans blue assay was adopted to assess the blood-brain barrier (BBB) permeability. Then, the expressions CD31, α-SMA, PDGFRβ, SYN, PSD95, MAP-2, ZO-1, claudin-5, occludin, Keap-1, and Nrf-2 were analyzed using western blotting or immunofluorescence, and the activities MDA, SOD, CAT, and GSH-Px were analyzed using kits. Results TGs treatment remarkably decreased neurological deficit scores and infarction volumes, promoted angiogenesis and neural remodeling, and effectively maintained blood-brain-barrier integrity compared with the model group. Furthermore, TGs significantly decreased MDA levels and increased antioxidant activities (SOD, CAT, and GSH-Px) in brains. Meanwhile, TGs remarkably downregulated Keap-1 expression and facilitated Nrf-2 nuclear translocation. On the contrary, no protective effects were observed for PSs and OSs groups. Conclusion TGs are the main active components of C. deserticola against MCAO/R-induced cerebral injury, and protection is mainly via the Nrf-2/Keap-1 pathway.
Collapse
Affiliation(s)
- Fujiang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyan Li
- Department of Pharmacology, Changzhi Medical College, Shanxi, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Ren B, Yuan T, Zhang X, Wang L, Pan J, Liu Y, Zhao B, Zhao W, Liu Z, Liu X. Protective Effects of Sesamol on Systemic Inflammation and Cognitive Impairment in Aging Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3099-3111. [PMID: 32067456 DOI: 10.1021/acs.jafc.9b07598] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sesamol, a lignan in sesame, possesses several bioactivities, such as antioxidation, anti-inflammation, and neuroprotective capability. In this study, the effects of sesamol on aging-caused cognitive defects are investigated. Twelve-month-old mice were treated with sesamol (0.1%, w/w) as dietary supplementation for 12 weeks. Behavioral tests revealed that sesamol improved aging-associated cognitive impairments. Sesamol decreased aging-induced oxidative stress via suppression of malondialdehyde production and increased antioxidant enzymes. Histological staining showed that sesamol treatment improved aging-induced neuronal damage and synaptic dysfunction in the hippocampus. Furthermore, sesamol significantly reduced aging-induced neuroinflammation by inhibiting the microglial overactivation and inflammatory cytokine expressions. Meanwhile, the accumulation of Aβ1-42 was reduced by sesamol treatment. Moreover, sesamol protected the gut barrier integrity and reduced LPS release, which was highly associated with its beneficial effects on behavioral and inflammatory changes. In conclusion, our findings indicated that the use of sesamol is feasible in the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Tian Yuan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xinglin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Junru Pan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Weiyang Zhao
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
43
|
Shu G, Qiu Y, Hao J, Fu Q, Deng X. γ-Oryzanol alleviates acetaminophen-induced liver injury: roles of modulating AMPK/GSK3β/Nrf2 and NF-κB signaling pathways. Food Funct 2020; 10:6858-6872. [PMID: 31584590 DOI: 10.1039/c9fo01808e] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acetaminophen (APAP) overdose is a major cause of drug-induced liver injury worldwide. Our current study was performed to assess the potential protective effects of γ-oryzanol (ORY) on APAP-induced liver injury in mice and explore the underlying molecular mechanisms. We unveiled that ORY alleviated the APAP-induced death of HL-7702 hepatocytes in vitro and liver injury in mice. Moreover, ORY promoted the nuclear translocation of Nrf2, increased the expressions of Nrf2-downstream antioxidative enzymes, including HO-1, NQO1, GCLC, and GCLM, and thereby restrained APAP-induced oxidative stress in hepatocytes. Moreover, ORY modulated the AMPK/GSK3β axis that acts upstream of Nrf2 in hepatocytes. Compound C, an inhibitor of AMPK, prevented the ORY-mediated activation of Nrf2 and protection against APAP toxicity in HL-7702 hepatocytes. Additionally, in the liver of mice receiving APAP, ORY suppressed the nuclear translocation of the NF-κB p65 subunit, downregulated the expressions of iNOS and COX-2, and reduced the levels of pro-inflammatory factors including TNF-α, IL-1β, IL-6, and NO. Taken together, our findings revealed that ORY is capable of ameliorating APAP-induced liver injury. The modulation of AMPK/GSK3β/Nrf2 and NF-κB signaling pathways is implicated in the hepatoprotective activity of ORY.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei 430074, China.
| | | | | | | | | |
Collapse
|
44
|
Zhang X, Lai W, Ying X, Xu L, Chu K, Brown J, Chen L, Hong G. Salidroside Reduces Inflammation and Brain Injury After Permanent Middle Cerebral Artery Occlusion in Rats by Regulating PI3K/PKB/Nrf2/NFκB Signaling Rather than Complement C3 Activity. Inflammation 2020; 42:1830-1842. [PMID: 31230155 DOI: 10.1007/s10753-019-01045-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Salidroside, an active constituent of Rhodiola rosea, is neuroprotective after transient middle cerebral artery occlusion (tMCAO). However, its effects in other experimental stroke models are less understood. Here, we investigated the effect of daily intraperitoneal injections of salidroside in rats after permanent MCAO (pMCAO). Cerebral infarct volumes at 1 day after pMCAO were significantly reduced by treatment with 100 mg/kg/day salidroside, but not by 25 or 50 mg/kg/day, and this benefit of salidroside increased significantly over at least 7 days of treatment, when it was also accompanied by decreased neurological deficit scores. These observations led us to investigate the underlying mechanism of action of salidroside. 100 mg/kg salidroside for 1 day increased NeuN, Nrf2, and its downstream mediator HO-1, while it reduced nuclear NFκB p50, IL-6, and TNFα. Brusatol, a Nrf2 inhibitor, blocked the actions of salidroside on Nrf2, NFκB p50, IL-6, and TNFα. Salidroside also increased the ratio of p-PKB/PKB at 1 day after pMCAO even in the presence of brusatol. LY294002, a PI3K inhibitor, prevented all these effects of salidroside, including those on NeuN, p-PKB/PKB, Nrf2, HO-1, and pro-inflammatory mediators. In contrast, salidroside had no significant effect on the level of cerebral complement C3 after pMCAO, or on the activity of C3 as measured by the expression of cerebral Egr1. Our findings therefore suggest that salidroside reduces neuroinflammation and neural damage by regulating the PI3K/PKB/Nrf2/NFκB signaling pathway after pMCAO, and that this neuroprotective effect does not involve modulation of complement C3 activity.
Collapse
Affiliation(s)
- X Zhang
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - W Lai
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - X Ying
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - L Xu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - K Chu
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - J Brown
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - L Chen
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China
| | - G Hong
- Centre of Biomedical Research & Development, Fujian University of Traditional Chinese Medicine, No. 1 Huatou Road, Minhou Shangjie, Fuzhou, China.
| |
Collapse
|
45
|
Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules 2020; 25:molecules25030596. [PMID: 32013273 PMCID: PMC7037231 DOI: 10.3390/molecules25030596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.
Collapse
|
46
|
Wu J, Li P, Shi Y, Fang Y, Zhu Y, Fan F, Pei F, Xia J, Xie M, Hu Q. Neuroprotective effects of two selenium-containing peptides, TSeMMM and SeMDPGQQ, derived from selenium-enriched rice protein hydrolysates on Pb2+-induced oxidative stress in HT22 cells. Food Chem Toxicol 2020; 135:110932. [DOI: 10.1016/j.fct.2019.110932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 02/02/2023]
|
47
|
Gong X, Xu Y, Ren K, Bai X, Zhang C, Li M. Phenylethanoid glycosides from Paraboea martinii protect rat pheochromocytoma (PC12) cells from hydrogen peroxide-induced cell injury. Biosci Biotechnol Biochem 2019; 83:2202-2212. [PMID: 31409200 DOI: 10.1080/09168451.2019.1654359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT
In this study, we isolated eight phenylethanoid glycosides from Paraboea martinii for the first time, and evaluated the mechanism underlying their neuroprotective effects against H2O2-induced injury in PC12 cells. The MTS method was utilized to screen the phenylethanoid glycosides for protective ability. Next, qRT-PCR and western blotting analysis were used to detect the transcription levels of HO-1 and GCLC, which are regulated by Nrf2. The inhibitor ZnPP was used to analyze the involvement of Nrf2 in HO-1 expression. Analyses showed that caleolarioside B, paraboside B, and paraboside II also upregulated the expression of HO-1, but showed no obvious effect on GCLC. Pretreatment with ZnPP significantly reduced the neuroprotective effects. Thus, phenylethanoid glycosides isolated from P. martinii protected PC12 cells from H2O2-induced damage by upregulating HO-1. The results provided evidence that P. martinii might be a potential therapeutic agent for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Yan Xu
- Department of Emergency, The First Affiliated Hospital of Baotou Medical College of Inner Mongolia University of Science and Technology, Baotou, China
| | - Kai Ren
- Intensive Care Unit, Inner Mongolia Autonomous region Hospital of traditional Chinese Medicine, Hohhot, China
| | - Xiaorong Bai
- Department of Medicine, Xilinggol Vocational College, Inner Mongolia, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, China
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, China
- Intensive Care Unit, Inner Mongolia Autonomous region Hospital of traditional Chinese Medicine, Hohhot, China
- Guangxi key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
48
|
Veerappan I, Sankareswaran SK, Palanisamy R. Morin Protects Human Respiratory Cells from PM 2.5 Induced Genotoxicity by Mitigating ROS and Reverting Altered miRNA Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2389. [PMID: 31284452 PMCID: PMC6651735 DOI: 10.3390/ijerph16132389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Chronic fine particulate matter (PM2.5) exposure causes oxidative stress and leads to many diseases in human like respiratory and cardiovascular disorders, and lung cancer. It is known that toxic responses elicited by PM2.5 particles depend on its physical and chemical characteristics that are greatly influenced by the source. Dietary polyphenolic compounds that possess antioxidant and free radical scavenging properties could be used for therapeutic or preventive approaches against air pollution related health hazards. This study evaluates characteristics and toxicity of PM2.5 collected from rural, urban, industrial, and traffic regions in and around Coimbatore City, Tamilnadu, India. Traffic PM2.5 particles contained higher amounts of metals and polycyclic aromatic hydrocarbons (PAHs). It also possessed higher levels of oxidative potential, induced more intracellular reactive oxygen species (ROS), and caused more levels of cell death and DNA damage in human respiratory cells. Its exposure up regulated DNA damage response related miR222, miR210, miR101, miR34a, and miR93 and MycN and suppressed Rad52. Pre-treatment with morin significantly decreased the PM2.5 induced toxicity and conferred protection against PM2.5 induced altered miRNA expression. Results of this study showed that cytoprotective effect of morin is due to its antioxidative and free radical scavenging activity.
Collapse
Affiliation(s)
- Indhumathi Veerappan
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India
| | | | - Rajaguru Palanisamy
- Department of Biotechnology, Anna University, BIT Campus, Tiruchirappalli 620 024, India.
| |
Collapse
|
49
|
Zhuo Y, Li D, Cui L, Li C, Zhang S, Zhang Q, Zhang L, Wang X, Yang L. Treatment with 3,4-dihydroxyphenylethyl alcohol glycoside ameliorates sepsis-induced ALI in mice by reducing inflammation and regulating M1 polarization. Biomed Pharmacother 2019; 116:109012. [PMID: 31146107 DOI: 10.1016/j.biopha.2019.109012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
The bioactive phenylethanoid 3,4-dihydroxyphenylethyl alcohol glycoside (DAG) is a component isolated from Sargentodoxa cuneata. The effects of DAG on acute lung injury (ALI) are largely unknown. Here, the effects of DAG on sepsis-induced ALI were investigated, and the related mechanisms were explored. Male C57BL/6 mice were used to establish a sepsis-induced ALI model. Levels of inflammatory cytokines were determined using real-time quantitative reverse transcription PCRs (qRT-PCR) and enzyme-linked immunosorbent assays (ELISAs). Pathological changes in the lung tissues were evaluated using haematoxylin and eosin (HE) staining. Mouse survival was quantified, and macrophage polarization was analyzed using flow cytometry. Our results showed that, in septic mice, pretreatment with DAG significantly improved survival, reduced histological damage in the lung, and suppressed the inflammatory response by inhibiting the activation of the NF-κB, STAT3, and p38 MAPK signaling pathways. Moreover, DAG treatment reduced the percentage of M1 macrophages in the bronchoalveolar lavage fluid (BALF) and spleen. In addition, DAG treatment decreased the production of pro-inflammatory cytokines and suppressed the activation of the NF-κB, STAT3, and p38 MAPK signaling pathways in LPS-induced MH-S cells. DAG treatment also reduced the relative abundances of M1 macrophages and M1 macrophage markers by suppressing the activation of the Notch1 signaling pathway. Thus, our results provided new insights for the development of drugs to treat ALI.
Collapse
Affiliation(s)
- Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China; Department of Surgery, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China.
| |
Collapse
|
50
|
Clementi ME, Lazzarino G, Sampaolese B, Brancato A, Tringali G. DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/HO-1 axis. Int J Mol Med 2019; 43:2523-2531. [PMID: 31017264 DOI: 10.3892/ijmm.2019.4170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/10/2019] [Indexed: 11/06/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an omega‑3 polyunsaturated fatty acid, derived mainly from fish oil. It is well known that DHA is present in high concentrations in nervous tissue and plays an important role in brain development and neuroprotection. However, the molecular mechanisms underlying its role remain to be fully elucidated. In this study, to enhance our understanding of the pathophysiological role of DHA, we investigated the possible neuroprotective mechanisms of action of DHA against hydrogen peroxide (H2O2)‑induced oxidative damage in a rat pheochromocytoma cell line (PC12). Specifically, we evaluated the viability, oxidation potential, and the expression and production of antioxidant/cytoprotective enzymes, and eventual apoptosis. We found that pre‑treatment with DHA (24 h) protected the cells from H2O2‑induced oxidative damage. In particular, pre‑treatment with DHA: i) Antagonized the consistent decrease in viability observed following exposure to H2O2 for 24 h; ii) reduced the high levels of intracellular reactive oxygen species (ROS) associated with H2O2‑induced oxidative stress; iii) increased the intracellular levels of enzymatic antioxidants [superoxide dismutase (SOD) and glutathione peroxidase (GSH‑Px)] both under basal conditions and following H2O2 exposure; iv) augmented the intracellular levels of reduced glutathione (GSH) and ascorbic acid, while it reduced the malondialdehyde (MDA) levels under conditions of oxidative stress; v) upregulated the expression of nuclear factor (erythroid‑derived 2)‑like 2 (NFE2L2) and its downstream target protein, heme‑oxygenase‑1 (HO‑1); and vi) induced an anti‑apoptotic effect by decreasing Bax and increasing Bcl2 expression. These findings provide evidence suggesting that DHA is able to prevent H2O2‑induced oxidative damage to PC12 cells, which is attributed to its antioxidant and anti‑apoptotic effects via the regulation NFE2L2/HO‑1 signaling. Therefore, DHA may play protective role in neurodegenerative diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR‑ICRM Institute of 'Chemistry of Molecular Recognition', c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Beatrice Sampaolese
- CNR‑ICRM Institute of 'Chemistry of Molecular Recognition', c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University Medical School, I‑00168 Rome, Italy
| | - Anna Brancato
- Department of Science for Health Promotion and Mother‑Child Care 'G. D'Alessandro' University of Palermo, I‑90127 Palermo, Italy
| | - Giuseppe Tringali
- A. Gemelli University Polyclinic Foundation, Italy IRCCS, I‑00168 Rome, Italy
| |
Collapse
|